PDE QUALIFYING EXAM-SPRING 2018

LINFENG LI

1. Let $\Omega \subset \mathbb{R}^{n}$ be open and bounded with normal vector field ν and let $u_{0} \in C_{b}(\Omega)$ with $u_{0} \geq 0$ be non-trivial. Show that the problem

$$
\begin{align*}
\partial_{t} u-\Delta u=u^{2} & \text { in } \Omega \times(0, T) \tag{1}\\
\partial_{\nu} u=0 & \text { on } \partial \Omega \times(0, T) \tag{2}\\
u(x, 0)=u_{0}(x) & \text { for } x \in \Omega \tag{3}
\end{align*}
$$

exists for at most a finite time T.
Hint: Show that the mean $m(t)=\frac{1}{|\Omega|} \int_{\Omega} u(t, x) d x$ satisfies $\partial_{t} m(t) \geq m^{2}(t)$.

Solution. Let $m(t)=\frac{1}{|\Omega|} \int_{\Omega} u(t, x) d x$, using equation (1)-(2) and Holder's inequality

$$
\begin{aligned}
\partial_{t} m(t) & =\frac{1}{|\Omega|} \int_{\Omega} \partial_{t} u d x=\frac{1}{|\Omega|} \int_{\Omega} \Delta u+u^{2} d x \\
& =\frac{1}{|\Omega|} \int_{\partial \Omega} \partial_{\nu} u d S+\frac{1}{|\Omega|} \int_{\Omega} u^{2} d x=\frac{1}{|\Omega|^{2}} \int_{\Omega} 1 d x \int_{\Omega} u^{2} d x \\
& \geq \frac{1}{|\Omega|^{2}}\left(\int_{\Omega} u d x\right)^{2}=m^{2}(t)
\end{aligned}
$$

Then we can solve the ODE for $v(t)$ which satisfies

$$
\begin{aligned}
& \partial_{t} v=v^{2} \\
& v(0)=m(0)>0
\end{aligned}
$$

The solution is $v(t)=\frac{1}{1 / v(0)-t}$, which blows up in finite time. By the proof of Gronwall's lemma, we know $m(t) \geq v(t)$ for $t \geq 0$, therefore the solution exists at most a finite time.
2. Let $\Omega \subset \mathbb{R}^{n}$ be open, connected and bounded and let $R>0$ such that $\Omega \subset B_{R}(0)$.
(a) Let $v \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ with $\Delta v=0$ in Ω. Show that

$$
\max _{x \in \bar{\Omega}} v(x)=\max _{x \in \partial \Omega} v(x)
$$

(b) Let $u \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ be a solution of

$$
\begin{aligned}
-\Delta u & =1 \quad \text { in } \Omega, \\
u & =0 \quad \text { on } \quad \partial \Omega .
\end{aligned}
$$

Show that

$$
0 \leq u(x) \leq \frac{R^{2}-|x|^{2}}{2 n}
$$

for all $x \in \bar{\Omega}$.

Solution.

(a) Suppose there exists a point $x_{0} \in U$ with $u\left(x_{0}\right)=M=\max _{\bar{\Omega}} u$, since v is harmonic in Ω we can apply the mean value theorem for $B\left(x_{0}, r\right)$ within Ω

$$
M=v\left(x_{0}\right)=f_{B\left(x_{0}, r\right)} v d y \leq M,
$$

equality holds if and only if $v \equiv M$ within $B\left(x_{0}, r\right)$. Hence the set $\{x \in \Omega \mid v(x)=M\}$ is open, it's also closed because it's the preimage of singleton by a continuous function v. It has to be either \emptyset or Ω since Ω is connected, it's not empty because we assumed at least x_{0} is in this set, then it has to be Ω. By continuity of v up to the boundary we have $\max _{x \in \partial \Omega}=M$. On the other hand, if there is no such x_{0} then maximum is obtained on the boundary.
(b) Let $v=u+\frac{|x|^{2}}{2 n}$, then $\Delta v=\Delta u+\frac{2 n}{2 n}=\Delta u+1=0$ in Ω, with boundary condition $v \leq 0+\frac{R^{2}}{2 n}$ on $\partial \Omega$. Part (a) applies, and we have

$$
\max _{x \in \bar{\Omega}} v(x)=\max _{x \in \partial \Omega} v(x) \leq \frac{R^{2}}{2 n}
$$

