
USC Qualifying Exams – Geometry and Topology Alec Sahakian

Intro

Here are my solutions to some of USC’s qualifying exams. A lot of the solutions here are ones I
came up with myself, but many other ones are adapted from ideas that I found either online or in
textbooks, so I definitely don’t claim all of the credit for everything here (I did make the diagrams,
however). For some problems, I’ve given some background information in purple; you don’t need
to know it to solve the problem, but it may be interesting. I’ve put a question mark (?) next to
solutions I didn’t feel completely confident in; and although I’ve done my best to avoid this, some
of the other solutions may contain mistakes too, so please keep that in mind. Thanks and good
luck! – Alec.

Notation

Below is a guide of notation and terminology you’ll find throughout my solutions. If a problem
uses the symbols below to mean something else, then I’ll do the same for that problem.

◦ In the context of geometry, all manifolds, functions, etc. are smooth unless otherwise stated.

◦ In the context of topology, all functions are continuous unless otherwise stated.

• Σn denotes the symmetric group on n ∈ N symbols.

• Bn denotes the closed (unit) n-ball, and Sn = ∂Bn+1 the (unit) n-sphere, for n ∈ N.

• C∞(M) denotes the R-algebra of (smooth) functions from a manifold M to R.

• Fn denotes the free group with n generators, for n ∈ N.

• Matn(R) denotes the ring of n× n matrices with entries in a ring R, for n ∈ N.

• X(M) denotes the space of (smooth) vector fields on a manifold M .

• Zn denotes the ring of integers modulo an integer n ∈ N.
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2005, Fall

Problem 1.

Let n ≥ 3 and set X := Rn \ {x1, . . . , xm}, with xi 6= xj if i 6= j. Expanding each missing point
into a small bubble, we may shrink the complement of these bubbles to a point to obtain a wedge
of m copies of Sn−1.

Thus π1(X) ∼= π1

(∨m Sn−1
)
∼= π1(Sn−1)∗m ∼= 1. �

Problem 2.

Equivalence classes of connected covers of RP2 × RP2 are in bijection with the 4 subgroups of

π1(RP2 × RP2) ∼= π1(RP2)× π1(RP2) ∼= Z⊕2
2 .

The identity subgroup corresponds to the universal cover S2 × S2; the entire group corresponds to
the trivial cover RP2 ×RP2; the subgroups generated by (0, 1) and (1, 0) correspond to the covers
S2 × RP2 and RP2 × S2, respectively. �

Problem 3.

Assume (α ∧ α)x 6= 0 for all x ∈ S4. Then α ∧ α is a volume form on S4, so
∫
S4 α ∧ α 6= 0. But∫

S4

α ∧ α =

∫
B5

d(α ∧ α) =

∫
B5

[(dα)︸︷︷︸
=0

∧α+ α ∧ (dα)︸︷︷︸
=0

] = 0,

by Stokes, a contradiction. �

Problem 4 (?).

The Euler characteristic of M is that of a genus-3 surface, χ(M) = −4. And, ∂M is the boundary
of the plane, so integrating the geodesic curvature kg over this boundary yields the sum of its
exterior angles, namely 4(3π/2) = 6π. Then∫∫

M

KdA = 2πχ(M)−
∫
∂M

kgds = 2π(−4)− 6π = −14π

by Gauss-Bonnet. �

Problem 5 (?).

Defining
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gives U ∪ V ∼= X × S1. For any j ∈ Z, by Mayer-Vietoris we have an exact sequence

Hj(X)⊕2 Hj(X)⊕2 Hj(X × S1) Hj−1(X)⊕2 Hj−1(X)⊕2.
ιj f ∂ ιj−1

Here, ιj = ((ιU )∗, (ιV )∗) is the map induced by the inclusions ιU : U ∩V ↪→ U and ιV : U ∩V ↪→ V ,
and acts as ιj([ω]) = ([ω], [ω]) on any [ω] ∈ Hj(X

∐
X) ∼= Hj(X)⊕2. So im(ιj) ∼= Hj(X) and

consequently ker(ιj) ∼= Hj(X) also. We have a similar result for j − 1. Then

im(∂) ∼= ker(ιj−1) ∼= Hj−1(X), ker(∂) ∼= im(f) ∼= Hj(X)

since ker(f) ∼= im(ιj) ∼= Hj(X), and therefore Hj(X × S1) ∼= Hj(X)⊕ Hj−1(X). �

Problem 6.

• Let M be an m-manifold. Via the canonical projection π : T∗M �M , we may lift any chart
(U,ϕ) of M to a subset T∗U := π−1(U) ⊂ T∗M and a map ϕ×dϕ : T∗U → ϕ(U)×Rm. Re-
quiring this map to be a homeomorphism defines a topology on T∗M and makes (T∗U,ϕ×dϕ)
into a chart for T∗M . This topology inherits the second countable and Hausdorff properties
from that of M . Moreover, given any two charts (T∗U1, ϕ1 × dϕ1), (T∗U2, ϕ2 × dϕ2) with
T∗U1 ∩ T∗U2 6= ∅, we have U1 ∩ U2 6= ∅ and so the transition map

τ := (ϕ2 × dϕ2) ◦ (ϕ1 × dϕ1)−1 = (ϕ2 ◦ ϕ−1
1 )× (dϕ2 ◦ dϕ−1

1 )

is smooth since its first component is a transition map of M and its second component is
linear. Therefore T∗M is a (smooth) manifold.

• It remains to check that any transition map τ as above is orientation-preserving. Say T∗U1

has local coordinates (x1, . . . , xm, v1, . . . , vm), and express the differential dτ(x,v) at a point
(x, v) ∈ T∗U1 as a (2m)× (2m) block matrix.

(i) In the upper-left block, we differentiate the first m entries of τ w.r.t. x and obtain the
usual Jacobian d(ϕ2 ◦ ϕ−1

1 )x.

(ii) In the upper-right block, we differentiate the first m entries of τ , which are independent
of v, w.r.t. v, and obtain a 0 block.

(iii) In the lower-right block, we differentiate the lastm entries of τ w.r.t. v. For 1 ≤ i, j ≤ m,
the ij-entry in this block is

∂vj (dϕ2 ◦ dϕ−1
1 )i = ∂vj

m∑
k=1

∂xk(ϕ2 ◦ ϕ−1
1 )i(x)vk = ∂xj (ϕ2 ◦ ϕ−1

1 )i(x),

which coincides with the ij-entry of the Jacobian d(ϕ2 ◦ ϕ−1
1 )x.

2
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Hence

det(dτ(x,v)) =

∣∣∣∣d(ϕ2 ◦ ϕ−1
1 )x 0

∗ d(ϕ2 ◦ ϕ−1
1 )x

∣∣∣∣ = det
(
d(ϕ2 ◦ ϕ−1

1 )x
)2
> 0

as desired.
�

Problem 7.

Background. This problem concerns compactly supported de Rham cohomology. Given a manifold
Mm and 0 ≤ k ≤ m, we use this cohomology to define the cup product,

^: Hk(M)× Hm−kc (M)→ R,

given by [α] ^ [β] :=
∫
M
α ∧ β. Poincaré duality then states that the map Hk(M)→ Hm−kc (M)∗

given by [α] 7→ [α] ^ (·) is an isomorphism.

Denote by H•c (R) the cohomology of (Ω•c (R), d•). For all j ≥ 2 we clearly have Hjc(R) ∼= 0 since
Ωjc(R) ∼= 0, so it remains to compute Hjc(R) for j = 0, 1. Observe that both Ω0

c (R) and Ω1
c (R)

are canonically isomorphic to C∞c (R), the subset of C∞(R) consisting of compactly supported
functions.

• Note that f ∈ H0
c (R) ∼= ker(d0) if and only if f is constant, whereby f ≡ 0 since no other

such function is compactly supported. Thus H0
c (R) ∼= 0.

• Consider the map I : H1
c (R) ∼= C∞c (R)→ R given by I(f) :=

∫
R f . Note that ker(I) ⊂ im(d0)

since if f ∈ ker(I), then f ∼= dg where g is the compactly supported function given by
g(x) :=

∫ x
−∞ f(x)dx. Conversely if f ∈ im(d0), then f = dg for some g ∈ C∞c (R), and∫

R
f =

∫ ∞
−∞

g′(x)dx = lim
x→∞

g(x)− lim
x→−∞

g(x) = 0,

so this shows im(d0) ∼= ker(I). Then H1
c (R) ∼= ker(d1)/im(d0) ∼= C∞c (R)/ker(I) ∼= R, since I

is clearly surjective.

In summary, Hjc(R) ∼=

{
R j = 1,

0 else.
�
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2006, Spring

Problem 1.

Let f : R4 → R be given by f(x, y, z, w) := x2+xy3+yz4−w5+1. To show that X := f−1(0) ⊂ R4

is a manifold, it’s enough to show that the linear map

df(x,y,z,w) =
(
2x+ y3 3xy2 + z4 4yz3 −5w4

)
from X to R is surjective for all (x, y, z, w) ∈ X; so we need at least one entry in this matrix to
be nonzero. To see this, let (x, y, z, w) ∈ X and observe that at least one coordinate is nonzero by
definition of X.

• Say x 6= 0. If y = 0 then 2x + y3 6= 0. If y 6= 0 and z = 0 then 3xy2 + z4 6= 0. If y, z 6= 0
then 4yz3 6= 0.

• Say y 6= 0. If z 6= 0 then 4yz3 6= 0. If z = 0 and x 6= 0 then 3xy2 + z4 6= 0. If z, x = 0 then
2x+ y3 6= 0.

• Say z 6= 0. If y 6= 0 then 4yz3 6= 0. If y = 0 then 3xy2 + z4 6= 0.

• Say w 6= 0. Then −5w4 6= 0.

�

Problem 2.

(a) Given a manifold X, the de Rham cochain complex (Ω•(X), d•) is defined in each degree j ∈ Z
by Ωj(X) := {ω a smooth j-form on X} and dj : Ωj(X)→ Ωj+1(X) the usual exterior differ-
ential. The j-th de Rham cohomology group of X is the quotient HjdR(X) := ker(dj)/im(dj−1).

(b) Firstly, HjdR(R) ∼= 0 for any j ≥ 2 since Ωj(R) = 0 in this case. Now note that both Ω0(R) and
Ω1(R) are canonically isomorphic to C∞(R). Then

H0
dR(R) ∼= ker(d0) ∼= {f ∈ C∞(R) | df = 0} ∼= {f ∈ C∞(R) | f a constant} ∼= R.

Moreover, any f ∈ Ω1(R) may be written as f = dg for g ∈ Ω0(R) given by g(x) :=
∫ x
−∞ f(x)dx,

and so im(d0) = Ω1(R). Thus H1
dR(R) ∼= ker(d1)/im(d0) ∼= Ω1(R)/Ω1(R) ∼= 0. �

Problem 3.

By pinching the points q, r, s together and then transforming the shape as shown, we obtain a
wedge of Sn with two copies of S1.

Hence by van Kampen, π1(X) ∼= π1(S1) ∗ π1(S1) ∗ π1(Sn) ∼=

{
F3 n = 1,

F2 n ≥ 2,
. �

4



USC Qualifying Exams – Geometry and Topology Alec Sahakian

Problem 4.

The canonical volume form on R4 with coordinates (x, y, z, w) is dx ∧ dy ∧ dz ∧ dw. Hence∫
S3

ω =

∫
B4

dω =

∫
B4

dw ∧ dx ∧ dy ∧ dz = −
∫
B4

dx ∧ dy ∧ dz ∧ dw = −vol(B4)

by Stokes. �

Problem 5.

Background. The pairing ^: H1
dR(T )⊗ H1

dR(T )→ R referenced in this problem is the cup product
discussed in problem 7 of 2005, Fall.

Since 1
2dimR(H1

dR(S)) = g(S) < g(T ) = 1
2dimR(H1

dR(T )), the map h∗ : H1
dR(T ) → H1

dR(S) is has
nontrivial kernel. So, suppose α ∈ ker(h∗) is nonzero. Then the map

α ^ (·) : H1
dR(T )→ HomR(H1

dR(T ),R)

given by η 7→ α ^ η :=
∫
T
α ∧ η is nonzero, since the pairing ^: H1

dR(T )⊗ H1
dR(T ) → R given by

ω ^ η :=
∫
T
ω∧η is nondegenerate. Thus there’s some element β ∈ H1

dR(T ) such that
∫
T
α∧β 6= 0,

and so

deg(h)

∫
T

α ∧ β︸ ︷︷ ︸
6=0

=

∫
S

h∗(α ∧ β) =

∫
S

(h∗α)︸ ︷︷ ︸
=0

∧(h∗β) = 0.

�

Problem 6.

• Let X be the complement of the unlink in S3. By the homotopy below, we view X as a
wedge sum of two copies of U , where U is a solid sphere with a circle removed inside. In U ,
we first stretch the missing circle until we’re left with the surface of the sphere together with
a line segment connecting the poles; we then translate the south pole along the surface and
onto the north pole to obtain the wedge sum shown.

Hence X ∼= U ∨ U ∼= S1 ∨ S1 ∨ S2 ∨ S2, and so

Hj(X) ∼= Hj(S
1)⊕2 ⊕ Hj(S

2)⊕2 ∼=


Z j = 0,

Z⊕2 j = 1, 2,

0 else,

5
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where the j = 0 case follows from the fact that X is path connected. �

• Let X be the complement of the Hopf link in S3. We assume w.l.o.g. that one of the circles
passes through ∞, and hence is visualized as a vertical axis in R3, surrounded by the second
circle. Then X is the union of all vertical planes starting at this axis, and each such plane is
equivalent to a circle itself, as shown.

It follows that X ∼= S1 × S1 ∼= T2, and Hj(X) ∼= Hj(T
2) ∼=


Z j = 0,

Z⊕2 j = 1,

Z j = 2,

0 else.

�

Problem 7.

Background. In part (b) we prove the Nielsen-Schreier theorem.

(a) We proceed by induction on n. The case n = 0 is immediate since π1(S1) ∼= Z ∼= F1, so let

n ≥ 1 be arbitrary and assume π1

(∨n S1
)
∼= Fn. Defining

gives U∪V ∼=
∨n+1 S1 and U∩V ∼= ∗, so π1

(∨n+1 S1
)
∼= π1

(∨n S1
)
∗π1(S1) ∼= Fn∗F1

∼= Fn+1

by van Kampen. �

(b) Let X :=
∨n+1 S1. If H ⊂ Fn+1

∼= π1(X) is a subgroup with [Fn+1 : H] = k, then H ∼= π1(X̃)
for some k-fold covering space X̃ � X. Note that X̃ is a connected graph since it’s a covering
space of a connected graph, and thus X̃ is homotopy equivalent to a wedge of circles. We
observe that the covering space

6
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obtained by attaching k copies of
∨n S1 to a base circle gives the desired wedge product, and

H ∼= π1(X̃) ∼= π1

( kn+1∨
S1
)
∼= Fkn+1.

�
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2006, Fall

Problem 1.

Assume f is nonsurjective; then deg(f) = 0. The map
∫
M

: HndR(M) → R is an isomorphism
and the map f∗ : HndR(N) → HndR(M) is surjective, so

∫
M
f∗ : HndR(N) → R is surjective. But by

definition of degree,
∫
M
f∗ = deg(f)

∫
N

= 0, and the zero map is nonsurjective. �

Problem 2.

• We first set Xp := (T2
∐
D1)/ ∼, where we identify each point eiθ ∈ ∂D1, 0 ≤ θ < 2π, with

the point (eipθ, 1) ∈ T2. Now let U := D1 ⊂ Xp and V := T2 ⊂ Xp, so that U ∪V = Xp and
U ∩ V = ∂D1. Let i : U ∩ V ↪→ U and j : U ∩ V ↪→ V be the canonical inclusions.

Firstly, the induced map j∗ : π1(U ∩ V ) → π1(U) is trivial since U is a contractible disc.
Next, observe that π1(U ∩ V ) ∼= π1(S1) ∼= Z is generated by a single loop u, and π1(V ) ∼=
π1(T2) ∼= Z⊕2 is generated by a meridianal loop x and a lateral loop y. Say w.l.o.g. that
D1 is the disc glued onto the corresponding meridianal circle of T2. Then the induced map
i∗ : π1(U ∩ V )→ π1(V ) sends u to xp, so by van Kampen

π1(Xp) ∼= π1(U) ∗π1(U∩V ) π1(V ) ∼=
1 ∗ 〈x, y〉

〈i∗(u)j∗(u)−1〉
∼=
〈x, y〉
〈xp〉

.

