PDE QUALIFYING EXAM-FALL 2018

LINFENG LI

1. Let Ω be open and bounded and let $g_{j} \in C(\partial \Omega)$ converge uniformly to $g \in C(\partial \Omega)$ (recall that this means that $\lim _{j \rightarrow \infty} \sup _{x \in \partial \Omega}\left|g_{j}(x)-g(x)\right| \rightarrow 0$). Let $u_{j} \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be the solution of

$$
\begin{aligned}
\Delta u_{j} & =0 \text { in } \Omega, \\
u_{j} & =g_{j} \text { on } \partial \Omega .
\end{aligned}
$$

Show that u_{j} converges uniformly to a function $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ and that u solves

$$
\begin{aligned}
\Delta u & =0 \text { in } \Omega, \\
u & =g \text { on } \partial \Omega .
\end{aligned}
$$

Solution. First we claim u_{j} converges uniformly to some function $u \in C(\bar{\Omega})$. For m, n sufficiently large, let $v=u_{m}-u_{n}$ then we have

$$
\begin{aligned}
\Delta v & =0 \text { in } \Omega \\
v & =g_{m}-g_{n} \text { on } \partial \Omega .
\end{aligned}
$$

Since we have $\sup _{x \in \partial \Omega}\left|g_{m}(x)-g_{n}(x)\right| \rightarrow 0$ for m, n sufficiently large, and by maximal principal,

$$
\max _{x \in \bar{\Omega}} v(x)=\max _{x \in \partial \Omega} g_{m}(x)-g_{n}(x) \rightarrow 0, \text { as } m, n \rightarrow \infty
$$

Similarly we have

$$
\min _{x \in \bar{\Omega}} v(x)=\min _{x \in \partial \Omega} g_{m}(x)-g_{n}(x) \rightarrow 0, \text { as } m, n \rightarrow \infty
$$

Consequently, $v(x)$ converges uniformly to 0 in $\bar{\Omega}$ as $m, n \rightarrow \infty$, and we have $\left\{u_{m}\right\}_{m=1}^{\infty}$ is a Cauchy sequence in $\left(C(\bar{\Omega}),\|\cdot\|_{C^{0}}\right)$. Since $\left(C(\bar{\Omega}),\|\cdot\|_{C^{0}}\right)$ is complete, there exists $u \in C(\bar{\Omega})$ such that u_{m} converges uniformly to u in $\bar{\Omega}$. Now we claim $u(x)$ satisfies the mean value property and therefore u is harmonic in Ω, it's clear that $u=g$ on $\partial \Omega$. For given $x \in \Omega$,

$$
u_{m}(x)=f_{\partial B(x, r)} u_{m}(y) d S(y), \text { for any } r>0 \text { with } B(x, r) \subset \Omega
$$

For sufficiently large m, we have $u_{m}(x) \rightarrow u(x)$, and $\sup _{y \in \bar{\Omega}}\left|u_{m}(y)-u(y)\right| \rightarrow 0$, therefore $u(x)=f_{\partial B(x, r)} u(y) d S(y)$ for all $r>0$ with $B(x, r) \subset \Omega$, therefore $u(x)$ satisfies mean value property so $\Delta u=0$ in Ω.
2. Let $u_{0} \in C^{2}\left(B_{1}(0)\right), u_{1} \in C^{1}\left(B_{1}(0)\right), f \in C\left((0, T) \times B_{1}(0)\right)$. Show that the problem

$$
\begin{aligned}
\partial_{t t} u-\Delta u+u & =f \text { in }(0, T) \times B_{1}(0), \\
u(0, x) & =u_{0}(x), \\
\partial_{t} u(0, x) & =u_{1}(x), \\
u(t, x) & =0 \text { on }(0, T) \times \partial B_{1}(0),
\end{aligned}
$$

has at most one solution $u \in C^{2}\left([0, T] \times \overline{B_{1}(0)}\right)$.

Solution. Suppose there are two solutions, and we can do the subtraction and claim that the equation with $u \in C^{2}\left([0, T] \times \overline{B_{1}(0)}\right)$

$$
\begin{align*}
\partial_{t t} u-\Delta u+u & =0 \text { in }(0, T) \times B_{1}(0), \tag{1}\\
u(0, x) & =0, \tag{2}\\
\partial_{t} u(0, x) & =0, \tag{3}\\
u(t, x) & =0 \text { on }(0, T) \times \partial B_{1}(0), \tag{4}
\end{align*}
$$

has only trivial solution $u \equiv 0$. Define energy

$$
E(t)=\left\|\partial_{t} u(t)\right\|_{L^{2}}^{2}+\|D u\|_{L^{2}}^{2}+\|u\|_{L^{2}}^{2}
$$

Then we have

$$
\begin{aligned}
\dot{E}(t) & =2\left\langle\partial_{t} u, \partial_{t t} u\right\rangle+2\left\langle D u, D \partial_{t} u\right\rangle+2\left\langle u, u_{t}\right\rangle \\
& =2\left\langle\partial_{t} u, \partial_{t t} u-\Delta u+u_{t}\right\rangle+\int_{\partial B_{1}(0)} D u \partial_{t} u d S \\
& =0
\end{aligned}
$$

where the last equality follows from (1) and (4). Thus, $E(t)$ is conserved for this equation and we have $E(t)=E(0)=0$, therefore $u(t) \equiv 0$ for any $t \geq 0$, and claim is proved.
3. Consider the equation

$$
\partial_{t} u+u \partial_{x} u=0
$$

on $(0, T) \times \mathbb{R}$. Show that a classical solution with initial data $u(0, x)=\frac{\pi}{2}-\arctan (x)$ can exist at most for a finite time.

Solution. This equation has the form

$$
F(D u, u, x)=\mathbf{b}(x, u(x)) \cdot D u(x)=(1, u(x)) \cdot\left(u_{t}, u_{x}\right)=0
$$

We have $D_{p} F=(1, z)$ and characteristics are

$$
\begin{aligned}
& \dot{\mathbf{x}}(\mathbf{s})=(1, z), \\
& \dot{z}(s)=D_{p} F \cdot \mathbf{p}(s)
\end{aligned}
$$

For any given $\left(x_{0}, 0\right) \in \mathbb{R} \times\{t=0\}$, the characteristics emanating from it is $x=x_{0}+\left(\frac{\pi}{2}-\right.$ $\left.\arctan x_{0}\right) t$, on which we have $u(t, x)=\frac{\pi}{2}-\arctan x_{0}$. Suppose there is global solution, since we can find x_{0} and x_{1} such that $x_{0} \neq x_{1}$ and for some $t_{0}>0$ we have

$$
\begin{aligned}
x_{0} & +\left(\frac{\pi}{2}-\arctan x_{0}\right) t_{0}=x_{1}+\left(\frac{\pi}{2}-\arctan x_{1}\right) t_{0} \\
\Longleftrightarrow & \frac{\arctan x_{0}-\arctan x_{1}}{x_{0}-x_{1}}=\frac{1}{t_{0}}
\end{aligned}
$$

which follows from mean value theorem. Then we have two characteristics intersecting at some $t=t_{0}$, with two different values $\frac{\pi}{2}-\arctan x_{0}$ and $\frac{\pi}{2}-\arctan x_{1}$, contradiction! Therefore, solution can only exist at most for a finite time.