therefore, $\forall x \in \bar{\Omega}, u(x)+\frac{|x|^{2}}{2 n} \leq \frac{R^{2}}{2 n}$. On the other hand, let

$$
f(r):=f_{\partial B(x, r)} u(y) d S(y)=f_{\partial B(0,1)} u(x+r z) d S(z)
$$

then we have

$$
\begin{aligned}
f^{\prime}(r) & =f_{\partial B(0,1)} D u(x+r z) \cdot z d S(z)=f_{\partial B(0,1)} D u(y) \cdot \frac{y-x}{r} d S(z) \\
& =f_{\partial B(x, r)} \frac{\partial u}{\partial \nu} d S(y)=\frac{r}{n} f_{B(x, r)} \Delta u(y) d y \leq 0
\end{aligned}
$$

which implies $f(r)$ is decreasing and we also have

$$
u(x)=\lim _{s \rightarrow 0} f(s)=\lim _{s \rightarrow 0} f_{\partial B(x, s)} u(y) d S(y) \geq f_{\partial B(x, r)} u(y) d S(y)
$$

therefore,

$$
\int_{0}^{r} n \alpha(n) s^{n-1} u(x) d s \geq \int_{0}^{r} \int_{\substack{\partial B(x, s) \\ 2}} u(y) d S(y) d s=\int_{B(x, r)} u(y) d y
$$

consequently,

$$
u(x) \geq f_{B(x, r)} u(y) d y, \text { for all } B(x, r) \subset \Omega
$$

Now we assume there exists $x_{0} \in \Omega$ such that $u\left(x_{0}\right) \leq u(x), \forall x \in \bar{\Omega}$ and $u\left(x_{0}\right)<0$, by the above inequality we have

$$
u\left(x_{0}\right) \geq f_{B\left(x_{0}, r\right)} u(y) d y \geq f_{B\left(x_{0}, r\right)} u\left(x_{0}\right) d y=u\left(x_{0}\right)
$$

equality holds when $u\left(x_{0}\right)=u(y)$ for all $y \in B\left(x_{0}, r\right)$, and we choose r such that $\partial \Omega \cap B\left(x_{0}, r\right)=\left\{x_{1}\right\}$, therefore by continuity $u\left(x_{1}\right)<0$ and we have a contradiction. And we proved $u(x) \geq 0$ for all $x \in \Omega$, combining it with boundary condition we have $u(x) \geq 0$, for all x in $\bar{\Omega}$.
3. Let u be a classical solution of the following initial boundary value problem:

$$
\begin{align*}
& u_{t}=u_{x x}, \quad \text { in } \quad(a, b) \times(0, T) \tag{4}\\
& u(a, t)=u(b, t)=0 \tag{5}\\
& u(x, 0)=u_{0}(x) \tag{6}
\end{align*}
$$

where u_{0} is a continuous function.
(a) Show that the solutions are unique.
(b) Show that there exists a constant $\alpha>0$ such that

$$
\|u(\cdot, t)\|_{L^{2}}^{2} \leq e^{-\alpha t}\left\|u_{0}\right\|_{L^{2}}^{2} .
$$

Solution.

(a) Suppose there are two solutions v_{1} and v_{2}, let $u=v_{1}-v_{2}$ and let $m(t)=\int_{a}^{b}|u(t, x)|^{2} d x$, then $m^{\prime}(t)=2 \int_{a}^{b} u u_{x x} d x=-\int_{a}^{b}\left|u_{x}\right|^{2} d x \leq 0, m(0)=0$ but $m(t) \geq 0$, therefore $m(t)=0$ for any t, and we have $v_{1} \equiv v_{2}$.
(b) Multiply equation (4) by u and integrate over (a, b), we have

$$
\frac{1}{2} \frac{d}{d t} \int_{a}^{b}|u|^{2} d x=-\int_{a}^{b}\left|u_{x}\right|^{2} d x
$$

Since the domain is bounded and u vanishes on the boundary, we can apply Poincare's inequality, there exists constant C such that

$$
\int_{a}^{b}|u|^{2} d x \leq C \int_{a}^{b}\left|u_{x}\right|^{2} d x
$$

Combining above two, we arrive at

$$
m^{\prime}(t) \leq-C m(t)
$$

Using Gronwall's lemma, we have

$$
m(t) \leq m(0) e^{-C t}
$$

as desired.