• Now observe that Xpq
∼= (Xp

∐
D2)/ ∼, where we identify each point eiφ ∈ ∂D2, 0 ≤ φ < 2π,

with (1, eiqφ) ∈ T2. Let R := D2 ⊂ Xpq and S := Xp ⊂ Xpq, so that R ∪ S = Xpq and
R ∩ S = ∂D2. Then similarly to the above,

π1(Xpq) ∼= π1(R) ∗π1(R∩S) π1(S) ∼=
1 ∗ (〈x, y〉/〈xp〉)

〈yq〉
∼=
〈x, y〉
〈xp, yq〉

∼= Zp ⊕ Zq.

�

Problem 3.

The universal cover π : R � S1 satisfies π∗(π1(R)) ⊃ f∗(π1(X)) since both of π1(R), π1(X) are
trivial, and thus we have the lifting diagram on the right

π1(R) ∼= 1

π1(X) ∼= 1 π1(S1),

π∗

f∗

R

X S1.

π
∃ f̃

f

Let {ht}0≤t≤1 be a homotopy with h0 = idR and h1 = c for some constant map c : R → R. Then

{ht ◦ f̃}0≤t≤1 gives a homotopy between f̃ : X → R and the constant map c : X → R. We likewise

have a lift g̃ : X → R, together with a homotopy between g̃ and c. So f̃ and g̃ are related by some
homotopy {kt}0≤t≤1 with k0 = f̃ and k1 = g̃, and then {π ◦ kt}0≤t≤1 is a homotopy between f
and g. �
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Problem 4.

Let X := S1×D2 be the solid torus and A := S1×∂D2 its boundary; then X ∼= S1 and A ∼= T2, so

Hj(X) ∼=

{
Z j = 0, 1,

0 else,
Hj(A) ∼=


Z j = 0,

Z⊕2 j = 1,

Z j = 2,

0 else.

By the long exact sequence · · · → Hj(A) → Hj(X) → Hj(X,A) → Hj−1(A) → · · · for relative
homology, we have

0 H3(X,A) Z 0 H2(X,A) Z⊕2 Z H1(X,A) Z Z H0(X,A) 0
δ2 ι1 κ1 δ1 ι0 κ0

and we calculate the relative homologies as follows.

• Immediately, H3(X,A) ∼= Z.

• H1(A) is generated by a lateral loop [x] ∈ H1(S1) and a meridianal loop [y] ∈ H1(∂D2). The
inclusion ι : A ↪→ X maps x to the same lateral loop, so that ι1([x]) is the single generator
of H1(X) ∼= Z, but includes y into the contractible component D2, whereby ι1([x]) = 1 and
ι1([y]) = 0. Thus we have im(δ2) ∼= ker(ι1) ∼= Z, and also ker(δ2) ∼= 0, so H2(X,A) ∼= Z.

• By the above, ker(κ1) ∼= im(ι1) ∼= Z, and so ker(δ1) ∼= im(κ1) ∼= 0. Moreover ι0 is injective
since it’s induced by the inclusion ι : A ↪→ X of path connected spaces, so im(δ1) ∼= ker(ι0) ∼=
0. Thus H1(X,A) ∼= 0.

• We now have ker(κ0) ∼= im(ι0) ∼= Z since ker(ι0) ∼= 0. Then im(κ0) ∼= 0, and since κ0 is
surjective, then H0(X,A) ∼= 0.

Hence Hj(X,A) ∼=


0 j = 0, 1,

Z j = 2, 3,

0 else.

�

Problem 5.

For each 1 ≤ j ≤ n, let θj be an angular coordinate for the j-th S1 component of Tn ∼=
∏n S1. Then

dθj is a closed 1-form on Tn, and f∗dθj is a closed 1-form on M , with [f∗dθj ] = 0 ∈ H1
dR(M) ∼= 0.

So [(f∗dθ1) ∧ . . . ∧ (f∗dθn)] = 0 ∈ HndR(M), and

0 =

∫
M

(f∗dθ1) ∧ . . . ∧ (f∗dθn) =

∫
M

f∗(dθ1 ∧ . . . ∧ dθn) = deg(f)

∫
Tn

dθ1 ∧ . . . ∧ dθn︸ ︷︷ ︸
6=0

,

where the integral on the right is nonzero since dθ1 ∧ . . . ∧ dθn is a volume form on Tn. �

Problem 6.

Remark. We can actually do this more generally. Let m,n ∈ N, denote by Matm×n(R) the vector
space of all m × n matrices, and denote by X ⊂ Matm×n(R) the subset of those matrices having
rank k ∈ N.

9
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Denote by X ′ ⊂ Matm×n(R) the submanifold of those block matrices x =

(
a b
c d

)
whose upper-left

k × k block a is invertible. Any matrix x =

(
a b
c d

)
∈ X ′, written in the form above, has rank k

if and only if the product(
a b
c d

)
︸ ︷︷ ︸
m×n

(
1k×k −a−1b

0 1(m−k)×(m−k)

)
︸ ︷︷ ︸

m×m

=

(
a 0
c −ca−1b+ d

)
︸ ︷︷ ︸

n×m

has rank k, since the matrix we’re multiplying by is invertible. Since a already has rank k, this
requires the lower-right (n−k)× (m−k) block −ca−1b+d of the matrix on the right-hand side to
be 0. Thus the space X ′′ of rank-k matrices belonging to X ′ can be identified with f−1(0), where
f is the smooth map

f : X ′ → Mat(n−k)×(m−k)(R), f(x) := −ca−1b+ d,

with a, b, c, d corresponding to x as above. To conclude the proof, it’s enough to show that X ′′

is a manifold, since matrices in X and matrices in X ′′ are related by (smooth) elementary row

operations. Now, it’s enough to check that 0 is a regular value of f . For any x =

(
a b
c d

)
∈ f−1(0),

if y ∈ Mat(n−k)×(m−k)(R) is arbitrary, then defining

α : [0, 1]→ Mat(n−k)×(m−k)(R), α(t) :=

(
a b
c d

)
+ t

(
0 0
0 y

)
,

we see that

dfx

(
0 0
0 y

)
= (f ◦ α)′(0) = (−ca−1b+ d+ ty)′(0) = y,

whereby dfx is surjective. Thus X ′′ is a submanifold of X ′, and in particular is a manifold. �

Problem 7.

Suppose ω ∈ Ω1(S2) has φ∗ω = ω for every φ ∈ SO(3). Then for arbitrary x ∈ S2 and v ∈ TxS
2,

ωx(v) = φ∗ωx(v) = ωφ(x) ◦ dφx(v)

for every φ ∈ SO(3) by the definition of the pullback. Now SO(3) acts transitively on TS2 by
φ · (y, w) := (φ(y), dφy(w)), so we may let φ ∈ SO(3) above be such that φ · (x, v) = (x, 0), and
thus ωx(v) = 0. Hence ω ≡ 0. �

10
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2007, Fall

Problem 1.

We already know that H0(X × Sn) ∼= 0 by path connectedness. If j ≥ 1, then by Künneth,

Hj(X × Sn) ∼= [H0(X)︸ ︷︷ ︸
∼=Z

⊗Hj(Sn)]⊕ [Hj(X)⊗ H0(Sn)︸ ︷︷ ︸
∼=Z

]⊕
⊕
k,`≥1
k+`=j

Hk(X)︸ ︷︷ ︸
∼=0

⊗H`(Sn) ∼= Hj(X)⊕ Hj(S
n).

Thus Hj(X × Sn) ∼=

{
Z j = 0, n,

0 else.
�

Problem 2.

Let U ∼= R3, and let V be the union of the attached handle and a curve γ connecting C1 to C2.
Then U is equivalent to a wedge of two circles, and U ∩ V is the “pair of handcuffs” C1 ∪ γ ∪ C2.

Denote by i : U∩V ↪→ U and j : U∩V ↪→ V the canonical inclusions. Then i∗ : π1(U∩V )→ π1(U)
is trivial since π1(R3) ∼= 1, so it remains to determine j∗ : π1(U ∩V )→ π1(V ). Thinking of C1, C2,
and γ as oriented paths, we see that π1(U ∩V ) is generated by the loops [C1] and [γ ∗C2 ∗γ−1], and
π1(V ) is generated by [C1] and [γ]. The inclusion j sends [C1] to itself, but identifies [C1] and [C2],
which are now connected by the 2-cell A. Hence j∗([C1]) = [C1] and j∗([γ∗C2∗γ−1]) = [γ∗C1∗γ−1].
So by van Kampen

π1(X) ∼= π1(U) ∗π1(U∩V ) π1(V ) ∼=
1 ∗ (Z〈[C1]〉 ∗ Z〈[γ]〉)

〈i∗([C1])j∗([C1])−1, i∗([γ ∗ C2 ∗ γ−1])j∗([γ ∗ C1 ∗ γ−1])−1〉

∼=
〈[C1], [γ]〉

〈[C1]−1, [γ ∗ C2 ∗ γ−1]−1〉
∼=
〈
x, y | x = yxy−1 = 1

〉 ∼= 〈y | yy−1 = 1
〉 ∼= Z.

�

Problem 3.

We may think of det as a function Rn2 → R, with Rn2

being coordinatized by (xij)1≤i,j≤n. Then
for the matrix I = (xij)1≤i,j≤n ∈ Matn(R), denoting by Iij ∈ Matn−1(R) the matrix obtained from
I by deleting the i-th row and j-th column, for 1 ≤ i, j ≤ n, we have

det(I) =
∑

1≤i,j≤n

xij(−1)i+jdet(Iij) =⇒
(

∂

∂xij
det

)
(I) = (−1)i+jdet(Iij) =

{
0 i 6= j,

1 i = j.

Hence for any matrix v = (v)1≤i,j≤n ∈ TIMatn(R) ∼= Rn2

, we have

(d(det))I(v) =
∑

1≤i,j≤n

(
∂

∂xij
det

)
(I)vij =

n∑
j=1

vjj = tr(v),

where tr denotes the trace. Hence (d(det))I = tr as maps from TIMatn(R) ∼= Matn(R) to R. �
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Problem 4.

The sphere Sn−1 is a deformation retract of Rn \ 0 via the normalization map u : Rn \ 0 � Sn−1

given by u(x) := x/‖x‖, so assuming that 0 6∈ im(F ), we have a well defined composite f−1 ◦u◦F :
M → ∂M which fits into the diagram

∂M M Rn \ 0 Sn−1 ∂M,

Hn−1(∂M) Hn−1(M) Hn−1(∂M).

ι F u f−1

ι∗ (f−1◦u◦F )∗

Notice that the composite function ∂M → ∂M along the top row is id∂M since F
∣∣
∂M

= f , so the
induced composite function Hn−1(∂M) → Hn−1(∂M) along the bottom row is certainly nonzero.
However, the single generator [∂M ] ∈ Hn−1(∂M) is clearly mapped to a boundary in Hn−1(M) by
ι∗, and so

(f−1 ◦ u ◦ F )∗ ◦ ι∗([∂M ]) = (f−1 ◦ u ◦ F )∗(0) = 0,

a contradiction. �

Problem 5.

(a) We have that

dω = d

(
x

4x2 + y2

)
∧ dy − d

(
y

4x2 + y2

)
∧ dx =

[
∂

∂x

(
x

4x2 + y2

)
+

∂

∂y

(
y

4x2 + y2

)]
dx ∧ dy

=

[
−4x2 + y2

(4x2 + y2)2
+

4x2 − y2

(4x2 + y2)2

]
dx ∧ dy = 0.

(Note that the denominators above are never 0 on Ω.) �

(b) Consider the ellipse X ⊂ Ω defined by the equation 4x2 + y2 = 42. If ω = dη for some
η ∈ Ω0(Ω), then by Stokes

∫
X
ω =

∫
∂X

η = 0 since ∂X = ∅. But parametrizing X by
x(t) := 2cos(t) and y(t) := 4sin(t) for 0 ≤ t < 2π, we have∫

X

ω =

∫ 2π

0

x(t)y′(t)− y(t)x′(t)

42
dt =

1

16

∫ 2π

0

8
[
cos2(t) + sin2(t)

]
dt = π,

so ω can’t be exact on Ω. �

Problem 6.

• The set

ϕ(C) = {[x : y : 1] ∈ RP2 | y2 − x3 + x = 0} =

{[x
z

:
y

z
: 1
] ∣∣∣∣ y2

z2
− x3

z3
+
x

z
= 0, z ∈ R \ 0

}
= {[x : y : z] | y2z − x3 + xz2 = 0, z ∈ R \ 0}.

isn’t closed since it doesn’t include the case z = 0. Consider the equation y2z−x3 +xz2 = 0
with z = 0; regardless of the choice of y ∈ R, this equation yields x = 0, so the only element
of RP2 satisfying y2z−x3 +xz2 = 0 which doesn’t already belong to ϕ(C) is [0 : 1 : 0]. Then
defining f : RP2 → R by f([x : y : z]) := y2z − x3 + xz2, we have that

f−1(0) = {[x : y : z] | y2z − x3 + xz2 = 0} = ϕ(C) ∪ {[0 : 1 : 0]}.

12
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This set is closed since it’s the preimage of the closed point {0} ⊂ R under the continuous
map f , and is also obviously the smallest closed set containing ϕ(C). Thus f−1(0) = ϕ(C).

• So to show that ϕ(C) is a submanifold of RP2, we need only verify that 0 is a regular value
of f . To see this, let [x : y : z] ∈ f−1(0) and consider the map df[x:y:z] : T[x:y:z]RP2 → T0R,

df[x:y:z] =
(
−3x2 + z2 2yz y2 + 2xz

)
.

This linear map is surjective as long as one of its entries is nonzero. Now, at least one of
x, y, z is nonzero by definition of RP2, so we have the following cases.

• Suppose x 6= 0. If z = 0 then −3x2 + z2 6= 0. If z 6= 0 and y = 0 then y2 + 2xz 6= 0. If
z 6= 0 and y 6= 0 then 2yz 6= 0.

• Suppose y 6= 0. If z 6= 0 then 2yz 6= 0. If z = 0 then y2 + 2xz 6= 0.

• Suppose z 6= 0. If y 6= 0 then 2yz 6= 0. If y = 0 and x 6= 0 then y2 + 2xz 6= 0. If
y = x = 0 then −3x2 + z2 6= 0.

Hence 0 is indeed a regular value of f .
�

Problem 7.

Let y0 := f(x0) ∈ N , and let p : (Ñ , ỹ0) � (N, y0) be the covering space corresponding to the
subgroup f∗(π1(M,x0)) ⊂ π1(N, y0). Then

k := [π1(N, y0) : p∗(π1(Ñ , ỹ0))] = [π1(N, y0) : f∗(π1(M,x0))],

and p is a k-sheeted covering of (M,x0). So we’re done if we can show that k <∞. Assume that
k =∞. Now by definition of p, there exists a lift

(Ñ , ỹ0)

(M,x0) (N, y0).

p
∃ f̃

f

Since M is compact, then so is im(f̃) ⊂ Ñ . But Ñ is certainly noncompact since it’s an∞-sheeted
covering space, and so f̃ is nonsurjective. Then deg(f̃) = 0, and thus deg(f) = deg(p)deg(f̃) = 0.
But this is a contradiction since Hn(f) : Hn(M)→ Hn(N) is nontrivial by assumption. �

13
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2008, Spring

Incomplete: 3, 6(b).

Problem 1.

By assumption, G acts transitively on the fiber p−1(x0), and hence the covering p : X̃ � X
is normal. Thus the subgroup H := p∗(π1(X̃, x̃0)) ⊂ π1(X,x0) is normal, and the quotient
π1(X,x0)/H is well defined. This yields the short exact sequence

1 π1(X̃, x̃0) π1(X,x0) π1(X,x0)/H 1.
p∗

But also since the covering p is normal, then its group G of deck transformations is isomorphic to
π1(X,x0)/H, and this completes the proof. �

Problem 2.

We may write Rn ∼= V ⊕ V ⊥, with the orthogonal projection π : Rn � V being the identity on
the component V and the zero map on the component V ⊥. Given v ∈ TxRn ∼= Rn, by definition
of the tangent space TxRn, there’s a curve γ : (−1, 1) → Rn such that γ(0) = x and γ′(0) = v.
Decomposing v = (v1, v2) ∈ V ⊕ V ⊥ and γ = (γ1, γ2) : (−1, 1)→ V ⊕ V ⊥, we have

dπx(v) = (π ◦ γ)′(0) = π(γ′1(0), γ′2(0)) = π(v1, v2) = v1 = π(v),

and so dπx = π : Rn → V . In particular, this gives ker(dπx) = ker(π) = V ⊥. Now, π
∣∣
M

: M → V

is an immersion if and only if (dπ
∣∣
M

)x : TxM → Tπ(x)V is injective for every x ∈M , i.e.

