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1. Suppose f is a compactly supported smooth function on R3. Prove that there is a
unique smooth function u on R3, such that

−∆u = f, and lim
|x|→∞

u(x) = 0.

For this u, find the value of

lim
|x|→∞

|x|u(x).

Solution. First of all, suppose there are two smooth functions u1 and u2 satisfying both
conditions, let v = u1 − u2 then

−∆v = 0,

lim
|x|→∞

v(x) = 0.

We have that v is harmonic and bounded on R3, by Liouville’s theorem v is a constant
function. lim|x|→∞ v(x) = 0 implies v ≡ 0, uniqueness follows. To show existence, define

u(x) = Φ ∗ f =
1

n(n− 2)α(n)

ˆ
R3

f(y)

|x− y|
dy,

where Φ(x) = 1
n(n−2)α(n)

1
|x| is locally integrable, since f is a compactly supported smooth

function, we have that Φ ∗ f is smooth. Now suppose f is compactly supported in BR(0),
then for |x| > 2R we have

|u(x)| ≤ C
ˆ
BR(0)

|f(y)|
|x− y|

dy ≤ C
ˆ
BR(0)

|f(y)|
|x| − |y|

dy

≤ CM
ˆ R

0

ˆ
∂B(0,r)

1

|x| − |y|
dSdr

= CM

ˆ R

0

1

|x| − r
r2dr ≤ CM

ˆ R

0

r2

|x|/2
dr

= CM
1

|x|

ˆ R

0
r2dr → 0 as |x| → ∞,

where constants above are absorbed into C. Furthermore,

∆u(x) =

ˆ
B(0,ε)

Φ(y)∆xf(x− y)dy +

ˆ
R3\B(0,ε)

Φ(y)∆xf(x− y)dy

:= I1 + I2,

where

|I1| ≤
ˆ
B(0,ε)

‖D2f‖L∞ |Φ(y)|dy ≤ Cε2 → 0 as ε→ 0. (1)
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Also,

I2 = −
ˆ
R3\B(0,ε)

DΦ(y)Dyf(x− y)dy +

ˆ
∂B(0,ε)

Φ(y)
∂f

∂ν
(x− y)dy := J1 + J2,

where

J1 =

ˆ
R3\B(0,ε)

∆Φ(y)f(x− y)dy −
ˆ
∂B(0,ε)

∂Φ

∂ν
(y)f(x− y)dS(y)

= −
ˆ
∂B(0,ε)

∂Φ

∂ν
(y)f(x− y)dS(y)

= − 1

nα(n)εn−1

ˆ
∂B(0,ε)

f(x− y)dS(y)

= −
 
∂B(x,ε)

f(y)dS(y)→ −f(x), as ε→ 0.

(2)

and

|J2| ≤ ‖Df‖L∞

ˆ
∂B(0,ε)

|Φ(y)|dS(y) ≤ Cε. (3)

Combining (1)–(3), and letting ε→ 0, we have that−∆u = f . In addition, for |x| sufficiently
large, | x

x−y |f(y) → f(y) pointwise since f is compactly supported smooth function, by

dominated convergence theorem

|x|u(x) =
1

n(n− 2)α(n)

ˆ
B(0,R)

| x

x− y
|f(y)dy → 1

n(n− 2)α(n)

ˆ
B(0,R)

f(y)dy

=
1

n(n− 2)α(n)

ˆ
R3

f(y)dy, as |x| → ∞.
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2. Consider the following one-dimensional heat equation:{
∂tu = ∂2xu, (t, x) ∈ (0,+∞)× (0, 1),

u = 0, (t, x) ∈ (0,+∞)× {0, 1}.

Find all solutions that have factorized form u(t, x) = α(t)β(x).

Solution. From the first equation, if we have the solution of the form u(t, x) = α(t)β(x),
then we have

α′(t)β(x) = α(t)β′′(x),

suppose α(t) and β(x) are not zero, then

α′(t)

α(t)
=
β′′(x)

β(x)
= C

since the identity is independent of t and x. To solve the α, we have α(t) = α(0)eCt, and
for β we need to solve second order ODE, and the solution β′′ = Cβ:

case1: If C > 0, then β(x) = c1e
√
Cx + c2e

−
√
Cx, plug in the boundary condition we have

u(t, x) ≡ 0.
case2: If C = 0, then α(t) = 0 and β(x) = c1x+ c2, plugging in boundary condition we

have β ≡ 0 so u ≡ 0.
case3: If C < 0, then β(x) = c1 cos(

√
−Cx) + c2 sin(

√
−Cx), plugging in boundary

condition, we have

u(t, x) = Ce−k
2π2t sin(kπx), where C is any real number and k is any integer.
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3. Suppose u solves the following initial-boundary value problem:
∂2t u = ∂2xu− u3, (t, x) ∈ (0,+∞)× (0, 1),

u = 0, (t, x) ∈ (0,+∞)× {0, 1},
u(0, x) = u0(x), x ∈ (0, 1),

∂tu(0, x) = u1(x), x ∈ (0, 1),

where u0, u1 are smooth functions.

(a) Find an energy E(t) which is independent of t.
(b) Show that u is bounded for all (t, x), namely |u(t, x)| < C for some constant C

for all (t, x) ∈ (0,∞)× (0, 1).

Solution.
(a) Let

E(t) =
1

2

ˆ 1

0
u4(x)dx+

ˆ 1

0
|∂xu(x)|2dx+

ˆ 1

0
|∂tu(x)|2dx,

then we have

Ė(t) = 2

ˆ 1

0
u3∂tudx+ 2

ˆ 1

0
∂xu∂t∂xudx+ 2

ˆ 1

0
∂tu∂ttudx

= 2

ˆ 1

0
∂tu(u3 − ∂2xu+ ∂2t u)dx = 0

(b) From part (a) we have E(t) = E(0) = 1
2

´ 1
0 |u0(x)|4dx+

´ 1
0 |∂xu0(x)|2dx+

´ 1
0 |u1(x)|2dx ≤

C since u0 and u1 are smooth functions on compact set [0, 1]. For any t > 0, by fun-
damental theorem of calculus,

u(t, x) = u(t, 0) +

ˆ x

0
∂xu(t, y)dy,

therefore, using Cauchy-Schwartz inequality we have

|u(t, x)| ≤
ˆ 1

0
|∂xu(t, y)|dy ≤ (

ˆ 1

0
12dy)(

ˆ 1

0
|∂xu(t, y)|2dy) ≤ C,

where the last inequality follows from E(t) ≤ C.
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