PDE QUALIFYING EXAM-FALL 2019

LINFENG LI

1. Suppose f is a compactly supported smooth function on \mathbb{R}^{3}. Prove that there is a unique smooth function u on \mathbb{R}^{3}, such that

$$
-\Delta u=f, \text { and } \lim _{|x| \rightarrow \infty} u(x)=0
$$

For this u, find the value of

$$
\lim _{|x| \rightarrow \infty}|x| u(x) .
$$

Solution. First of all, suppose there are two smooth functions u_{1} and u_{2} satisfying both conditions, let $v=u_{1}-u_{2}$ then

$$
\begin{aligned}
-\Delta v & =0 \\
\lim _{|x| \rightarrow \infty} v(x) & =0 .
\end{aligned}
$$

We have that v is harmonic and bounded on R^{3}, by Liouville's theorem v is a constant function. $\lim _{|x| \rightarrow \infty} v(x)=0$ implies $v \equiv 0$, uniqueness follows. To show existence, define

$$
u(x)=\Phi * f=\frac{1}{n(n-2) \alpha(n)} \int_{\mathbb{R}^{3}} \frac{f(y)}{|x-y|} d y,
$$

where $\Phi(x)=\frac{1}{n(n-2) \alpha(n)} \frac{1}{|x|}$ is locally integrable, since f is a compactly supported smooth function, we have that $\Phi * f$ is smooth. Now suppose f is compactly supported in $B_{R}(0)$, then for $|x|>2 R$ we have

$$
\begin{aligned}
|u(x)| & \leq C \int_{B_{R}(0)} \frac{|f(y)|}{|x-y|} d y \leq C \int_{B_{R}(0)} \frac{|f(y)|}{|x|-|y|} d y \\
& \leq C M \int_{0}^{R} \int_{\partial_{B}(0, r)} \frac{1}{|x|-|y|} d S d r \\
& =C M \int_{0}^{R} \frac{1}{|x|-r} r^{2} d r \leq C M \int_{0}^{R} \frac{r^{2}}{|x| / 2} d r \\
& =C M \frac{1}{|x|} \int_{0}^{R} r^{2} d r \rightarrow 0 \text { as }|x| \rightarrow \infty,
\end{aligned}
$$

where constants above are absorbed into C. Furthermore,

$$
\begin{aligned}
\Delta u(x) & =\int_{B(0, \epsilon)} \Phi(y) \Delta_{x} f(x-y) d y+\int_{R^{3} \backslash B(0, \epsilon)} \Phi(y) \Delta_{x} f(x-y) d y \\
& :=I_{1}+I_{2},
\end{aligned}
$$

where

$$
\begin{equation*}
\left|I_{1}\right| \leq \int_{B(0, \epsilon)}\left\|D^{2} f\right\|_{L^{\infty}}|\Phi(y)| d y \leq C \epsilon^{2} \rightarrow 0 \text { as } \epsilon \rightarrow 0 . \tag{1}
\end{equation*}
$$

Also,

$$
I_{2}=-\int_{\mathbb{R}^{3} \backslash B(0, \epsilon)} D \Phi(y) D_{y} f(x-y) d y+\int_{\partial B(0, \epsilon)} \Phi(y) \frac{\partial f}{\partial \nu}(x-y) d y:=J_{1}+J_{2},
$$

where

$$
\begin{align*}
J_{1} & =\int_{\mathbb{R}^{3} \backslash B(0, \epsilon)} \Delta \Phi(y) f(x-y) d y-\int_{\partial B(0, \epsilon)} \frac{\partial \Phi}{\partial \nu}(y) f(x-y) d S(y) \\
& =-\int_{\partial B(0, \epsilon)} \frac{\partial \Phi}{\partial \nu}(y) f(x-y) d S(y) \\
& =-\frac{1}{n \alpha(n) \epsilon^{n-1}} \int_{\partial B(0, \epsilon)} f(x-y) d S(y) \tag{2}\\
& =-f_{\partial B(x, \epsilon)} f(y) d S(y) \rightarrow-f(x), \text { as } \epsilon \rightarrow 0 .
\end{align*}
$$

and

$$
\begin{equation*}
\left|J_{2}\right| \leq\|D f\|_{L^{\infty}} \int_{\partial B(0, \epsilon)}|\Phi(y)| d S(y) \leq C \epsilon . \tag{3}
\end{equation*}
$$

Combining (1)-(3), and letting $\epsilon \rightarrow 0$, we have that $-\Delta u=f$. In addition, for $|x|$ sufficiently large, $\left|\frac{x}{x-y}\right| f(y) \rightarrow f(y)$ pointwise since f is compactly supported smooth function, by dominated convergence theorem

$$
\begin{aligned}
|x| u(x) & =\frac{1}{n(n-2) \alpha(n)} \int_{B(0, R)}\left|\frac{x}{x-y}\right| f(y) d y \rightarrow \frac{1}{n(n-2) \alpha(n)} \int_{B(0, R)} f(y) d y \\
& =\frac{1}{n(n-2) \alpha(n)} \int_{\mathbb{R}^{3}} f(y) d y, \text { as }|x| \rightarrow \infty .
\end{aligned}
$$