0 = ker((dπ
∣∣
M

)x) = (TxM) ∩ ker(dπx) = (TxM) ∩ V ⊥

for every x ∈M . �

Problem 4.

(a) We have dα = 0 since α ∈ Ωn(Sn) is a volume form. Then d(f∗α) = f∗dα = 0, so the form
f∗α ∈ Ωn(S2n−1) is closed. But every closed n-form on S2n−1 is exact since 0 < n < 2n − 1
implies HndR(S2n−1) ∼= 0. So f∗α = dβ for some β ∈ Ωn−1(S2n−1). �

(b) Let β′ ∈ Ωn−1(S2n−1) also satisfy f∗α = dβ′. Then d(β′ − β) = f∗α − f∗α = 0, so β′ − β is
closed. As above, every closed (n − 1)-form on S2n−1 is exact, and so β′ − β = dγ for some
γ ∈ Ωn−2(S2n−1). Hence∫

S2n−1

β′ ∧ dβ′ =

∫
S2n−1

(β + dγ) ∧ d(β + dγ) =

∫
S2n−1

β ∧ dβ +

∫
S2n−1

dγ ∧ dβ.

We’re done if we can show that the second integral on the right-hand side vanishes. And
indeed, ∫

S2n−1

dγ ∧ dβ =

∫
S2n−1

d(γ ∧ dβ) =

∫
B2n

d2(γ ∧ dβ) = 0

by Stokes. �

Problem 5.

We have dω = 3dx ∧ dy ∧ dz, so∫
S2

ω =

∫
B3

dω = 3

∫
B3

dx ∧ dy ∧ dz = 3vol(B3) = 4π

by Stokes. �
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Problem 6 (?).

(a) Equip RP1 with the usual pair of charts {(U, t), (V, s)}, for

U := {[x : y] ∈ RP1 | x 6= 0}, V := {[x : y] ∈ RP1 | y 6= 0},

and t : U → R, s : V → R the maps given by t([x : y]) := y/x and s([x : y]) := x/y. Now
suppose ω ∈ Ω1(RP1) has f∗ω = P (x)dx. Then on the chart (U, t), we may write ω = F (t)dt
for some smooth function F : R→ R, and on this chart

P (x)dx = f∗ω = f∗(F (t)dt) = F (t ◦ f(x))d(t ◦ f(x)) = F (t([x : 1]))d(t([x : 1])) = F

(
1

x

)
d

(
1

x

)
= −F (1/x)

x2
dx =⇒ −F (1/x)

x2
= P (x).

Writing P (x) = amx
m + am−1x

m−1 + · · ·+ a0 for some a0, . . . , am ∈ R, this gives

F

(
1

x

)
= −x2(amx

m + am−1x
m−1 + · · ·+ a0) = −amxm+2 − am−1x

m+1 − · · · − a0x
2

=⇒ F (t) = − am
tm+2

− am−1

tm+1
− · · · − a0

t2
.

At the point [1 : 0] ∈ U , we have t([0 : 1]) = 0/1 = 0, and F (0) = ∞, contradicting F is
smooth on the chart (U, t). �

Problem 7.

Background. The manifold M , together with the sheaf of rings C∞M , is a locally ringed space
(M,C∞M ). In this problem we prove that any maximal ideal I of the ring of global sections
C∞(M) consists of functions vanishing at some point x ∈M . The localization of C∞(M) at this
point is isomorphic to the stalk of C∞M at x, that is, C∞(M)I

∼= C∞M,x.

Write M = {xα}α∈A and assume I isn’t of the desired form. Then for every α ∈ A, there’s
some fα ∈ I with fα(xα) 6= 0; by continuity, there’s some open neighborhood Uα ⊂ M such
that fα

∣∣
Uα

is either strictly positive or strictly negative. By multiplying by the constant function

−1 ∈ C∞(M) if necessary, we may assume w.l.o.g. that fα
∣∣
Uα

> 0. Since M is compact, we may

choose a finite subcover {Uj}mj=1 of the open cover {Uα}α∈A. Then f :=
∑m
j=1 fj ∈ I since I

is an ideal, and f > 0 on all of M by design. So the function 1/f ∈ C∞(M) is well defined and
f(1/f) = 1, whereby I = (1) = C∞(M). But this is impossible since I ( C∞(M) by virtue of
being a maximal ideal. �
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Problem 1.

Background. Certain references may call (Ω•(M), d•f ) the f -twisted de Rham cochain complex of
M . In this problem we show that df is indeed a coboundary operator, and compute the 0th
cohomology of this complex for R.

(a) Observe that df ∧ df = d(f ∧ df) = −d(df ∧ f) = −df ∧ df , and so df ∧ df = 0. Then

d2
fω = df (dω + df ∧ ω) = d(dω + df ∧ ω) + df ∧ (dω + df ∧ ω)

= d2ω︸︷︷︸
=0

+ d2f︸︷︷︸
=0

∧ω − df ∧ dω + df ∧ dω + df ∧ df︸ ︷︷ ︸
=0

∧ω = 0

for any ω ∈ Ωj(M). �

(b) Suppose g ∈ ker((df )0) ⊂ Ω0(M) ∼= C∞(R). Then 0 = dfg = dg + df ∧ dg = dg − gdf , so
g = dg/df and hence g = cge

f for some constant cg ∈ R. Conversely, any g ∈ C∞(R) of this
form clearly satisfies dfg = 0. Hence the assignment g 7→ cg is a one-to-one correspondence
from H0

f (R) ∼= ker((df )0) to R, which completes the argument. �

Problem 2.

We need only check that the map f∗ : Hm+n
dR (Sm×Sn)→ Hm+n

dR (Sm+n) is trivial, since we know that

HjdR(Sm+n) ∼= 0 for all j ≥ 1 with j 6= m + n. Given volume forms α ∈ Ωm(Sm) and β ∈ Ωn(Sn),
the canonical projections πm : Sm × Sn � Sm and πn : Sm × Sn � Sn yield the two nonzero forms
π∗mα ∈ Ωm(Sm × Sn) and π∗nβ ∈ Ωn(Sm × Sn). It’s easy to verify that (π∗mα) ∧ (π∗nβ) is a volume
form on Sm × Sn, whereby [(π∗mα) ∧ (π∗nβ)] generates Hm+n

dR (Sm × Sn). Then f∗ is trivial if it
maps this generator to 0. To see this, recall that f∗ is trivial on HmdR(Sm × Sn) and HndR(Sm × Sn),
whereby

f∗[(π∗mα) ∧ (π∗nβ)] = (f∗[π∗mα])︸ ︷︷ ︸
=0

∧ (f∗[π∗nβ])︸ ︷︷ ︸
=0

= 0

as desired. �

Problem 3 (?).

Remark. It may be tempting to try to exhibit C as the preimage of 0 under f(x, y) := y2−x3 and
observe that df(0,0) is nonsurjective. However, this wouldn’t prove that C isn’t a submanifold of
R2, but only that f was the wrong choice of function; a priori we may have that C = g−1(p) for
some other smooth function g and some regular value p of g.

Assume that C is a submanifold of R2. Then by the implicit function theorem, on a sufficiently
small neighborhood of the point (0, 0) ∈ C, we can write y as a function of x. By definition of C,
this function must be y = ±x3/2. But on any neighborhood of 0 on the x-axis, this isn’t a function
since it assigns two values to any x > 0. �

Problem 4.

Let X ⊂ R3 be the solid torus with ∂X = T , and let ω := xdy ∧ dz − ydx ∧ dz + zdx ∧ dy. Then
dω = 3dx ∧ dy ∧ dz, and∫

T

ω = 3

∫
X

dx ∧ dy ∧ dz = 3vol(X) = 3(2πR)(πr2) = 6π2r2R

by Stokes. �
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Problem 5.

We first stretch out the missing curve K inside B3 until we hollow out the inside of the sphere,
leaving us a copy of S2 with two points removed. We then stretch out each of these missing points
along the surface and toward the equator; the result is equivalent to a circle as shown.

Thus Hj(B
3 \K) ∼= Hj(S

1) ∼=

{
Z j = 0, 1,

0 else.
�

Problem 6.

The 3-sheeted covers of X are classified by equivalence classes of homomorphisms π1(X) → Σ3.
Note that if f is such a homomorphism, then f is completely determined by where it sends the
two generators x, y of π1(X) ∼= π1(S1 × S1) ∼= Z⊕2; and, f(x)f(y) = f(xy) = f(yx) = f(y)f(x)
since Z⊕2 is abelian. So these homomorphisms are in bijection with ordered pairs of elements
(α, β) ∈ Σ3 with αβ = βα, and we turn our attention to counting these pairs.

• Any of the six elements of Σ3 commutes with itself, so this gives us six ordered pairs of the
form (α, α), with α ∈ Σ3.

• Any of the six elements of Σ3 commutes with 1 ∈ Σ3, so this gives us five new unordered
pairs of the form {1, α}, with α ∈ Σ3, and hence ten new ordered pairs. (We already counted
the pair (1, 1) in the previous step.)

• Finally, it is routinely verified that the two 3-cycles in Σ3 commute, so we have two new
ordered pairs ((123), (132)) and ((132), (123)).

In all, we’ve counted 18 pairs of the desired form, and from this we conclude that there are exactly
18 3-sheeted covers of X. �

17



USC Qualifying Exams – Geometry and Topology Alec Sahakian

2009, Spring

Problem 1.

Take any x = (x1, x2, x3) ∈ S2. Note that at least one of these coordinates is nonzero. We have

dfx =


2x1 −2x2 0
x2 x1 0
x3 0 x1

0 x3 x2

 .

If x1 6= 0, then the last two columns are linearly independent. If x2 6= 0, then the first and
last columns are linearly independent. And if x3 6= 0, then the first two columns are linearly
independent. In any case, rank(dfx) ≥ 2. So since 2 = dimR(TxS

2) = rank(dfx) + dimR(ker(dfx)),
we have that ker(dfx) = 0, whereby f is an immersion.

Now, it’s immediate that f(x) = f(−x) for any x ∈ S2, whereby f descends to a well defined
(surjective) immersion f̄ : RP2 → f(S2), with RP2 being the usual quotient S2/Z2. Recall that
an embedding is a diffeomorphism onto its image, so we’re done if we can show that f̄ is an
embedding; it remains only to verify that f̄ is injective, and this can be (tediously) done directly
from the definition of f . �

Problem 2.

Since Sn is a deformation retract of Rn+1 \ 0 via the map u : Rn+1 � Sn given by u(x) := x/‖x‖,
we have an isomorphism u∗ : HndR(Sn) → HndR(Rn+1 \ 0). Moreover we have an isomorphism
I : HndR(Sn)→ R given by I([ω]) :=

∫
Sn
ω, and so the composite

HndR(Rn+1 \ 0) HndR(Sn) R(u∗)−1
I

is an isomorphism. A closed n-form ω ∈ Ωn(Rn+1\0) is exact if and only if [ω] = 0 ∈ HndR(Rn+1\0).
By the above isomorphism, this is equivalent to

∫
Sn
ω = I ◦ (u∗)−1([ω]) = 0. �

Problem 3.

If Z = f ∂
∂x + g ∂

∂y satisfies [X,Z] = [Y, Z] = 0, then

0 = [X,Z] = XZ − ZX = ex
∂

∂x

(
f
∂

∂x
+ g

∂

∂y

)
+

(
f
∂

∂x
+ g

∂

∂y

)
ex

∂

∂x

= ex
∂f

∂x

∂

∂x
+ exf

∂2

∂x2
+ ex

∂g

∂x

∂

∂y
+ exg

∂2

∂x∂y
− fex ∂

2

∂x2
− fex ∂

∂x
− gex ∂2

∂x∂y
− 0

= ex
(
∂f

∂x
− f

)
∂

∂x
+ ex

∂g

∂x

∂

∂y
,

0 = [Y,Z] = Y Z − ZY =
∂

∂y

(
f
∂

∂x
+ g

∂

∂y

)
−
(
f
∂

∂x
+ g

∂

∂y

)
∂

∂y

=
∂f

∂y

∂

∂x
+ f

∂2

∂x∂y
+
∂g

∂y

∂

∂y
+ g

∂2

∂y2
− f ∂2

∂x∂y
− g ∂

2

∂y2

=
∂f

∂y

∂

∂x
+
∂g

∂y

∂

∂y
.

The first equation gives ∂f
∂x = f and ∂g

∂x = 0, and the second gives ∂f
∂y = ∂g

∂y = 0. Therefore f = c1e
x

and g = c2 for some constants c1, c2 ∈ R, and Z = c1e
x ∂
∂x + c2

∂
∂y . �
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Problem 4.

For path connected spaces X,Y , we have πj(X × Y ) ∼= πj(X)× πj(Y ) for all j ∈ N. Hence

πj(T
p) ∼=

p∏
πj(S

1) ∼=

{
Z⊕p j = 1,

0 else.

�

Problem 5.

By problem 6 of 2006, Spring, we have R3 \K ∼= T2. Then π1(R3 \K) ∼= π1(T2) ∼= Z⊕2. �

Problem 6.

Note that (X,A) is a good pair since we can clearly find a neighborhood of A in X which defor-
mation retracts to A, and so Hj(X,A) ∼= H̃j(X/A) for each j ∈ Z. By collapsing A to a point, we
see that X/A ∼= T2 ∨ T2.

We decompose X/A into two tori U, V , with U ∩ V ∼= ∗, and by Mayer-Vietoris

0 Z⊕2 H̃2(X/A) 0 Z⊕4 H̃1(X/A) Z Z⊕2 H0(X/A) 0
k1−`1 ∂1 (i0,j0) k0−`0

is exact. We compute the (reduced) homologies as follows.

• Immediately, H̃2(X/A) ∼= Z⊕2.

• By exactness, ker(k1 − `1) ∼= 0. Now note that the map (i1, j1) is induced by the inclusions
i : U ∩ V ↪→ U and j : U ∩ V ↪→ V of path connected spaces, and is hence injective. So
im(∂1) ∼= ker(i0, j0) ∼= 0, whereby im(k1 − `1) ∼= ker(∂1) ∼= H̃1(X/A). Thus H̃1(X/A) ∼= Z⊕4.

• Next, ker(k0 − `0) ∼= im(i0, j0) ∼= Z, so by exactness, H0(X/A) ∼= im(k0 − `0) ∼= Z.

Hence Hj(X,A) ∼= H̃j(X/A) ∼=


0 j = 0,

Z⊕4 j = 1,

Z⊕2 j = 2,

0 else.

�

19



USC Qualifying Exams – Geometry and Topology Alec Sahakian

2009, Fall

Problem 1.

(a) Let p : Ñ � N be the cover corresponding to the subgroup f∗(π1(M)) ⊂ π1(N). This cover
has k sheets, where k := deg(p) = [π1(N) : f∗(π1(M))]; note that k is a finite integer by
assumption, and is nonzero since p is a covering map. By definition of p, there exists a lift

Ñ

M N,

p
∃ f̃

f

whereby deg(f) = deg(p ◦ f̃) = deg(p)deg(f̃) = [π1(N) : f∗(π1(M))]deg(f̃). �

(b) The antipodal map a : S2 → S2 given by a(x) := −x has deg(a) = −1, but since S2 is simply
connected, we have [π1(S2) : a∗(π1(S2))] = [1 : 1] = 1. �

Problem 2.

No. Suppose f : R2 → R2 is differentiable and has df( ∂
∂x ) = X, df( ∂∂y ) = Y . Then

x
∂

∂x
+

∂

∂y
= X = df

(
∂

∂x

)
=
∂f1

∂x

∂

∂x
+
∂f2

∂x

∂

∂y
, − ∂

∂x
+ x

∂

∂y
= Y = df

(
∂

∂y

)
=
∂f1

∂y

∂

∂x
+
∂f2

∂y

∂

∂y

and this in particular gives the system of equations

∂f2

∂x
= 1,

∂f2

∂y
= x.

The equation on the left gives f2(x, y) = x + g(y), for some function g : R → R of y, but the
equation on the right gives f2(x, y) = xy + h(x), for some function h : R → R of x. These two
expressions for f2 can’t agree on all of R2. �

Problem 3.

If there are no points x ∈ Sn with f(x) = x, then f is free of fixed points, and is thus homotopic
to the antipodal map a : Sn → Sn given by a(x) := −x, by problem 3 of 2014, Fall. But
then deg(f) = deg(a) = (−1)n+1, a contradiction. Similarly if there are no points x ∈ Sn with
f(x) = −x, then −f is free of fixed points, and is therefore homotopic to a. Then

deg(a)deg(f) = deg(a ◦ f) = deg(−f) = deg(a) =⇒ deg(f) = 1,

again a contradiction. �

Problem 4 (?).

