PDE QUALIFYING EXAM-SPRING 2019

LINFENG LI

1. Let Ω be a bounded domain (open, connected) in \mathbb{R}^{n}. Suppose that $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ is a solution of

$$
\Delta u+\sum_{k=1}^{n} a_{k}(x) \partial_{x_{k}} u+c(x) u=0
$$

where $a_{k}, c \in C(\bar{\Omega})$ and $c<0$ in Ω. Show that if $u=0$ on $\partial \Omega$, then $u=0$ in all of Ω.

Solution. Assume $u \not \equiv 0$ in all of Ω, since $u=0$ on $\partial \Omega$, there exist some point $x_{0} \in \Omega$ such that $u\left(x_{0}\right)$ attains maximum or minimum in $\bar{\Omega}$. Without loss of generality, $u\left(x_{0}\right)$ is a maximum, then $D u\left(x_{0}\right)=0$ and $D^{2} u\left(x_{0}\right)$ is negative definite. From the equation,

$$
\Delta u\left(x_{0}\right)+c\left(x_{0}\right) u\left(x_{0}\right)=0
$$

but $\Delta u\left(x_{0}\right) \leq 0$ and $c(x)<0$ and $u\left(x_{0}\right)>0$, we have a contradiction.
2. Solve the equation

$$
\partial_{t} u+x \partial_{x} u+u=0
$$

with initial data $u(0, x)=f(x)$, where f is a compactly supported smooth function on \mathbb{R}. Sketch the graph of $u(t, x)$ as a function of x for a non-trivial compactly supported initial datum of your choice for $t=0, t=R$ and $t=-R$ for R large (what happens to the support and amplitude)?

Solution. This PDE is linear and has the form

$$
F(D u, u, x)=\mathbf{b}(x) \cdot D u(x)+c(x) u(x)=0,
$$

where $\mathbf{b}(x)=(1, x), D u(x)=\left(\partial_{t} u, \partial_{x} u\right)$ and $c(x) \equiv 1$. Then the characteristics are

$$
\begin{aligned}
& \dot{\mathbf{x}}(s)=(\dot{t}(s), \dot{x}(s))=(1, x(s)), \\
& \dot{z}(s)=-c(\mathbf{x}(s)) z(s)=-z(s),
\end{aligned}
$$

therefore, we have the characteristics emanating from $\left(0, x_{0}\right)$ is

$$
\left\{\begin{array}{l}
t(s)=s+t(0)=s \\
x(s)=x(0) e^{s}=x_{0} e^{s}
\end{array}\right.
$$

on which we have $u(t(s), x(s))=z(s)=z(0) e^{-s}=f\left(x_{0}\right) e^{-s}$.
Consider the bump function

$$
f(x)= \begin{cases}e^{-\frac{1}{1-x^{2}}}, & |x|<1 \\ 0, & \text { otherwise }\end{cases}
$$

which is a smooth function with compact support. Then for $t=0, u(0, x)=f(x)$ and for $t=R$ for R large, we have

$$
u(R, x)= \begin{cases}\exp \left(-R-\frac{1}{1-x^{2} e^{-2 R}}\right), & |x|<e^{R} \\ 0, & \text { otherwise }\end{cases}
$$

which has bigger support than $|x|<1$ and smaller amplitude. Similarly,

$$
u(-R, x)= \begin{cases}\exp \left(R-\frac{1}{1-x^{2} e^{2 R}}\right), & |x|<e^{-R} \\ 0, & \text { otherwise }\end{cases}
$$

has smaller support and bigger amplitude than initial datum.
3. Suppose $u(t, x)$ is a function on $\mathbb{R} \times \mathbb{R}^{3}$ that satisfies the nonlinear wave equation

$$
\left(\partial_{t}^{2}-\Delta\right) u=u^{3} .
$$

Assume that $u \in C^{2}\left(\mathbb{R} \times \mathbb{R}^{3}\right)$ and that $u(t, x)$ is compactly supported in x for each t. Define the energy

$$
E(t)=\frac{1}{2} \int_{\mathbb{R}^{3}}\left(|\nabla u(t, x)|^{2}+\left(\partial_{t} u(t, x)\right)^{2}\right) d x .
$$

(a) Prove that

$$
\partial_{t} E(t)=\int_{\mathbb{R}^{3}} u(t, x)^{3} \partial_{t} u(t, x) d x, \text { and that } \partial_{t} E(t) \leq\left\|\partial_{t} u(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \cdot\|u(t)\|_{L^{6}\left(\mathbb{R}^{3}\right)}^{3}
$$

(b) Prove that there exists a universal constant C independent of u such that

$$
\partial_{t} E(t) \leq C E(t)^{2} .
$$

Solution.

(a) Since u is compactly supported in x for each t, then $u(t, x)$ vanishes outside some $B_{R}(0)$ for each t, and

$$
\begin{aligned}
\dot{E}(t) & =\int_{\mathbb{R}^{3}} \nabla u \cdot \partial_{t} \nabla u+\partial_{t} u \partial_{t}^{2} u d x \\
& =\int_{\mathbb{R}^{3}} \partial_{t} u\left(-\Delta u+\partial_{t}^{2} u\right) d x=\int_{\mathbb{R}^{3}} u(t, x)^{3} \partial_{t} u(t, x) d x .
\end{aligned}
$$

By Cauchy-Schwartz inequality, we have

$$
\dot{E}(t) \leq\left\|\partial_{t} u(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \cdot\|u(t)\|_{L^{6}\left(\mathbb{R}^{3}\right)}^{3}
$$

(b) By Sobolev inequality, there exists constant C such that

$$
\|u\|_{L^{6}} \leq C\|D u\|_{L^{2}},
$$

so by discrete Young's inequality,

$$
\begin{aligned}
\dot{E}(t) & \leq\left\|\partial_{t} u(t)\right\|_{L^{2}}\|u(t)\|_{L^{6}}^{3} \leq C\left\|\partial_{t} u(t)\right\|_{L^{2}}\|D u(t)\|_{L^{2}}^{3} \\
& \leq C\left(\frac{\left\|\partial_{t} u\right\|_{L^{2}}^{4}}{4}+\frac{\|D u(t)\|_{L^{2}}^{4}}{4 / 3}\right) \leq C E(t)^{2} .
\end{aligned}
$$