2. Consider the following one-dimensional heat equation:

$$
\left\{\begin{aligned}
\partial_{t} u & =\partial_{x}^{2} u, & & (t, x) \in(0,+\infty) \times(0,1) \\
u & =0, & & (t, x) \in(0,+\infty) \times\{0,1\} .
\end{aligned}\right.
$$

Find all solutions that have factorized form $u(t, x)=\alpha(t) \beta(x)$.

Solution. From the first equation, if we have the solution of the form $u(t, x)=\alpha(t) \beta(x)$, then we have

$$
\alpha^{\prime}(t) \beta(x)=\alpha(t) \beta^{\prime \prime}(x),
$$

suppose $\alpha(t)$ and $\beta(x)$ are not zero, then

$$
\frac{\alpha^{\prime}(t)}{\alpha(t)}=\frac{\beta^{\prime \prime}(x)}{\beta(x)}=C
$$

since the identity is independent of t and x. To solve the α, we have $\alpha(t)=\alpha(0) e^{C t}$, and for β we need to solve second order ODE, and the solution $\beta^{\prime \prime}=C \beta$:
case1: If $C>0$, then $\beta(x)=c_{1} e^{\sqrt{C} x}+c_{2} e^{-\sqrt{C} x}$, plug in the boundary condition we have $u(t, x) \equiv 0$.
case2: If $C=0$, then $\alpha(t)=0$ and $\beta(x)=c_{1} x+c_{2}$, plugging in boundary condition we have $\beta \equiv 0$ so $u \equiv 0$.
case3: If $C<0$, then $\beta(x)=c_{1} \cos (\sqrt{-C} x)+c_{2} \sin (\sqrt{-C} x)$, plugging in boundary condition, we have
$u(t, x)=C e^{-k^{2} \pi^{2} t} \sin (k \pi x)$, where C is any real number and k is any integer.
3. Suppose u solves the following initial-boundary value problem:

$$
\left\{\begin{array}{rlrl}
\partial_{t}^{2} u & =\partial_{x}^{2} u-u^{3}, & & (t, x) \in(0,+\infty) \times(0,1), \\
u & =0, & & (t, x) \in(0,+\infty) \times\{0,1\}, \\
u(0, x) & =u_{0}(x), & & x \in(0,1), \\
& & \\
\partial_{t} u(0, x) & =u_{1}(x), & & x \in(0,1),
\end{array}\right.
$$

where u_{0}, u_{1} are smooth functions.
(a) Find an energy $E(t)$ which is independent of t.
(b) Show that u is bounded for all (t, x), namely $|u(t, x)|<C$ for some constant C for all $(t, x) \in(0, \infty) \times(0,1)$.

Solution.

(a) Let

$$
E(t)=\frac{1}{2} \int_{0}^{1} u^{4}(x) d x+\int_{0}^{1}\left|\partial_{x} u(x)\right|^{2} d x+\int_{0}^{1}\left|\partial_{t} u(x)\right|^{2} d x,
$$

then we have

$$
\begin{aligned}
\dot{E}(t) & =2 \int_{0}^{1} u^{3} \partial_{t} u d x+2 \int_{0}^{1} \partial_{x} u \partial_{t} \partial_{x} u d x+2 \int_{0}^{1} \partial_{t} u \partial_{t t} u d x \\
& =2 \int_{0}^{1} \partial_{t} u\left(u^{3}-\partial_{x}^{2} u+\partial_{t}^{2} u\right) d x=0
\end{aligned}
$$

(b) From part (a) we have $E(t)=E(0)=\frac{1}{2} \int_{0}^{1}\left|u_{0}(x)\right|^{4} d x+\int_{0}^{1}\left|\partial_{x} u_{0}(x)\right|^{2} d x+\int_{0}^{1}\left|u_{1}(x)\right|^{2} d x \leq$ C since u_{0} and u_{1} are smooth functions on compact set [0,1]. For any $t>0$, by fundamental theorem of calculus,

$$
u(t, x)=u(t, 0)+\int_{0}^{x} \partial_{x} u(t, y) d y
$$

therefore, using Cauchy-Schwartz inequality we have

$$
|u(t, x)| \leq \int_{0}^{1}\left|\partial_{x} u(t, y)\right| d y \leq\left(\int_{0}^{1} 1^{2} d y\right)\left(\int_{0}^{1}\left|\partial_{x} u(t, y)\right|^{2} d y\right) \leq C,
$$

where the last inequality follows from $E(t) \leq C$.