(a) Let g : M × B2 → Rn be given by (x, y) 7→ x− f(y), and observe that

im(g) = {v ∈ Rn | there are x ∈M,y ∈ B2 so x = v + f(y)} = {v ∈ Rn | Tv(im(f)) ∩M 6= ∅}.
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Now for any v ∈ im(g) and any (x, y) ∈ g−1(v), the map dg(x,y)(M × B2) → TvRn is nonsur-
jective since dimR(M) ≤ n − 3 and dimR(B2) = 2, so dim(im(dg(x,y))) ≤ n − 1. Hence v is a
critical value of g. So by Sard, the complement

Rn \ im(g) = {v ∈ Rn | Tv(im(f)) ∩M = ∅}

contains all of the regular values of g, and thus has full measure in Rn. Therefore Rn \ im(g)
contains arbitrarily small vectors. �

(b) Take any g : S1 → Rn \M ; we’re done if we can show that g is nullhomotopic. Consider a
(continuous) map f : B2 → Rn which glues ∂B2 onto g(S1). Since M and g(S1) are disjoint
compact sets, then there exists an open neighborhood U ⊃ g(S1) disjoint from M .

Thinking of B2 as the closed unit disc in C, then there’s some ε ∈ (0, 1/2) small enough so
that f−1(U) contains the “open collar”

C2ε := {z ∈ B2 | dist(z, ∂B2) < 2ε}.

Analogously defining the open collar Cε ⊂ C2ε, then B2\Cε is itself homeomorphic to B2. So by
(a) there’s an arbitrarily small vector v ∈ Rn such that v+f(B2 \Cε) is disjoint from M ; since
U is open and f(C2ε) ⊂ U , we may choose v small enough so that v + f(C2ε) ⊂ U ⊂ Rn \M .

Finally consider the homotopy {ht : B2 → Rn \M}0≤t≤1 given by

ht(z) :=

{
tε−1dist(z, ∂B2)v + f(z) z ∈ Cε,
tv + f(z) z ∈ B2 \ Cε.

We see that {ht}0≤t≤1 is a homotopy between h0 = f and the map h1 which pushes the “inner
disc” f(B2 \ Cε) by v, fixes the boundary f(S1), and continuously connects these images by a
collar which lies entirely in U ⊂ Rn \M .

But h1(B2) is the image of a (contractible) disc, mapped into Rn \M . Hence there exists a
further homotopy {kt : B2 → Rn \M}0≤t≤1 which contracts this image to a point c ∈ h1(B2),
i.e. k0 = h1 and k1 = c, where c : B2 → Rn is the constant map to c. The composition of
these two homotopies, restricted to the boundary ∂B2, is a nullhomotopy from g to c. �

Problem 5.

Recall that Sn−1 is a deformation retract of Rn \ 0 via the normalization map u : Rn+1 \ 0 � Sn

given by u(x) := x/‖x‖. Hence we have an isomorphism u∗ : Ωn(Sn)→ Ωn(Rn+1 \ 0), so∫
Sn
f∗ω =

∫
Sn
f∗u∗(u∗)−1ω =

∫
Sn

(u ◦ f)∗((u∗)−1ω) = deg(u ◦ f)

∫
Sn

(u∗)−1ω

and similarly for g. Therefore as long as the denominator on the left is nonzero,∫
Sn
f∗ω∫

Sn
g∗ω

=
deg(u ◦ f)

∫
Sn

(u∗)−1ω

deg(u ◦ g)
∫
Sn

(u∗)−1ω
=

deg(u ◦ f)

deg(u ◦ g)
∈ Q

since deg(u ◦ f), deg(u ◦ g) ∈ Z. �
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Problem 6.

Observing that the solid genus-2 surface W is equivalent to
∨2 S1,

Hj(W ) ∼=


Z j = 0,

Z⊕4 j = 1,

Z j = 2,

0 else,

Hj(S) ∼=


Z j = 0,

Z⊕2 j = 1,

0 else.

By the long exact sequence · · · → Hj(S) → Hj(W ) → Hj(W,S) → Hj−1(S) → · · · for relative
homology, we have

0 H3(W,S) Z 0 H2(W,S) Z⊕4 Z⊕2 H1(W,S) Z Z H0(W,S) 0
δ2 ι1 κ1 δ1 ι0 κ0

and we calculate the relative homologies as follows.

• Immediately, H3(W,S) ∼= Z.

• H1(S) is generated by two lateral loops [x1], [x2] and two meridianal loops [y1], [y2]. The
natural inclusion ι : S ↪→ W maps x1, x2 to themselves, so that ι1([x1]), ι1([x2]) generate
H1(W ) ∼= Z⊕2, but includes y1, y2 into contractible meridianal discs of W , whereby we have
ι1([y1]) = ι1([y2]) = 0. Thus im(δ2) ∼= ker(ι1) ∼= Z⊕2, and also ker(δ2) ∼= 0, so it follows that
H2(W,S) ∼= Z⊕2.

• By the above, ker(κ1) ∼= im(ι1) ∼= Z⊕2, and so ker(δ1) ∼= im(κ1) ∼= 0. Also ι0 is injective since
it’s induced by the inclusion ι : W ↪→ S of path connected spaces, so im(δ1) ∼= ker(ι0) ∼= 0.
Thus H1(W,S) ∼= 0.

• We now have ker(κ0) ∼= im(ι0) ∼= Z since ker(ι0) ∼= 0. Then im(κ0) ∼= 0, and since κ0 is
surjective, then H0(W,S) ∼= 0.

Hence Hj(W,S) ∼=


0 j = 0, 1,

Z⊕2 j = 2,

Z j = 3,

0 else.

�

Problem 7 (?).

Remark. I think this problem is way too hard for a qualifying exam. Maybe there’s an easier
approach which didn’t occur to me.

Let n := dimR(N). We begin with the following construction at some fixed point x ∈ M . Let
V ⊂ N be an open subset containing M .

• Since M ⊂ N is a codimension-1 submanifold, we can find a connected chart (W,φ) centered
at x in the maximal atlas of N such that φ(W ∩M) = φ(W ) ∩ (Rn−1 × 0). W.l.o.g., W was
chosen small enough so that W ⊂ V . We have an induced homeomorphism

φ∗ :

n−1∧
T∗(W ∩M)→

n−1∧
T∗φ(W ∩M).
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Now,
∧n−1 T∗φ(W ∩M) is a (locally trivial) rank-1 vector bundle and φ is a homeomor-

phism, so we may assume w.l.o.g. that W was also chosen small enough so that we have a
trivialization

f :

n−1∧
T∗φ(W ∩M)→ φ(W ∩M)× R.

• By our choice of φ, we have a natural inclusion ι : φ
∣∣
W∩M (W ∩M) ↪→ φ(W ) ∩ (Rn−1 × 0)

of codimension 1. And also since φ(W ) is open, we can find a sufficiently small connected
neighborhood S̃ ⊂ φ(W ∩M)× R of φ(W ∩M)× 0 such that we have an inclusion

g := (ι× idR)
∣∣
S̃

: S̃ ↪→ φ(W ),

which further restricts to a homeomorphism g : S̃ → g(S̃), denoted again by g.

• Hence the composite g ◦ f ◦ φ∗ :
∧n−1 T∗(W ∩M)→ φ(W ) restricts to homeomorphisms h

and h0 as in the commutative diagram below. Let S be the preimage φ−1
∗ ◦ f−1(S̃), let R be

the preimage φ−1 ◦ g(S̃), and let 0W∩M : W ∩M →
∧n−1 T∗(W ∩M) be the zero section.

∧n−1 T∗(W ∩M) φ(W ) W

S g(S̃) R

S \ im(0W∩M ) g(S̃) ∩ (Rn−1 × 0) R \M

g◦f◦φ∗ φ−1

h
φ−1
∣∣
g(S̃)

h0
φ−1
∣∣
g(S̃)×(Rn−1×0)

We now repeat this construction at each point x ∈ M , writing x as a subscript for each of the
maps and spaces above to keep track of the base points. Denote also by φx the restriction φ

∣∣
Rx

,
for each x ∈M .
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We thus obtain a collection of charts {(Rx, φx)}x∈M for M . Clearly {Rx}x∈M is an open cover
for M , so we may choose a finite subcover {Rj}mj=1 by compactness of M , and consider the
corresponding collection of charts {(Rj , φj)}mj=1. Now R1, . . . , Rm are open and connected, and M

is also connected, so the union U :=
⋃m
j=1Rj ⊃M is itself open and connected.

• Assume that M is orientable. Then T∗M �M is orientable as a vector bundle, which means

that the space
(∧n−1 T∗M

)
\ im(0M ) has exactly two connected components. Then

Sj \ im(0Wj∩M ) ⊂
( n−1∧

T∗(Wj ∩M)
)
\ im(0Wj∩M )

also has more than one connected component, for each 1 ≤ j ≤ m. Hence via the composite
homeomorphism Sj \ im(0Wj∩M )→ Rj \M for each 1 ≤ j ≤ m, the space

U \M =
( m⋃
j=1

Rj

)
\M =

m⋃
j=1

(Rj \M)

is also disconnected.

• Conversely, assume that for every open subset V ′ ⊂ N containing M , there’s a connected
open subset U ′ ⊂ V such that U ′ \M is disconnected. We take V to be the open subset
U constructed above, and let U ′ ⊂ U be a connected open subset such that U ′ \ M is
disconnected. Then upon patching together the disconnected images of the homeomorphisms

Rj \ M → Sj \ im(0Wj∩M ) for each 1 ≤ j ≤ m, we see that
(∧n−1 T∗M

)
\ im(0M ) is

disconnected. Choosing a connected component of this space specifies an orientation on M .

�
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2010, Fall

Problem 1.

If X is a CW complex (for instance, a graph) and A ⊂ X a contractible subcomplex, then the
natural quotient map X � X/A is a homotopy equivalence, whereby π1(X) ∼= π1(X/A). We
satisfy these assumptions by letting A1 ⊂ X1 be the union of the three inner spokes, and A2 ⊂ X2

the union of two of the inner segments, as below.

Hence π1(X1) ∼= π1

(∨3 S1
)
∼= F3 and π1(X2) ∼= π1

(∨4 S1
)
∼= F4. �

Problem 2.

By problem 3 of 2006, Spring, X ∼= S1 ∨ S1 ∨ S2. Defining U ∼= S1 ∨ S1, V ∼= S2 gives U ∩ V ∼= ∗,
and

Hj(U) ∼=


Z j = 0,

Z⊕2 j = 1,

0 else,

Hj(V ) ∼=

{
Z j = 0, 2,

0 else.

We already know that H0(X) ∼= Z since X is path connected. Then by Mayer-Vietoris,

0 Z H2(X) 0 Z⊕2 H1(X) Z Z⊕2 Zk1−`1 ∂1 (i0,j0)

is exact.

• Immediately, H2(X) ∼= Z.

• By exactness, ker(k1 − `1) ∼= 0, so ker(∂1) ∼= im(k1 − `1) ∼= Z⊕2. Next, note that (i0, j0) is
injective since it’s induced by the inclusions i : U ∩ V ↪→ U and j : U ∩ V ↪→ V of path
connected spaces, so im(∂1) ∼= ker(i0, j0) ∼= 0. Thus H1(X) ∼= Z⊕2.

Hence Hj(X) ∼=


Z j = 0,

Z⊕2 j = 1,

Z j = 2,

0 else.

�
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Problem 3 (?).

No. Suppose Σ ⊂ R3 is a compact immersed surface without boundary and satisfies K(x) = −1
for all x ∈ Σ. Then by Gauss-Bonnet,

−area(Σ) = −
∫∫

Σ

dA =

∫∫
Σ

KdA = 2πχ(Σ) = 2π(2− 2g),

where g is the genus of Σ. Thus −2π(2− 2g) = area(Σ) ≥ 0, and so we must have g ≥ 1. But it’s
well known that any surface with genus g ≥ 1 contains points having positive Gaussian curvature,
so we’ve reached a contradiction. �

Problem 4.

Background. The orthogonal group O(n) ⊂ Matn(R) is the group of isometries of Rn, that is, the
group of those matrices x ∈ Matn(R) which preserve the dot product, 〈x·, x·〉 = 〈·, ·〉. It’s the real
counterpart of the unitary group U(n) ⊂ Matn(C). In this problem we show that O(n) is a Lie
group.

Consider the map f : Matn(R)→ Sym(n), where Sym(n) is the space of symmetric n×n matrices,
given by f(x) := xxT. Then O(n) = f−1(1). Since f is clearly smooth, we’re done if we can show
that 1 is a regular value of f . To this end, let a ∈ f−1(1). Then for any x ∈ TaMatn(R),

dfa(x) = lim
h→0

f(a+ hx)− f(a)

h
= lim
h→0

aaT + hxaT + ahxT + h2xxT − 1

h

= lim
h→0

(
xaT + axT + hxxT

)
= xaT + axT.

The right-hand side is indeed in Sym(n) since taking its transpose leaves it unchanged. And, dfa
differential is surjective since for any y ∈ Sym(n),

dfa
(1

2
ya
)

=
1

2
y aaT︸︷︷︸

=1

+
1

2
aaT︸︷︷︸
=1

yT︸︷︷︸
=y

= y.

This shows that O(n) is a manifold. To find its dimension, observe that any matrix in Sym(n) is
completely determined by its n diagonal entries and 1

2 (n2 − n) entries in the upper triangle. So it
follows that we have dimR(Sym(n)) = n+ 1

2 (n2 − n) = 1
2n(n+ 1), and

dimR(O(n)) = dimR(Matn(R))− dimR(Sym(n)) = n2 − 1

2
n(n+ 1) =

1

2
n(n− 1).

�

Problem 5.

Note that ω = α on Sn−1 since the denominator of α is identically 1 here. Then by Stokes,∫
Sn−1

α =

∫
Sn−1

ω =

∫
Bn

dω =

∫
Bn

dx1 ∧ . . . ∧ dxn = vol(Bn) 6= 0.

If α = dβ for some β ∈ Ωn−2(Rn \ 0), then we obtain the contradiction∫
Sn−1

α =

∫
Sn−1

dβ =

∫
∂Sn−1

β = 0.

�
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Problem 6.

Suppose X ∈ X(R2n) satisfies ιXω = df . Then upon equating the two expressions

ιXω =

n∑
j=1

ιX(dxj ∧ dyj) =

n∑
j=1

[(ιXdxj) ∧ dyj − dxj ∧ (ιXdyj)]

and

df =

n∑
j=1

(
∂f

∂xj
dxj +

∂f

∂yj
dyj

)
,

we have dxj(X) = ιXdxj = ∂f
∂yj

and dyj(X) = ιXdyj = − ∂f
∂xj

for each 1 ≤ j ≤ n, whereby

X =

n∑
j=1

(
∂f

∂yj

∂

∂xj
− ∂f

∂xj

∂

∂yj

)
.

Note that dω = 0. Then LXω = ιX dω︸︷︷︸
=0

+d ιXω︸︷︷︸
=df

= d(df) = 0 by Cartan. �

Problem 7.

(a) If α ∈ Cp(X;Z) has ∂α = 0, then α defines a homology class [α] ∈ Hp(X;Z). Since Hp(X;Z)
is a finite Z-module, there’s some k ∈ Z\0 with k[α] = 0 ∈ Hp(X;Z), or equivalently, kα = ∂β
for some β ∈ Cp+1(X;Z). �

(b) The element u ∈ Cp+1(X;Z) defines a cohomology class [u] ∈ Hp+1(X;Q) ∼= 0 since du = 0.
Then [u] = 0 ∈ Hp+1(X;Q) and hence u = dw for some w ∈ Cp(X;Q). With α, β, k as above,
we define a map L̃u : Cp(X;Z)→ Q by

L̃u(α) :=
1

k
u(β) :=

1

k
dw(β) =

1

k
w(∂β) =

1

k
w(kα) = w(α).

Indeed for any pair β, k satisfying kα = β, the right-hand side is dependent only on α, so L̃u
is well defined. Moreover, suppose α′ ∈ Cp(X;Z) has [α] = [α′] ∈ Hp(X;Z). Then α−α′ = ∂γ
for some γ ∈ Cp+1(X;Z), and so

L̃u(α)− L̃u(α′) = w(α− α′) = w(∂γ) = dw(γ) ∈ Z =⇒
[
L̃u(α)

]
=
[
L̃u(α′)

]
∈ Q/Z.

