
PDE QUALIFYING EXAM-FALL 2017

LINFENG LI

1. Consider the Burger’s equation

ut + uux = 0, x ∈ R, t > 0,

u(x, 0) = g(x), x ∈ R.
where g(x) is a given piecewise continuous function.

(a) Show that the characteristics are straight lines.
(b) Give an example of g(x) so that the characteristics do not cover the entire (x, t)

space.
(c) Give an example of g(x) so that the characteristics intersect.

Solution.
(a) This equation is quasilinear and has the form

F (Du, u, x) = b(x, u(x)) ·Du(x) = (1, u(x)) · (ut, ux) = 0

In this case DpF = (1, z) and characteristics are

ẋ(s) = (1, z),

ż(s) = DpF · p(s) = 0,

For any (x0, 0) ∈ R×{t = 0}, the characteristics emanating from it is x = x0 + g(x0)t,
which is a straight line.

(b) For g(x) = −x we have characteristics x = x0 − x0t, which are straight lines passing
through (1,0), they do not cover entire (t, x) space because they do not cover points
such as (1, 1).

(c) For g(x) = sinx, choose x0 = π and x0 = ω, for some ω ∈ (π, 2π). Then we have two
characteristics x = π and x = ω + t sinω, by intermediate value theorem we can find
some t0 > 0 such that these two lines intersect.
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2. Let U ⊂ Rn be an open set.

(a) Let u ∈ C2(U). Show that for any ball B̄(x0, r) ⊂ U it holds

d

dr

 
∂B(0,1)

u(x0 + rz)dS(z) =
r

n

 
B(0,1)

(∆u)(x0 + rz)dz

Here we have used the notation
ffl
A f = 1

|A|
´
A f .

(b) Let u ∈ C2(U) be such that for any ball B̄(x0, r) ⊂ U it holds

u(x0) =

 
∂B(x0,r)

udS.

Show that then ∆u = 0 in U .
(c) Does the implication of part (b) still hold if you just assume u ∈ C(U)? Briefly

explain your answer.

Solution.
(a)

d

dr

 
∂B(0,1)

u(x0 + rz)dS(z) =

 
∂B(0,1)

Du(x0 + rz) · zdS(z)

=

 
∂B(x0,r)

Du(y) · y − x0
r

dS(y)

=

 
∂B(x0,r)

Du(y) · νdS(y)

=

 
∂B(x0,r)

∂u

∂ν
(y)dS(y)

=

 
∂B(x0,r)

∆u(y)dS(y)

=
r

n

 
B(0,1)

∆u(x0 + rz)dz

(b) Assume there exist x0 ∈ U such that ∆u(x0) > 0. Since u ∈ C2(U), there exists r > 0
such that ∆u(x) > 0 for all x ∈ B(x0, r). Define φ(r) =

ffl
∂B(x0,r)

u(y)dS(y), then from

part (a) we know φ′(r) =
r

n

ffl
B(x0,r)

∆u(y)dy > 0, but u(x0) = φ(r) for all r > 0,

therefore φ′(r) = 0. Contradiction! By symmetry we can similarly prove there is no
x0 ∈ U such that ∆u(x0) < 0.

(c) It still hold if we only assume u ∈ C(U). In fact we can use standard mollifier to prove
that u ∈ C∞(Uε) for every ε, and then we proceed as in part (b).
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3. Let U be the unit ball in Rn.

(a) For u(x) = |x|−a for x ∈ U , determine the values of a, n, p for which u belongs
to the Sobolev space W 1,p(U).

(b) Let n ≥ 2. If u(x) = ln ln(1 + 1
|x|) for x ∈ U , show that u ∈W 1,n(U) but not in

L∞(U).

Solution.
(a) u(x) = |x|−a is in Lp(U) if and only if ap ≤ n, Du(x) = −a|x|−a−2x is in Lp(U) if and

only if (a+ 1)p ≤ n. Therefore u ∈W 1,p(U) if and only if (a+ 1)p ≤ n.
(b) For x ∈ B(0, 1), we have

| ln ln(1 +
1

|x|
)| ≤ C(1 +

1

|x|
),

and by part (a)ˆ
B(0,1)

|u(x)|ndx =

ˆ
B(0,1)

| ln ln(1 +
1

|x|
)|ndx ≤ C

ˆ
B(0,1)

(1 +
1

|x|
)ndx

= C

ˆ 1

0

ˆ
∂B(0,r)

(1 +
1

|x|
)ndSdr = C

ˆ 1

0
(1 +

1

r
)nrn−1dr <∞

which shows u ∈ Ln. Furthermore,

Du(x) =
1

ln(1 +
1

|x|
)

1

1 +
1

|x|

(−1)|x|−3x,

so

|Du(x)| = 1

ln(1 +
1

|x|
)

1

|x|+ 1
|x|−1 ≤ C|x|−1,

By part (a) we know Du ∈ Ln, therefore u ∈ W 1,n. u(x) is not in L∞ since we can
take |x| sufficiently small so that u(x) is arbitrarily large.

�

3



4. (a) Let U ⊂ Rn be a bounded open set, let T > 0 be fixed and define UT = U×(0, T ).
Assume u ∈ C2

1 (ŪT ) solves the following initial boundary value problem

ut −∆u = f in UT , (1)

∂u

∂ν
+ u = h on ∂U × (0, T ), (2)

u = g on U × {t = 0}, (3)

where f, g and h are given smooth functions, and ν is the outward pointing unit
normal field of ∂U . Prove that there exists at most one such solution.

(b) Let U ⊂ R2 be a bounded open set and let a > 0, b, c ∈ R be given constants.
Show that any solution u ∈ C2(Ū) of

∆u− au+ b∂xu+ c∂yu = 0 in U,

cannot attain a positive maximum or negative minimum inside U .

Solution.
(a) Suppose there are two solutions v1(t, x) and v2(t, x) satisfying (3)–(5), we define u(t, x) =

v1(t, x)− v2(t, x), then

ut −∆u = 0 in UT , (4)

∂u

∂ν
+ u = 0 on ∂U × (0, T ), (5)

u = 0 on U × {t = 0}, (6)

multiply (4) by u and integrate over U , we have 〈ut, t〉 − 〈∆u, u〉 = 0. Integrate by
part to the second term and use the boundary condition (5), we arrive at

1

2

d

dt

ˆ
U
|u|2 = −

ˆ
∂U
|u|2 −

ˆ
U
|Du|2,

integrating from 0 to t, we have

1

2

ˆ
U
|u(t)|2 − 1

2

ˆ
U
|u(0)|2 = −

ˆ t

0

ˆ
∂U
|u(s)|2dSds−

ˆ t

0

ˆ
U
|Du(s)|2dxds

By the initial condition (6), the second term on the left side of above equality vanishes,
and thus we have u = 0 on ∂U and |Du| = 0 since u ∈ C2

1 (ŪT ), and we have v1 ≡ v2.
(b) Suppose there is a solution u that attains a positive maximum at some x0 ∈ U , then

u(x0) > 0, Du(x0) = 0 and ∆u(x0) ≤ 0, but we have

∆u(x0) = au(x0)

Contradiction! By symmetry we can prove there is no negative minimum inside U .
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