Thus we have an induced well defined map Lu : Hp(X;Z)→ Q/Z given by Lu([α]) := [L̃u(α)].

And since w = L̃u is a homomorphism, then so is Lu. �
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2011, Spring

Problem 1.

We have dω = dx1 ∧ dx2 ∧ dx3 ∧ dx4 by a simple computation, and so∫
S3

ω =

∫
B4

dω =

∫
B4

dx1 ∧ dx2 ∧ dx3 ∧ dx4 = vol(B4)

by Stokes. �

Problem 2.

• Consider the smooth map f : R6 → R3 given by

f(x, y) := (x2
1 + x2

2 + x2
3︸ ︷︷ ︸

=‖x‖2

, y2
1 + y2

2 + y2
3︸ ︷︷ ︸

=‖y‖2

, x1y1 + x2y2 + x3y3︸ ︷︷ ︸
=〈x,y〉

).

Then M = f−1(1, 1, 0) by definition. For any (x, y) ∈ f−1(1, 1, 0), consider the differential

df(x,y) =

2x1 2x2 2x3 0 0 0
0 0 0 2y1 2y2 2y3

y1 y2 y3 x1 x2 x3


Now there must be 1 ≤ i, j ≤ 3 such that xi, yj 6= 0 (since ‖x‖, ‖y‖ = 1) with i 6= j (since
〈x, y〉 = 0). Then the first row is nonzero in the i-th column, the second row in the (3 + j)-th
column, and the last row in the j-th and (3 + i)-th columns. Thus (1, 1, 0) is a regular value
of f , whereby M is an embedded 3-dimensional submanifold of R6.

• Since f is continuous, the preimage M of the closed point (1, 1, 0) is closed. So to see that
M is compact, it remains to check that M is bounded. But this is immediate since for any
(x, y) ∈M , we have ‖(x, y)‖2 = ‖x‖2 + ‖y‖2 = 2.

• Let u : R3 → R be given by u(x) := ‖x‖2, so that S2 = u−1(1). Then at each point x ∈ R3,
upon canonically identifying TxR3 ∼= R3, we get

TxS
2 = ker(dux) = ker

(
2x1 2x2 2x3

)
= {y ∈ R3 | 〈x, y〉 = 0},

and so

M = {(x, y) ∈ R6 | ‖x‖ = 1, ‖y‖ = 1, 〈x, y〉 = 0} ∼= {(x, y) | x ∈ S2, y ∈ TxS
2, ‖y‖ = 1}.

The right-hand side is precisely the definition of the unit tangent bundle of S2.
�

Problem 3.

(a) Firstly, RP1 ∼= S1 and so π1(RP1) ∼= π1(S1) ∼= Z. If now n ≥ 2, then RPn is the quotient of
Sn by the antipodal action of Z2 defined by 1 · x := x and −1 · x := −x for all x ∈ Sn. Then
Z2 is the group of deck transformations of the (normal, simply connected) universal cover
Sn � RPn, and so π1(RPn) ∼= Z2. �
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(b) We may construct Sn by starting with two 0-cells e0
−, e

0
+, then gluing on two “half-circle”

1-cells e1
−, e

1
+, then gluing on two “half-sphere” 2-cells e2

−, e
2
+, etc., until we’ve glued on two

“half-sphere” n-cells en−, e
n
+. In the quotient RPn = Sn/Z2, we identify ej− and ej+ for each

0 ≤ j ≤ n. Thus RPn consists of exactly one j-cell ej (with attaching map the 2-fold cover
pj−1 : Sj−1 � RPj−1) for each 0 ≤ j ≤ n. �

(c) By (b), the cellular chain complex (CCW
• (RPn), ∂•) of RPn is given by

0 Z〈en〉 Z
〈
en−1

〉
· · · Z

〈
e1
〉

Z
〈
e0
〉

0.
∂n ∂n−1 ∂2 ∂1

Now fix some 1 ≤ j ≤ n and recall that the boundary map ∂j : CCW
j (RPn) → CCW

j−1(RPn) is

given by ∂j(e
j) = deg(qj−1 ◦pj−1)ej−1, where qj−1 is the natural quotient map in the diagram

Sj−1 RPj−1 RPj−1/RPj−2 ∼= Sj−1.
pj−1 qj−1

The restriction maps qj−1 ◦pj−1

∣∣
ej−1
−

, qj−1 ◦pj−1

∣∣
ej−1
+

are homeomorphisms from the two hemi-

spheres ej−1
− , ej−1

+ ⊂ Sj−1, respectively, onto the space RPj−1 \ RPj−2. Furthermore, letting
a : Sj−1 → Sj−1 be the degree-(−1)j antipodal map, we have that

qj−1 ◦ pj−1

∣∣
ej−1
−

= qj−1 ◦ pj−1

∣∣
ej−1
+

◦ a,

and so

deg(qj−1 ◦ pj−1) = deg
(
qj−1 ◦ pj−1

∣∣
ej−1
−

)
+ deg

(
qj−1 ◦ pj−1

∣∣
ej−1
+

)
= (−1)j + 1 =

{
0 j odd,

2 j even.

Thus if n is odd or even, then the cellular chain complex of RPn is given by

0 Z〈en〉 Z
〈
en−1

〉
· · · Z

〈
e1
〉

Z
〈
e0
〉

00 2 2 0

or

0 Z〈en〉 Z
〈
en−1

〉
· · · Z

〈
e1
〉

Z
〈
e0
〉

0,2 0 2 0

respectively. From the sequences above, for 0 < j < n,

HCW
j (RPn) ∼=

ker(∂j)

im(∂j+1)
∼=

{
ker(0)/im(2) j odd,

ker(2)/im(0) j even
∼=

{
Z/2Z j odd,

0 j even.

By path connectedness, HCW
0 (RPn) ∼= Z. And,

HCW
n (RPn) ∼= ker(∂n) ∼=

{
Z n odd,

0 n even.

It’s clear that HCW
j (RPn) ∼= 0 for all j > n. �
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(d) RPn is orientable if and only if n ≥ 1 is odd. Recall that a compact connected oriented
(topological) n-manifold X without boundary has Hn(X;Z) ∼= Z. So by (c), RPn is unori-
entable if n is even. If n is odd, then a choice of connected component of Hn(RPn;Z)\0 ∼= Z\0
specifies an orientation on RPn. �

Problem 4.

See problem 5 of 2013, Fall, replacing g by f , and replacing f by a constant map.

Problem 5.

Remark. The argument below actually works for G an arbitrary connected topological group.

Since G is connected, it suffices to show that π1(G, 1) is abelian. We’re done if we can find, for any
pair of loops f, g : [0, 1]→ G based at 1, a homotopy between f · g and g · f , where · is the product
in G. Consider the families of maps {ut : [0, 1]→ G}0≤t≤1 and {vt : [0, 1]→ G}0≤t≤1 given by

ut(s) :=

{
f
(

2s
t+1

)
0 ≤ s ≤ 1+t

2 ,

1 1+t
2 ≤ s ≤ 1,

vt(s) :=

{
1 0 ≤ s ≤ 1−t

2 ,

g
(

2s+t−1
t+1

)
1−t

2 ≤ s ≤ 1.

Then the family of maps {wt : [0, 1]→ G}0≤t≤1 given by wt := ut · vt yields a homotopy between
f ∗ g and f · g,

w0 = u0 · v0 = (f ∗ 1) · (1 ∗ g) = (f · 1) ∗ (1 · g) = f ∗ g, w1 = u1 · v1 = f · g.

We may similarly construct a homotopy between f ∗ g and g · f , and it follows that there exists a
homotopy between f · g and g · f . �

Problem 6.

Firstly, there must be some point x ∈M with K(x) > 0, since M is a compact oriented surface of
genus g ≥ 1. But also (recalling that ∂M = ∅) we have by Gauss-Bonnet that∫∫

M

KdA = 2πχ(M) = 2π(2− 2g) ≤ 0

since g ≥ 1, and so K ≤ 0 on some nonempty subset of M . In particular, there’s some point
y ∈ M with K(y) ≤ 0. Therefore, since K is continuous on M , there must be some point z ∈ M
with K(z) = 0 by the intermediate value theorem. �
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Problem 1.

Let M be a compact n-manifold and suppose f : M → Rn is an immersion; this in particular
implies that im(f) 6= ∅. We now have the following.

• Since M is closed and f is continuous, then im(f) ⊂ Rn is closed.

• Since f is immersive, then for any x ∈ M , the map dfx : TxM → Tf(x)Rn is an injection
between n-dimensional R-vector spaces. Hence dfx is an isomorphism, and so f is locally
a diffeomorphism by the inverse function theorem. This implies that f is an open map,
whereby im(f) ⊂ Rn is open.

Thus im(f) 6= ∅ is a simultaneously closed and open subspace of the connected space Rn, whereby
we must have im(f) = Rn. However this is impossible since the image of the compact space M
under the continuous map f must be compact. �

Problem 2.

(a) We stretch the missing disc inside the unit box outward until we’re left with the box’s (pre-
identified) frame. Identifying the appropriate edges yields a wedge of two circles.

Hence Hj(Σ1,1) ∼= Hj(S
1 ∨ S1) ∼=


Z j = 0,

Z⊕2 j = 1,

0 else.

�

(b) Decomposing Σ2 as the union of the punctured tori U and V below, we have that U ∼= V ∼= Σ1,1

and U ∩ V ∼= S1.

Hence by (a),

Hj(U) ∼= Hj(U) ∼=


Z j = 0,

Z⊕2 j = 1,

0 else,

Hj(U ∩ V ) ∼=

{
Z j = 0, 1,

0 else.
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We already know that H0(Σ2) ∼= Z since Σ2 is path connected. Furthermore by Mayer-Vietoris,

0 H2(Σ2) Z Z⊕4 H1(Σ2) Z Z⊕2∂2 (i1,j1) k1−`1 ∂1 (i0,j0)

is exact.

• By exactness, ker(∂2) ∼= 0. Moreover, (i1, j1) is induced by the inclusions i : U ∩ V ↪→ U
and j : U ∩ V ↪→ V of the boundary U ∩ V into either U or V , so im(i1, j1) ∼= 0. Hence
we have im(∂2) ∼= ker(i1, j1) ∼= Z, whereby H2(Σ2) ∼= Z.

• By the above, ker(k1 − `1) ∼= im(i1, j2) ∼= 0, so ker(∂1) ∼= im(k1 − `1) ∼= Z⊕4. Note also
that (i0, j0) is injective since it’s induced by the inclusions i, j of path connected spaces,
and so we have im(∂1) ∼= ker(i0, j0) ∼= 0. Thus H1(Σ2) ∼= Z⊕4.

Therefore Hj(Σ2) ∼=


Z j = 0,

Z⊕4 j = 1,

Z j = 2,

0 else.

�

Problem 3.

At any point p ∈ S, write ωp = a1dy ∧ dz+ a2dx∧ dz+ a3dx∧ dy for constants a1, a2, a3 ∈ R, and
write ej = (exj , e

y
j , e

z
j ) for each j = 1, 2. Then, using n = (n1, n2, n3) = e1 × e2, we have

n2
1 + n2

2 + n2
3 = ‖n‖2 = 1 = ωp(e1, e2) = a1dy ∧ dz(e1, e2) + a2dx ∧ dz(e1, e2) + a3dx ∧ dy(e1, e2)

= a1(ey1e
z
2 − ez1e

y
2) + a2(ex1e

z
2 − ez1ex2) + a3(ex1e

y
2 − e

y
1e
x
2) = a1n1 + a2(−n2) + a3n3.

Comparing the left- and right-hand sides gives a1 = n1, a2 = −n2, a3 = n3. �

Problem 4.

(a) Observe that X is the Klein bottle obtained by gluing M1 and M2 along their boundaries.

Firstly M1
∼= M2

∼= S1, so let x1, x2 be generators of π1(M1) ∼= Z and π1(M2) ∼= Z, respectively.
Moreover M1 ∩M2

∼= ∂M1
∼= S1, so for each j = 1, 2, the inclusion ιj : M1 ∩M2 = ∂Mj ↪→Mj

winds the loop 1 ∈ π1(M1 ∩M2) ∼= π1(S1) ∼= Z once over the “front” of Mj and once over the
“back,” so that ιj(1) = x2

j . Then by van Kampen,

π1(X) ∼= π1(M1) ∗π1(M1∩M2) π1(M2) ∼=
〈x1, x2〉

〈ι1(1)ι2(1)−1〉
∼=
〈
x1, x2 | x2

1 = x2
2 = 1

〉
.

�

(b) No. The Klein bottle is unorientable. �
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Problem 5.

Equivalence classes of connected covers of RP14 ∨ RP15 are in bijection with the subgroups of

π1(RP14 ∨ RP15) ∼= π1(RP14) ∗ π1(RP15) ∼= Z2 ∗ Z2
∼=
〈
x, y | x2 = y2 = 1

〉
.

The identity subgroup corresponds to the universal cover S14 ∨ S15; the entire group corresponds
to the trivial cover RP14 ∨ RP15; the subgroups generated by x and y correspond to the covers
RP14 ∨ S15 and S14 ∨ RP15, respectively. �

Problem 6.

By Cartan,

f∗(LY ω) = f∗(ιY dω) + f∗(dιY ω), LX(f∗ω) = ιX(df∗ω) + dιX(f∗ω).

We show that the right-hand sides are equal by showing equality of the corresponding summands.
We have for the second summand

f∗(dιY ω) = df∗(ιY ω) = df∗(ω(Y )) = d(ω(Y ) ◦ f) = d(ω(f∗(X)) ◦ f) = d((f∗ω)(X)) = dιX(f∗ω).

Next, for any x ∈M and v ∈ TxM , we have for the first summand

(f∗(ιY dω))x(v) = (ιY dω)f(x)(f∗v) = dωf(x)(Y (f(x)), f∗v) = dωf(x)(f∗(X(x)), f∗v)

= (f∗dω)x(X(x), v) = (ιX(f∗dω))x(v) = (ιX(df∗ω))x(v),

and so f∗(ιY dω) = ιX(df∗ω). �

Problem 7.

Remark. It’s indeed the case that [X,Y ] = 0, but this only tells us by Frobenius that the rank-2
distribution defined by X and Y (not the one orthogonal to X and Y ) is integrable.

No. Denote by D the rank-2 distribution orthogonal to X and Y , and begin by taking some
arbitrary vector field V = v1

∂
∂x1

+ v2
∂
∂x2

+ v3
∂
∂x3

+ v4
∂
∂x4
∈ D . Then

〈V,X〉 = 0 =⇒ v1x1 + v2x2 + v3x3 + v4x4 = 0,

〈V, Y 〉 = 0 =⇒ −v1x2 + v2x1 − v3x4 + v4x3 = 0,

so we have the matrix equation(
x1 x2

−x2 x1

)(
v1

v2

)
+

(
x3 x4

−x4 x3

)(
v3

v4

)
= 0.

By assumption, (x1, x2, x3, x4) ∈ R4 \ 0, so w.l.o.g. x1 6= 0. Then this equation gives(
v1

v2

)
= −

(
x1 x2

−x2 x1

)−1(
x3 x4

−x4 x3

)(
v3

v4

)
= − 1

x2
1 + x2

2

(
x1x3 + x2x4 x1x4 − x2x3

x2x3 − x1x4 x1x3 + x2x4

)(
v3

v4

)
.

Now, we may freely choose (v3, v4) ∈ R2 and this equation determines (v1, v2) ∈ R2 such that the
resulting vector field V belongs to D . Setting (v3, v4) = −(x2

1 +x2
2, 0) and (v′3, v

′
4) = −(0, x2

1 +x2
2),

respectively, we obtain two sets of coefficients
v1

v2

v3

v4

 =


x1x3 + x2x4

x2x3 − x1x4

−x2
1 − x2

2

0

 and


v′1
v′2
v′3
v′4

 =


x1x4 − x2x3

x1x3 + x2x4

0
−x2

1 − x2
2


which yield, respectively, two vector fields V, V ′ ∈ D . But now, [V, V ′] = −2(x2

1 + x2
2)Y , whereby

[V, V ′] 6∈ D since
〈
−2(x2

1 + x2
2)Y, Y

〉
6= 0 for x1 6= 0. Thus D is nonintegrable by Frobenius. �
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Problem 1 (?).

Observe that A is the union of a lateral circle and a meridianal one, and that the quotient T2/A
is equivalent to S2 as shown below.

Hence Hj(T
2/A) ∼= Hj(S

2). Furthermore, A is a deformation retract of a small thickening of itself

within T2. So (T2, A) is a good pair, whereby Hj(T2, A) ∼= H̃j(T2/A) for each j ≥ 0.

• By properties of reduced cohomology, H0(T2, A) ∼= H̃0(T2/A) ∼= HomZ(H̃0(T2/A),Z) ∼= 0,
since H̃0(T2/A) ∼= 0 by path connectedness of T2/A.

• By Poincaré duality, H1(T2, A) ∼= H̃1(T2/A) ∼= H1(T2/A) ∼= H1(S2) ∼= 0.

• Similarly, H2(T2, A) ∼= H̃2(T2/A) ∼= H0(T2/A) ∼= H0(S2) ∼= Z.

• And finally, for any j ≥ 3, we have Hj(T2, A) ∼= H̃j(T2/A) ∼= H̃j(S2) ∼= 0.

In summary, Hj(T2, A) ∼=

{
Z j = 2,

0 else.
�

Problem 2.

Remark. This problem’s description contains a mistake; the smash product of two (pointed) spaces
X,Y is defined by X ∧ Y := (X × Y )/(X ∨ Y ). I’m not sure which “definition” of ∧ this problem
uses, so this I’ll skip this one.

Problem 3.

(a) Recall that the cellular homology ofX agrees with its usual singular homology. Let (CCW
• (X), ∂•)

denote the cellular chain complex of X,

0 CCW
2 (X) CCW

1 (X) CCW
0 (X) 0

∂2 ∂1 ∂0

and HCW
• (X) the homology of this complex. Name the 2-cells A,B,C, in the order that they’re

pictured.

• By path connectedness, we have HCW
0 (X) ∼= Z.

• We have that ∂1(a) = v − v = 0 and ∂1(b) = b− b = 0, so ker(∂1) = Z〈a, b〉. Next,

∂2(A) = a− a = 0, ∂2(B) = 3b, ∂2(C) = a+ b+ a+ b = 2(a+ b),

so im(∂2) = Z〈2(a+ b), 3b〉. Observing that Z〈a, b〉 = Z〈a+ b, b〉, we have

HCW
1 (X) =

ker(∂1)

im(∂2)
= Z〈a+ b, b | 2(a+ b) = 3b = 0〉 ∼= Z〈c, b | 2c = 3b = 0〉 ∼= Z2 ⊕ Z3.
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• By the above, HCW
2 (X) ∼= ker(∂2) = Z〈A〉 ∼= Z.

Hence HCW
2 (X) ∼=


Z j = 0,

Z2 ⊕ Z3 j = 1,

Z j = 2,

0 else.

�

(b) Looking at the 2-skeleton of X, we obtain the presentation

π1(X) =
〈
a, b | aa−1 = 1, b3 = 1, abab = 1

〉
=
〈
ab, b | b3 = 1, (ab)2 = 1

〉 ∼= 〈d, b | d2 = b3 = 1
〉
.

The right-hand side is isomorphic to the nonabelian free product Z2 ∗ Z3. �

Problem 4.

Since any embedding is in particular in immersion, the compact 2-manifold RP2 can’t be embedded
into R2 by problem 1 of 2012, Spring. �

Problem 5.

• Given a vector field X ∈ X(M) and a function f ∈ C∞(M), we obtain a new function
X(f) ∈ C∞(M) given at each point x ∈M by X(f)(x) := Xx(f). In this way, we view X as
a map C∞(M)→ C∞(M).

• W.r.t. a local coordinate system (x1, . . . , xm) on the m-manifold M , say X,Y ∈ X(M) are
written as X =

∑m
j=1 fj

∂
∂xj

and Y =
∑m
j=1 gj

∂
∂xj

, for some fj , gj ∈ C∞(M), 1 ≤ j ≤ m.

Then

XY =
∑

1≤i,j≤m

fi
∂gj
∂xi

∂

∂xj
+

∑
1≤i,j≤m

figj
∂

∂xixj

is a second-order operator (and hence not a vector field) if the second sum is nonzero.

• However,

[X,Y ] = XY − Y X =
∑

1≤i,j≤m

fi
∂gj
∂xi

∂

∂xj
−

∑
1≤i,j≤m

gj
∂fi
∂xj

∂

∂xi

is a vector field. Here, the second-order differentials appearing in XY and Y X have cancelled
by symmetry of mixed partial derivatives.

�

Problem 6.

Note that∫
S3

ω =

∫
B4

dω =

∫
B4

(1 + 2w)dw ∧ dx ∧ dy ∧ dz =

∫
B4

dw ∧ dx ∧ dy ∧ dz + 2

∫
B4

wdw ∧ dx ∧ dy ∧ dz

by Stokes. The second integral on the right vanishes since w is an odd function and B4 is symmetric
about 0. Assuming that dx ∧ dy ∧ dz ∧ dw is the canonical volume form on R4, we now have∫

S3

ω = −
∫
B4

dx ∧ dy ∧ dz ∧ dw = −vol(B4).

�

Problem 7.

See problem 3 of 2008, Fall.
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Problem 1.

(a) By Stokes,∫
S2

ω =

∫
B3

dω =

∫
B3

(2x+ 1)dx ∧ dy ∧ dz = 2

∫
B3

xdx ∧ dy ∧ dz +

∫
B3

dx ∧ dy ∧ dz.

The first integral on the right vanishes since x is an odd function and B3 is symmetric about
0, and so

∫
S2 ω = vol(B3) = 4π/3. �

(b) If α ∈ Ω2(R3) is a closed form with i∗α = i∗ω, then
∫
S2 i
∗α =

∫
S2 i
∗ω =

∫
S2 ω = 4π/3, but also∫

S2

i∗α =

∫
B3

d(i∗α) =

∫
B3

i∗(dα) =

∫
B3

i∗0 = 0,

a contradiction. �

Problem 2.

The given functions serve as local coordinates for any point (x0, y0, z0) ∈ R3 about which the chart
map φ : R3 → R3 given by φ(x, y, z) := (x, x2 + y2 + z2 − 1, z) is a local diffeomorphism. By the
inverse function theorem, this condition is equivalent to the following differential being a linear
isomorphism,

dφ(x0,y0,z0) =

 1 0 0
2x0 2y0 2z0

0 0 1

 .

This matrix is invertible exactly when y0 6= 0, and so φ is a coordinate chart on R3 \ {y = 0}. �

Problem 3.

We define RPn as the quotient of Rn+1 \ 0 by the relation x ∼ cx for all x ∈ Rn+1 \ 0 and
c ∈ R \ 0. Equipping RPn with the quotient topology, it inherits the Hausdorff and second
countable properties of Rn+1 \ 0. Now, consider the atlas {(Uj , φj)}nj=0 for RPn, where for each
1 ≤ j ≤ n, we define Uj := {xj 6= 0} ⊂ RPn and φj : Uj → Rn,

φj([x0 : · · · : xn]) :=

(
x0

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xn
xj

)
.

This chart map is clearly continuous, and has continuous inverse given by

φ−1
j (y0, . . . , yj−1, yj+1, . . . , yn) := [y0 : · · · : yj−1 : 1 : yj+1 : · · · : yn].

Moreover if Ui ∩ Uj 6= ∅ for some 1 ≤ i, j ≤ n, then the composite φi ◦ φ−1
j : Rn → Rn is easily

seen to be smooth. Thus RPn is indeed an n-manifold. �

Problem 4.

(a) Let n ∈ N. Seeing as H1
dR(Sn) ∼= 0, if ω ∈ Ω1(Sn) is closed, then ω ∈ ker(d1) = im(d0). �

(b) Since RPn is the quotient of Sn by an action of Z2, we have a canonical projection π : Sn � RPn
and a noncanonical inclusion ι : RPn ↪→ Sn. Let ω ∈ Ω1(RPn) be closed. Then π∗ω ∈ Ω1(Sn)
is closed since d(π∗ω) = π∗(dω) = π∗0 = 0. So by part (a), there’s some f ∈ Ω0(Sn) with
df = π∗ω. But then

d(ι∗f) = ι∗(df) = ι∗(π∗ω) = (π ◦ ι)∗ω = ω,

where ι∗f ∈ Ω0(RPn), and thus ω is exact. �
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Problem 5.

Along each axis, we squish R3 towards the points lying on the unit sphere, until we’re left with
a sphere with six points missing (corresponding to the intersections of R3 with the missing axes).
We then stretch out one of these points while moving the remaining missing points close to one
another. We’re now left with an open disc with five missing points stuck together in the middle.
Stretching out each of these missing points and pushing the outside of the disc toward their borders
yields a wedge of five circles.

Hence π1(X) ∼= π1

(∨5 S1
)
∼= F5 and Hj(X) ∼= Hj

(∨5 S1
)
∼=


Z j = 0,

Z⊕5 j = 1,

0 else.

�

Problem 6.

Viewing the torus as a square with edges identified, upon removing two points, we stretch each
missing point out into a triangular region. This leaves the frame of the square together with a
diagonal. Identifying the appropriate edges yields a wedge of three circles, as shown.

Then Hj(X) ∼= Hj
(∨3 S1

)
∼=


Z j = 0,

Z⊕3 j = 1,

0 else.

and π1(X) ∼= π1

(∨3 S1
)
∼= F3, by van Kampen. �

Problem 7.

(a) The 2-sheeted covers of S1 × S1 are classified by the index-2 subgroups of π1(S1 × S1) ∼= Z⊕2.
There are three such covers, corresponding to the subgroups (2Z)⊕Z,Z⊕ (2Z), and ker(f) for
f : Z⊕2 → Z2 the homomorphism given by f(x, y) := [x+ y]. �

(b) Denote by π : R � S1 the universal cover of S1, and let f : X → S1 be a continuous map.
Then we have an induced homomorphism f∗ : π1(X) → π1(S1), which must be trivial since
π1(X) has torsion (it’s finite) while π1(S1) ∼= Z doesn’t. Then since R is simply connected, we
have f∗(π1(X)) ∼= 1 ⊂ π∗(π1(R)) ∼= 1, and so there exists a lift
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R

X S1.

π
∃ f̃

f

Again since R is simply connected, we may choose a homotopy {ht : X → R}0≤t≤1 with

h0 = f̃ and h1 = c for some constant map c : X → R. Then {π ◦ ht}0≤t≤1 is a homotopy with

π ◦ h0 = π ◦ f̃ = f , and π ◦ h1 = π ◦ c (a constant map). �

Problem 8.

(a) See problem 3 of 2014, Fall.

(b) Suppose S2n is the universal cover of X, and denote by G ∼= π1(X) its group of deck transfor-
mations. If G ∼= 1 then we’re done, so assume now that G is nontrivial. The action of G on
S2n is free since S2n is path connected; so any f ∈ G \ 1 is a homeomorphism S2n → S2n with
no fixed points, and deg(f) = (−1)2n+1 = −1 by (a). Choosing some g, h ∈ G \ 1, we have
that

deg(g2) = [deg(g)]2 = (−1)2 = 1, deg(gh) = deg(g)deg(h) = (−1)(−1) = 1,

so g2 = 1 = gh by the above. This gives g = h, and we conclude that G consists of the identity
element and a single nontrivial element g ∈ G with g2 = 1. As such, G ∼= Z2. �
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Problem 1.

(a) Very similarly to problem 3 of 2006, Spring, we see that X ∼= S1 ∨ S2. Thus X is obtained by
attaching a 1-cell and a 2-cell to a single 0-cell. It’s immediate that

Hj(X) ∼=

{
Z j = 0, 1, 2,

0 else.

�

(b) By van Kampen, π1(X) ∼= π1(S1) ∗ π1(S2) ∼= Z ∗ 1 ∼= Z. �

(c) Equivalence classes of connected covers of X are in bijection with the subgroups of π1(X) ∼= Z.
Any proper subgroup of Z is of the form kZ for some k ∈ N, and corresponds to the k-sheeted
cover below on the left. The identity subgroup corresponds to the universal cover on the right.

�

Problem 2.

Since f : M → N is continuous and M is compact, then im(f) is compact, and in particular
closed. Since f is a submersion, then by the implicit function theorem f is locally an open map
(a projection), and hence im(f) is open. But then im(f) ⊂ N is a simultaneously closed and open
subset of the connected manifold N , and is nonempty since M 6= ∅. Thus im(f) = N . �

Problem 3.

See problem 4 of 2010, Fall.

Problem 4.

Recall that we have canonical isomorphisms Ωj(S1) ∼= C∞(S1) for j = 0, 1.

• We know that S1 is a 1-manifold, so for all j 6= 0, 1, we have Ωj(S1) = ∅ and hence
HjdR(S1) = 0.

• Thus

H0
dR(S1) ∼= ker(d0) ∼= {f ∈ C∞(R) | df = 0} ∼= {f ∈ C∞(R) | f a constant function} ∼= R.

• Consider the integration map I : Ω1(S1)→ R given by I(ω) :=
∫
S1 ω. Choosing dt ∈ Ω1(S1)

with
∫
S1 dt = 2π, then any c ∈ R has c = I((c/2π)dt), and so im(I) = R. Moreover it’s easily

verified that ker(I) = im(d0), and so

H1
dR(S1) =

ker(d1)

im(d0)
=

Ω1(S1)

ker(I)
∼= im(I) = R.
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Hence HjdR(S1) ∼=

{
Z j = 0, 1,

0 else.
�

Problem 5.

Background. The quotient Z is called the double mapping cylinder of f and g. In this problem we
form a long exact sequence which relates the homologies of the constituent spaces X and Y to the
homology of Z.

Let ι : X×∂[0, 1] ↪→ X×[0, 1] be the canonical inclusion, and let q : (X×[0, 1], X×∂[0, 1])→ (Z, Y )
be the restriction of the given quotient map (X × [0, 1])

∐
Y � Z to the first component. Then

the exact sequences for the relative homology of the good pairs (X × [0, 1], X × ∂[0, 1]) and (Z, Y )
give, for each j ∈ Z, the commutative diagram with exact rows,

· · · Hj+1(X × [0, 1], X × ∂[0, 1]) Hj(X × ∂[0, 1]) Hj(X × [0, 1]) · · ·

· · · Hj+1(Z, Y ) Hj(Y ) Hj(Z) · · · .

q∗

δ

q∗

ι∗

q∗

Thus we’re done if we can show that Hj+1(Z, Y ) ∼= Hj(X) for each j ∈ Z. To see this, fix some
j ∈ Z, and note that

Hj(X × ∂[0, 1]) ∼= Hj ((X × {0})
∐

(X × {1})) ∼= Hj(X)⊕2.

Both X × {0} and X × {1} are deformation retracts of X × [0, 1], so ι∗ is surjective. Then the
outer two maps on the top row are 0, and hence δ is injective. As such,

Hj+1(X × [0, 1], X × ∂[0, 1]) ∼= im(δ) ∼= ker(ι∗) ∼= {(ω,−ω) | ω ∈ Hj(X)} ∼= Hj(X),

so it’s enough to show Hj+1(Z, Y ) ∼= Hj+1(X×[0, 1], X×∂[0, 1]). Recall that (X×[0, 1], X×∂[0, 1])

and (Z, Y ) are good pairs, and q yields induces a homeomorphism (X×[0, 1])/(X×∂[0, 1])
∼→ Z/Y .

So we may factor the leftmost map q∗ as

Hj+1(X × [0, 1], X × ∂[0, 1]) H̃j+1((X × [0, 1])/(X × ∂[0, 1]))

Hj+1(Z, Y ) H̃j+1(Z/Y ),

q∗

∼

∼

∼

whereby q∗ gives the desired isomorphism Hj+1(X × [0, 1], X × ∂[0, 1])
∼→ Hj+1(Z, Y ). �

Problem 6.

(a) Observe that Zp is a finite group, S3 is Hausdorff, and the given action of Zp on S3 is free;
hence this action is properly discontinuous. Then the canonical quotient map q : S3 � L(p, q)
is a covering map, and

π1(L(p, q)) ∼= π1(S3/Zp) ∼=
π1(S3/Zp)
q∗(π1(S3))

∼= Zp,

since π1(S3) ∼= 1. �
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(b) Denote by π : R2 � T2 the universal cover of T2, and let f : L(p, q)→ T2 be a continuous map.
We have an induced map f∗ : π1(L(p, q))→ π1(T2), which must be trivial as π1(L(p, q)) ∼= Zp
has torsion while π1(T2) ∼= Z⊕2 doesn’t. Then since R2 is simply connected, we have that
f∗(π1(L(p, q))) ∼= 1 ⊂ π∗(π1(R2)) ∼= 1, and so there exists a lift

R2

L(p, q) T2.

π
∃ f̃

f

Again since R2 is simply connected, we may choose a homotopy {ht : L(p, q)→ R2}0≤t≤1 with

h0 = f̃ and h1 = c for some constant map c : L(p, q)→ R2. Then {π ◦ht}0≤t≤1 is a homotopy

which has π ◦ h0 = π ◦ f̃ = f , and π ◦ h1 = π ◦ c (a constant map). �

Problem 7.

• For any a1, a2, a3 ∈ R, denote by La1,a2,a3 ⊂ R2 the line determined by the equation

a1x+ a2y + a3 = 0,

and denote by X the space of all lines in R2. Note that we can’t have a1 = a2 = 0 while
a3 6= 0, and also that La1,a2,a3 = Lca1,ca2,ca3 for any c ∈ R \ 0. Thus we have a well defined
inclusion map ι : X ↪→ RP2 \ {[0 : 0 : 1]} given by ι(La1,a2,a3) := [a1 : a2 : a3].

• We equip X with the topology induced by this inclusion, whereby X inherits the Hausdorff
and second countable properties of RP2. Now set U1 := {[1 : a2 : a3] ∈ X} and consider the
homeomorphism φ1 : U1 → R2 given by φ1([1 : a2 : a3]) := (a2, a3). (Indeed U1 ⊂ RP2 is
open since its complement RP2 \U1 is closed.) Then (U1, φ1) is a chart for X, and similarly
defining (U2, φ2), (U3, φ3), we obtain an atlas {(Uj , φj)}3j=1 for X.

• Next, for any (a2, a3) ∈ φ1(U1 ∩ U2), recalling that a2 6= 0 on U2, the transition map

τ := φ2 ◦ φ−1
1 (a2, a3) = φ2([1 : a2 : a3]) = φ2([1/a2 : 1 : a3/a2]) = (1/a2, a3/a2)

is smooth. Similarly the other transition maps are also smooth, so this atlas indeed gives X
the structure of 2-manifold.

• Finally observe that, with τ as above,

det(dτ(a2,a3)) =

∣∣∣∣∣∣∣
∂τ1
∂a2

∂τ1
∂a3

∂τ2
∂a2

∂τ2
∂a3

∣∣∣∣∣∣∣ =

∣∣∣∣ −a−2
2 0

−a3a
−2
2 a−1

2

∣∣∣∣ = −a−3
2 < 0.

So τ is orientation-reversing, whereby X is unorientable when equipped with this atlas.
�
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2014, Spring

Problem 1.

No. Similarly to problem 1 of 2005, Fall, we see that X1
∼= S1 and X2

∼= S1 ∨ S1. Equivalence
classes of connected covers of X1 are in bijection with the subgroups of π1(X1) ∼= π1(S1) ∼= Z,
and each such subgroup is of the form kZ for some k ≥ 0. We know that the identity subgroup
corresponds to the simply connected universal cover R � S1, and that for any k ≥ 1, the subgroup
kZ corresponds to the cover S1 � S1 given by z 7→ e2πi/kz. Therefore if X2 � X1 is indeed a
(connected) cover, then by the above, X2 is either simply connected or homeomorphic to S1. But
π1(X2) ∼= π1(S1 ∨ S1) ∼= F2 is nontrivial and not isomorphic to π1(S1) ∼= Z, so neither of these is a
possibility. �

Problem 2.

The space X is created by gluing each point z ∈ ∂D to a corresponding point (z, z0) ∈ S1 × S1 on
the meridianal circle on S1 × S1 in which the second angular coordinate is fixed at z0. Since D is
contractible, we may shrink it to a point, thereby producing a “croissant.” We then transform the
shape until we’re left with the wedge S1 ∨ S2 shown below.

Then immediately Hj(X) ∼= Hj(S
1 ∨ S2) ∼=

{
Z j = 0, 1, 2,

0 else.
�

Problem 3.

See problem 4 of 2007, Fall.

Problem 4.

Yes. Assume that f : R2 → R2 is a reparametrization f(x, y) = (s, t), where f1(x, y) = s and
f2(x, y) = t satisfy X = ∂

∂s = df( ∂
∂x ) and Y = ∂

∂t = df( ∂∂t ) in some neighborhood of (0, 1). Then

2
∂

∂x
+ x

∂

∂y
= X = df

(
∂

∂x

)
=
∂f1

∂x

∂

∂x
+
∂f2

∂x

∂

∂y
,

∂

∂y
= Y = df

(
∂

∂y

)
=
∂f1

∂y

∂

∂x
+
∂f2

∂y

∂

∂y

and we have the system of equations

∂f1

∂x
= 2,

∂f2

∂x
= x,

∂f1

∂y
= 0,

∂f2

∂y
= 1.

Solving this yields f1(x, y) = 2x + c1 and f2(x, y) = 1
2x

2 + y + c2 for some c1, c2 ∈ R. If the
(soon-to-be) local coordinate system given by f is centered at (0, 1), then

(0, 0) = f(0, 1) =

(
2x+ c1,

1

2
x2 + y + c2

) ∣∣∣
(0,1)

= (c1, 1 + c2) =⇒ c1 = 0, c2 = −1,
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and thus we need f1(x, y) = 2x and f2(x, y) = 1
2x

2 + y − 1. And now, by the inverse function
theorem since, f does indeed provide a local coordinate system about (0, 1) since

df(0,1) =


∂f1

∂x

∂f1

∂y
∂f2

∂x

∂f2

∂y

∣∣∣∣∣
(0,1)

=

(
2 0
0 1

)

is invertible. �

Problem 5.

See problem 6 of 2005, Fall.

Problem 6.

Since x2 + y2 + z2 = 1 on S2, then by a simple calculation dω = 3dx ∧ dy ∧ dz on S2, whereby∫
S2

ω =

∫
B3

dω = 3

∫
B3

dx ∧ dy ∧ dz = 3vol(B3) = 4π

by Stokes. �

Problem 7.

Remark. There’s a mistake in the problem statement. We wish to show that the space of points
x ∈ Rm such that M ∩ ({x} × Rn) is infinite has measure 0.

Let ι : M ↪→ Rm × Rn and π : Rm × Rn � Rm be the canonical inclusion and projection maps,
respectively, and let f := π ◦ ι : M → Rm.

M Rm × Rn

Rm
f

ι

π

Let x ∈ Rm be a regular value of f . Then for any y ∈ f−1(x), the map dfy : TyM → TxRm is a
surjective linear map of m-dimensional vector spaces, and thus a linear isomorphism. So by the
inverse function theorem, there’s an open neighborhood Uy ⊂M of y such that f

∣∣
Uy

: Uy → f(Uy)

is a diffeomorphism. Now, f−1(x) is a closed subset of the compact manifold M , since {x} ⊂ Rm
is closed, and thus f−1(x) is itself compact. Then the open cover {Uy}y∈f−1(x) of f−1(x) admits

a finite subcover {Uyj}kj=1. If y ∈ f−1(x) belongs to Uyj for some 1 ≤ j ≤ k, then we have

f
∣∣
Uyj

(y) = x = f
∣∣
Uyj

(yj), and so y = yj since f
∣∣
Uyj

is a diffeomorphism. Thus Uyj contains no

more than one element of f−1(x), for each 1 ≤ j ≤ k, and since {Uyj}kj=1 is a cover of f−1(x), it

follows that f−1(x) is finite. Then

f−1(x) = {(y1, y2) ∈M ⊂ Rm × Rn | f(y1, y2) = x} = M ∩ {(y1, y2) ∈ Rm × Rn | π(y1, y2) = x}
= M ∩ {(y1, y2) ∈ Rm × Rn | y1 = x} = M ∩ ({x} × Rn)

is finite. So if x ∈ Rm is such that M ∩ ({x} × Rn) is infinite, then x is a critical value of f . By
Sard, the critical values of f have measure 0. �
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2014, Fall

Problem 1.

Let p : (X̃, x̃) � (X,x) be the (compact) universal cover of X, where x̃ ∈ X̃ is some point in
the fiber p−1(x) ⊂ X̃. We have a bijection π1(X,x) → p−1(x) given by associating to a loop
[f ] ∈ π1(X,x) the point f̃(1) ∈ p−1(x), where f̃ : [0, 1]→ X̃ is the unique lift (of a representative
f : [0, 1] → X) satisfying f̃(0) = x̃. But p−1(x) is finite since it’s a discrete closed subset of the
compact space X̃, and so π1(X,x) must be finite as well. �

Problem 2.

We have that

Hj(S
1 ∨ S1 ∨ S2) ∼= Hj(S

1)⊕ Hj(S
1)⊕ Hj(S

2) ∼=


Z j = 0,

Z⊕2 j = 1,

Z j = 2,

0 else

∼= Hj(T
2).

Yet, π1(S1 ∨ S1 ∨ S2) ∼= Z ∗Z is nonabelian, while π1(T2) ∼= Z⊕2 is abelian, so S1 ∨ S1 ∨ S2 and T2

can’t be homeomorphic. �

Problem 3.

Let a : Sn → Sn be the antipodal map given by a(x) := −x.

(i) Suppose f : Sn → Sn has no fixed points. Since Sn ⊂ Rn+1, we may use the vector space
structure of Rn+1 to define a family of maps {ht : Sn → Sn}0≤t≤1 by

ht(x) :=
(1− t)f(x)− tx
‖(1− t)f(x)− tx‖

.

Clearly the denominator is nonzero when t = 1 since x ∈ Sn. Now assume that for some
0 ≤ t0 < 1, the denominator is 0; then f(x) = t0

1−t0x. Since ‖x‖ = ‖f(x)‖ = 1, we must have
t0 = 1/2. But then f(x) = x, a contradiction. Thus the denominator is always nonzero on
Sn, whereby {ht}0≤t≤1 is a well defined homotopy between h0 = f and h1 = a. �

(ii) With f as above, assume that there are no points x ∈ S2m such that f(x) = x or f(x) = −x.
Then both −f, f : S2m → S2m are free of fixed points, and so by (a) are homotopic to a.
Therefore we have deg(f) = deg(a) = (−1)2m+1 = −1, but on the other hand

deg(f) = deg(a ◦ (−f)) = deg(a)deg(−f) = (−1)2m+1deg(−f) = −deg(a) = −(−1)2m+1 = 1,

a contradiction. �

Problem 4.

See problem 5 of 2005, Fall, and problem 4 of 2013, Fall.

Problem 5.

We’re given that X is homeomorphic to a genus-g surface, and that ∂X = ∅. So by Gauss-Bonnet,∫∫
X

KdA = 2πχ(X) = 2π(2− 2g) < 0

since g > 1. It follows that K < 0 on a subset U ⊂ M with nonempty interior. Choosing an
interior point x ∈ U and an open neighborhood V ⊂ U of x, we have that K < 0 on V . �

44



USC Qualifying Exams – Geometry and Topology Alec Sahakian

Problem 6.

Since ω ∈ Ωd(M) is a volume form, then dω = 0. Hence by Cartan and Stokes,∫
M

LXω =

∫
M

(dιXω + ιX dω︸︷︷︸
=0

) =

∫
∂M

ιXω = 0,

because ∂M = ∅. This implies that LXω must vanish at some point of M . �

Problem 7.

See problem 3 of 2013, Spring, replacing real numbers by complex ones.
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2015, Fall

Problem 1.

(a) • A homotopy between two continuous maps f, g : X → Y of topological spaces is a
continuous map h : X × [0, 1]→ Y with h(·, 0) = f and h(·, 1) = g. In this case, f and g
are said to be homotopic.

• Two topological spaces X,Y are said to be homotopy equivalent if there exists a pair of
continuous maps f : X → Y and g : Y → X such that g ◦ f is homotopic to idX , and
f ◦ g is homotopic to idY . In this case, f and g are called homotopy equivalences between
X and Y .

(b) The closed disc B2 is homotopy equivalent to a point ∗ (since it’s contractible), but B2 and ∗
aren’t homeomorphic since any map B2 → ∗ is noninjective. �

(c) Both the sphere S2 and the point ∗ have trivial fundamental group, but aren’t homotopy
equivalent since ∗ is contractible while S2 isn’t. �

(d) The torus T2 and the wedge of two circles S1 ∨ S1 both have first homology group isomorphic
to Z⊕2, but the fundamental group of T2 is the abelian group Z⊕2 while that of S1 ∨ S1 is the
nonabelian free group F2. �

Problem 2.

(a) Let p : T2 � K be the composite of the quotient map q from T2 to two Klein bottles K glued
to one another as shown, followed by a projection r from this space onto a single copy of K.

This is the desired cover. �

(b) Let x, y ∈ π1(T2) and u, v ∈ π1(K) be loops in T2 and K, respectively, corresponding to the
edges above as labeled. We see that

π1(T2) ∼=
〈
x, y | xyx−1y−1 = 1

〉
, π1(K) ∼=

〈
u, v | uvuv−1 = 1

〉
.

Moreover, by the diagram, p∗(x) = u and p∗(y) = r∗(q∗(y)) = r∗(2v) = 2r∗(v) = 2v. �

Problem 3.

(a) Recall first that

π1(Σg) ∼=

〈
xi, yi, 1 ≤ i ≤ g

∣∣∣∣ g∏
i=1

[xi, yi] = 1

〉
, π1(Σg′) ∼=

〈
uj , vj , 1 ≤ i ≤ g′

∣∣∣∣ g
′∏

j=1

[uj , vj ] = 1

〉
.

Within X, the copies of Σg and Σg′ intersect along the circular curve γ = γ′.
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The inclusion γ ↪→ Σg induces the trivial homomorphism π1(γ) → π1(Σg) since, in Σg, the
curve γ forms the boundary of an embedded (contractible) disc. By similar reasoning the
inclusion γ ↪→ Σg′ induces the trivial homomorphism π1(γ) → π1(Σg′) as well, so by van
Kampen

π1(X) ∼= π1(Σg) ∗ π1(Σg′) ∼=

〈
xi, yi, uj , vj , 1 ≤ i ≤ g, 1 ≤ j ≤ g′

∣∣∣∣ g∏
i=1

[xi, yi] =

g′∏
j=1

[uj , vj ] = 1

〉
.

�

(b) We already have by path connectedness that H0(X) ∼= Z, and by Hurewicz that

H1(X) ∼= π1(X)/[π1(X), π1(X)] ∼= Z⊕2g ⊕ Z⊕2g′ ∼= Z⊕2(g+g′).

Letting U and V be, respectively, Σg and Σg′ extended slightly beyond γ within X, then
U ∼= Σg, V ∼= Σg′ , and U ∩ V ∼= S1. For any j ≥ 2, Mayer-Vietoris immediately yields
Hj(X) ∼= 0. We further have by Mayer-Vietoris the exact sequence

0 Z⊕2 H2(X) Z Z⊕2(g+g′).
f ∂ ι

By exactness, f is injective, whereby ker(∂) ∼= im(f) ∼= Z⊕2. Moreover, as observed before,
the map ι induced by the inclusions of γ into Σg and Σg′ is trivial, and so im(∂) ∼= ker(ι) ∼= Z.
Thus H2(X) ∼= Z⊕3, and in summary

Hj(X) ∼=


Z j = 0,

Z⊕2(g+g′) j = 1,

Z⊕3 j = 2,

0 else.

�

(c) No. We have H2(Σg×Σg′) ∼= H2(Σg)⊕H2(Σg′) ∼= Z⊕2, but we just showed that H2(X) ∼= Z⊕3.
Therefore Σg × Σg′ and X can’t be homotopy equivalent. �

Problem 4.

Assume dω 6= 0. Then there’s a point x ∈ M at which dωx 6= 0. Let U ⊂ M be a neighborhood
of x homeomorphic to Bn ⊂ Rn via some coordinate chart φ : U → Bn with local U -coordinates
y1, . . . , yn. Then on U , we may write dω in the local form dω = fdy1 ∧ . . . ∧ dyn, for some
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f ∈ C∞(U). Since f(x) is nonzero, say w.l.o.g. f(x) > 0, then also w.l.o.g. U was chosen small
enough so that f > 0 on all of U by continuity of f . Then∫

U

dω =

∫
Bn

(φ−1)∗(dω) =

∫
Bn

(f ◦ φ−1)︸ ︷︷ ︸
>0

dz1 ∧ . . . ∧ dzn > 0,

where zj =: φ∗yj is the Bn-coordinate corresponding to yj , for each 1 ≤ j ≤ n. But on the other
hand, ∂U ⊂ M is an oriented closed submanifold since it’s homeomorphic to ∂Bn = Sn−1 via φ,
so by Stokes and the problem assumption,

∫
U
dω =

∫
∂U

ω = 0, a contradiction. �

Problem 5 (?).

By Frobenius, it’s enough to verify that [v, w] = 0. Now,

vw =

(
∂

∂x
+ xz

∂

∂z

)(
∂

∂y
+ yz

∂

∂z

)
=

∂2

∂x∂y
+ xz

∂2

∂y∂z
+ 0 + yz

∂2

∂x∂z
+ xyz

∂

∂z
+ xyz2 ∂

2

∂z2
,

wv =

(
∂

∂y
+ yz

∂

∂z

)(
∂

∂x
+ xz

∂

∂z

)
=

∂2

∂x∂y
+ yz

∂2

∂x∂z
+ 0 + xz

∂2

∂y∂z
+ xyz

∂

∂z
+ xyz2 ∂

2

∂z2
,

whereby [v, w] = vw − wv = 0. �

Problem 6.

Remark. In this problem, we use C∪ {∞} and S2 interchangeably by implicitly making use of the
given homeomorphism. Note also that if f : C → C is a constant polynomial, then it trivially
extends to S2, and this extension has topological degree 0, which is the same as the algebraic
degree of f . So we’ll also assume w.l.o.g. that f is nonconstant.

(a) Define f̄ : S2 → S2 by setting f̄
∣∣
C := f and f̄(∞) := ∞. Clearly f̄ is continuous on C, so it

remains to check continuity at∞. Indeed, if {zj}∞j=1 ⊂ S2 is a sequence converging to∞, then

lim
j→∞

f̄(zj) = lim
j→∞

f(zj) =∞ = f̄(∞),

where we have the third equality, by Liouville, since f is a nonconstant polynomial. �

(b) Say f(z) = a0 + a1z + · · · + amz
m for all z ∈ C, where a0, . . . , am ∈ C and am 6= 0. Then

the algebraic degree of f is m ∈ N, and it’s enough to show that f̄ is homotopic to the map
g : S2 → S2 given by g(z) := zm for all z ∈ S2, since g has homological degree m. We begin
with the map

h : S2 × [0, 1]→ S2, h(z, t) := t(a0 + a1z + · · ·+ am−1z
m−1) + amz

m,

with h0(z) = amz
m for all z ∈ S2, and h1 = f . Obviously h is continuous on C × [0, 1], so it

remains to check that it’s also continuous at any point of the form (∞, t) ∈ S2 × [0, 1].

Take any (∞, t) ∈ S2 × [0, 1] and any M > 0. We need to check that there’s some K > 0
large enough and δ > 0 small enough so that whenever (z, s) ∈ S2 × [0, 1] has |z| > K and
|s− t| < δ, then |h(z, s)| > M . But indeed, |amzm| >

∣∣a0 + a1z + · · ·+ am−1z
m−1

∣∣ whenever
|z| > K for some large K > 0, and so choosing this value of K together with δ := 1 proves the
desired continuity. Therefore h is a homotopy between f and h0. Similarly, we can check that
the map

k : S2 × [0, 1], k(z, t) := atmz
m

is a homotopy between h0 and g, and this completes the proof. �
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2016, Spring

Problem 1.

We write X as the union of the subspaces U and V shown below, with U ∩ V ∼= S1.

Let x ∈ π1(U) and y ∈ π1(V ) correspond to the edges above as labeled. Letting i : U ∩V ↪→ U and
j : U∩V ↪→ V be the canonical inclusions, then the induced homomorphism i∗ : π1(U∩V )→ π1(U)
maps the single generator 1 ∈ π1(U ∩ V ) ∼= π1(S1) ∼= Z to i∗(1) = x4, and j∗ : π1(U ∩ V )→ π1(V )
maps it to j∗(1) = y3. So by van Kampen,

π1(X) ∼= π1(U) ∗π1(U∩V ) π1(V ) ∼=
〈x, y〉
〈x4y−3〉

=
〈
x, y | x4 = y3 = 1

〉
.

�

Problem 2.

• Letting Bij(p−1(x0)) denote the set of bijections p−1(x0)→ p−1(x0), we have an assignment

F : π1(X,x0)→ Bij(p−1(x0)), F[γ](x̃) := γ̃x̃(1),

where γ̃x̃ : [0, 1]→ X̃ is the unique lift of γ satisfying γ̃x̃(0) = x̃. This assignment is precisely
the monodromy action of π1(X,x0) on p−1(x0), and as such, for any [γ] ∈ π1(X,x0), the
order of F[γ] must divide |π1(X,x0)| = |Z5| = 5.

• Take some connected component X̃1 ⊂ X̃, and a point x̃ ∈ X̃1. There exists a path in X
from π(x̃) to x0, and this path lifts to a path in X̃1 from x̃0 to an element of p−1(x0). Since
X̃1 is connected, this means that this element of p−1(x0) belongs to X̃1.

Next suppose a connected component X̃1 ⊂ X̃ contains a distinct pair x̃0, x̃1 ∈ p−1(x0).
There exists a path γ̃ in X̃1 from x̃0 to x̃1. Then π ◦ γ̃ is a loop in X based at x0, and F[π◦γ̃]

is nontrivial (it for instance sends x̃0 to x̃1).

Thus if F[γ] has order 1 for each [γ] ∈ π1(X,x0) (i.e. if the action F is trivial), then no

connected component of X̃ contains more than one element of p−1(x0). But we also showed
that each connected component of X̃ contains at least one such element, and we conclude
that X̃ has exactly one connected component for each element of p−1(x0). So X̃ has six
connected components.

• Finally, if F is nontrivial, then there’s some [γ] ∈ π1(X,x0) such that F[γ] has order 5, and as

such, there’s some connected component X̃1 of X̃ containing at least 5 elements of p−1(x0).
The elements of p−1(x0) contained in X̃1 belong to a single orbit of the action F since X̃1

is connected, and the order of any such orbit must divide |π1(X,x0)| = 5. Hence there are
exactly 5 elements of p−1(x0) contained in X̃1, and the last element belongs to some other
connected component of X̃. So X̃ has two connected components.

�
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Problem 3.

By problem 5 of 2005, Fall, we have Hj(S
n × S1) ∼= Hj(S

n)⊕ Hj−1(Sn) for all j ∈ Z. Thus

Hj(S
1 × S1) ∼=

({
Z j = 0, 1,

0 else

)
⊕

({
Z j = 1, 2,

0 else

)
∼=


Z j = 0,

Z⊕2 j = 1,

Z j = 2,

0 else,

and for n ≥ 2,

Hj(S
n × S1) ∼=

({
Z j = 0, n,

0 else

)
⊕

({
Z j = 1, n+ 1,

0 else

)
∼=

{
Z j = 0, 1, n, n+ 1,

0 else.

�

Problem 4.

(a) Since im(f) has nonempty interior, it has positive Lebesgue measure, so by Sard we may choose
a regular value y ∈ im(f) of f . Now take some x ∈ f−1(y). Then dfx : TxM → TyRn is a
surjective linear map of n-dimensional vector spaces, and thereby a linear isomorphism. So
by the inverse function theorem, there exists an open neighborhood U ⊂ M of x such that
f
∣∣
U

: U → f(U) is a diffeomorphism. �

(b) Since M is compact and f is continuous, im(f) is compact, and in particular not all of Rn. So
f isn’t surjective, and deg(f) = 0. Let y ∈ im(f) be as in part (a). Then

0 = deg(f) =
∑

x∈f−1(y)

degx(f).

Recall that f−1(y) 6= ∅, and each local degree degx(f) = ±1. So to get zero on the left-hand
side, there must be points x1, x2 ∈ f−1(y) so that degx1

(f) = 1 and degx2
(f) = −1. Then f

is orientation-preserving at x1 and orientation-reversing at x2. �

Problem 5.

Since RPn is an n-manifold, then there exists a nowhere vanishing volume form ω ∈ Ωn(RPn) if
and only if RPn is orientable. And by problem 3 of 2011, Spring, RPn is orientable if and only if
either n ≥ 0 is odd or (trivially) n = 0. �

Problem 6.

See problem 4 of 2008, Spring.
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2017, Spring

Problem 1.

Background. A symplectic manifold is a pair (M2n, ω) consisting of an even-dimensional manifold
M together with a closed nondegenerate 2-form ω ∈ Ω2(M). It follows from what we prove in this
problem that an exact symplectic manifold, that is, a symplectic manifold (M,ω) with ω exact,
also has exact symplectic volume form ω∧n.

Since dω = 0, we have d(α ∧ ω ∧ . . . ∧ ω︸ ︷︷ ︸
(n−1) times

) = (dα) ∧ ω ∧ . . . ∧ ω︸ ︷︷ ︸
(n−1) times

= ω ∧ . . . ∧ ω︸ ︷︷ ︸
n times

. �

Problem 2.

The 3-sphere

S3 = {(z, w) ∈ C2 | |z|2 + |w|2 = 2}

may be written as the union of the two solid tori

U := {(z, w) ∈ S3 | |z|2 ≥ 1} = {(z, w) ∈ S3 | |w|2 ≤ 1} ∼= S1 × B2,

V := {(z, w) ∈ S3 | |z|2 ≤ 1} = {(z, w) ∈ S3 | |w|2 ≥ 1} ∼= B2 × S1,

glued along the common boundary

∂U = ∂V = {(z, w) ∈ S3 | |z|2 = |w|2 = 1} ∼= S1 × S1.

Thus X ∼= S3, whereby π1(X) ∼= π1(S3) ∼= 1, since any n-sphere with n ≥ 2 is simply connected.
�

Problem 3.

By the above, Hj(X) ∼= Hj(S
3) ∼=

{
Z j = 0, 3,

0 else.
�

Problem 4.

Background. In this problem we prove a form of Whitney’s embedding theorem.

Fix some v ∈ Sn−1, and let x, y ∈ M with x 6= y. Then πv(x) = πv(y) ⇐⇒ x− y = cv for some
c ∈ R ⇐⇒ (x− y)/‖x− y‖ = v. So we see that the restriction πv

∣∣
M

is injective if and only if v is

not in the image of the smooth map f : (M×M)\∆M → Sn−1 given by f(x, y) := (x−y)/‖x− y‖,
where ∆M := {(x, x) ∈ M ×M}. In other words, πv

∣∣
M

is injective for all v ∈ Sn−1 \ im(f), so
it remains to check that im(f) has measure 0. But this holds by a corollary of Sard since the
dimension of the domain is strictly less than that of the codomain,

dimR((M ×M) \∆M ) = 2 · dimR(M) ≤ 2
(n

2
− 1
)

= n− 2 < n− 1 = dimR(Sn−1).

�

Problem 5.

See problem 5 of 2011, Spring.

Problem 6.

See problem 7 of 2007, Fall.
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Problem 1.

Since M is compact and f is continuous, im(f) is compact, and in particular not all of Rm. So f
isn’t surjective, and deg(f) = 0. Let y ∈ Rm be a regular value of f ; by Sard, such points have
full measure in Rm. We have

0 = deg(f) =
∑

x∈f−1(y)

degx(f).

But each local degree degx(f) = ±1, so to obtain 0 on the left-hand side, there must be an even
number of points belonging to f−1(y). �

Problem 2.

Let X be the given quotient space, and write X as the union of the subspaces U and V shown
below, with U ∩ V ∼= S1.

Let x ∈ π1(U) correspond to the edge above as labeled. Observe that π1(V ) ∼= 1 since V is
contractible, and that π1(U) ∼= Z, generated by the single element x. Letting i : U ∩ V ↪→ U and
j : U∩V ↪→ V be the canonical inclusions, then the induced homomorphism i∗ : π1(U∩V )→ π1(U)
maps the single generator 1 ∈ π1(U ∩ V ) ∼= π1(S1) ∼= Z to i∗(1) = xxx−1xx−1x−1x−1x−1 = x−2,
and j∗ : π1(U ∩ V )→ π1(V ) maps it to j∗(1) = 1 by triviality of π1(V ). So by van Kampen,

π1(X) ∼= π1(U) ∗π1(U∩V ) π1(V ) ∼=
〈x〉
〈x−2〉

=
〈
x | x−2 = 1

〉
=
〈
x | x2 = 1

〉 ∼= Z2.

�

Problem 3.

• Letting Bij(p−1(x0)) denote the set of bijections p−1(x0)→ p−1(x0), we have an assignment

F : π1(X,x0)→ Bij(p−1(x0)), F[γ](x̃) := γ̃x̃(1),

where γ̃x̃ : [0, 1]→ X̃ is the unique lift of γ satisfying γ̃x̃(0) = x̃. This assignment is precisely
the monodromy action of π1(X,x0) on p−1(x0), and as such, for any [γ] ∈ π1(X,x0), the
order of F[γ] must divide |π1(X,x0)| = |Z5| = 5.

• Suppose the cover p is nontrivial. Then there’s some [γ] ∈ π1(X,x0) such that the order
of F[γ] is not 1. Then by the above, this order must be 5. As such, F[γ] is a permutation

of 5 distinct elements of p−1(x0) belonging to a single connected component of X̃. But∣∣p−1(x0)
∣∣ = 4, so this is impossible.

�

52



USC Qualifying Exams – Geometry and Topology Alec Sahakian

Problem 4.

Background. A contact manifold is a pair (M2m+1, ξ) consisting of an odd-dimensional manifold
M together with a “maximally nonintegrable“ field of hyperplanes {ξx ⊂ TxM}x∈M , that is, a
rank-2m distribution ξ on M which is the kernel of some 1-form α ∈ Ω1(M), called a contact form,
satisfying α ∧ (dα)∧m 6= 0 at each point of M . In this problem we show that (R3,D) is a contact
manifold.

No. It’s enough to show that D is nonintegrable at 0 ∈ R3. Let α := 2dx − eydz, so that
D = ker(α). It’s a basic fact from contact geometry that D is nowhere integrable if α ∧ (dα) 6= 0
at every point of R3. Indeed,

α ∧ (dα) = (2dx− eydz) ∧ (−eydy ∧ dz) = −2eydx ∧ dy ∧ dz

is nonzero at every point of R3, and in particular at 0. �

Problem 5.

Suppose M is a submanifold of R4, and observe that M = f−1(0) where f : R4 → R is the map
given by f(x1, x2, x3, x4) := x2

1 + x2
2 − x2

3 − x2
4. Consider the tangent spaces of M at two of its

points, 0 and (1, 0, 1, 0),

T0M = ker(df0) = ker
(
2x1 2x2 2x3 2x4

) ∣∣
0

= ker(0) = T0R4,

T(1,0,1,0)M = ker(df(1,0,1,0)) = ker
(
2x1 2x2 2x3 2x4

) ∣∣
(1,0,1,0)

= ker
(
2 0 −2 0

)
= {(v1, v2, v3, v4) ∈ T(1,0,1,0)R4 | 2v1 − 2v3 = 0}.

Then dimR(T0M) = 4 but dimR(T(1,0,1,0)M) = 3, which is impossible. �

Problem 6.

Let U and V be the cylinders along the z- and y-axes, respectively. Then U ∩ V ∼= S1
∐

S1, so we
have

Hj(U) ∼= Hj(V ) ∼=

{
Z j = 0, 1,

0 else,
, Hj(U ∩ V ) ∼=

{
Z⊕2 j = 0, 1,

0 else.

By path connectedness, we already have H0(X) ∼= Z. Then by Mayer-Vietoris, the sequence

0 H2(X) Z⊕2 Z⊕2 H1(X) Z⊕2 Z⊕2∂2 (i1,j1) k1−`1 ∂1 (i0,j0)

is exact.

• By exactness, ker(∂2) ∼= 0. Now consider the inclusions i : U ∩ V ↪→ U and j : U ∩ V ↪→ V .
The two loops x, y generating H1(U ∩ V ) are mapped under i into contractible portions of
the wall of the cylinder U , and so i1(x) = i1(y) = 0. On the other hand, j sends these two
loops to the (same) single loop which generates H1(V ), and so j1(x) = j1(y) = 1. Thus
im(∂2) ∼= ker(i1, j1) ∼= Z, and so H2(X) ∼= Z.

• By the above, ker(k1 − `1) ∼= im(i1, j1) ∼= Z, and so ker(∂1) ∼= im(k1 − `1) ∼= Z. Next observe
that the two connected components which together generate H0(U ∩ V ) are mapped by i to
the (same) single connected component of U which generates H0(U). A similar statement
holds for j, whereby im(i0, j0) ∼= Z and im(∂1) ∼= ker(i0, j0) ∼= Z. Thus H1(X) ∼= Z⊕2.
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Hence Hj(X) ∼=


Z j = 0,

Z⊕2 j = 1,

Z j = 2,

0 else.

�

Problem 7.

This is very similar to problem 5 of 2010, Fall, and problem 5 of 2008, Spring.
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