USC Graduate Exams Complex Analysis

William Chang *

Contents

1 Spring 1992 2
2 Spring 1993 4
3 Fall 1993 5
4 Spring 1994 7
*chan087@usc.edu

1 Spring 1992

1. Compute the following integrals
(a) $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x$

Proof. Let us integrate this in the complex plane with respect to complex variable z, consider the path γ from $-R$ to R, then moving along $R e^{i t}$ for $t \in[0, \pi]$ back to $-R$. Let us consider the contribution of the integral around the path $z=R e^{i t}$ for $t \in[0, \pi]$. Changing the variable of integration from z to t yields:

$$
\begin{align*}
\left|\int_{t=0}^{2 \pi} \frac{R^{2} e^{2 i t}-R e^{i t}+2}{R^{4} e^{4 i t}+10 R^{2} e^{2 i t}+9} R i e^{i t} d t\right| & \leq \int_{t=0}^{2 \pi}\left|\frac{R^{2} e^{2 i t}-R e^{i t}+2}{R^{4} e^{4 i t}+10 R^{2} e^{2 i t}+9} R i e^{i t}\right| d t \tag{1.1}\\
& \leq \int_{t=0}^{2 \pi} \frac{M}{R^{2}} R d t \tag{1.2}\\
& =\frac{2 \pi M}{R} \tag{1.3}
\end{align*}
$$

For some constant $M \in \mathbb{R}$ and all R. Thus as $R \rightarrow \infty$, it follows that the integral of $f(z)=$ $\frac{z^{2}-z+2}{z^{4}+10 z^{2}+9}$ around $z=R e^{i t}, t \in[0, \pi]$ goes to 0 as $R \rightarrow \infty$. Thus, $\int_{-\infty}^{\infty} \frac{x^{2}-x+2}{x^{4}+10 x^{2}+9} d x=$ $\int_{\gamma} \frac{z^{2}-z+2}{z^{4}+10 z^{2}+9} d z$. We can caluclate the integral on the RHS using the calcus of residues noting that $z^{4}+10 z^{2}+9=\left(z^{2}+9\right)\left(z^{2}+1\right)=(z-3 i)(z+3 i)(z-i)(z+i)$, thus poles that occur on the interior of γ are at $z=i, 3 i$, both first order. We now have

$$
\begin{equation*}
\operatorname{Res}(f, z=i)=\lim _{z \rightarrow i}(z-i) f(z)=\frac{i^{2}-i+2}{\left(i^{2}+9\right)(i+i)}=\frac{1-i}{16 i}=\frac{-1-i}{16} \tag{1.4}
\end{equation*}
$$

On the other hand, we also have

$$
\begin{equation*}
\operatorname{Res}(f, z=3 i)=\lim _{z \rightarrow 3 i}(z-3 i) f(z)=\frac{(3 i)^{2}-3 i+2}{(3 i+3 i)\left((3 i)^{2}+1\right)}=\frac{3-7 i}{48} \tag{1.5}
\end{equation*}
$$

By calculus of residues our integral is thus $2 \pi i\left(\frac{-1-i}{16}+\frac{3-7 i}{48}\right)=\frac{5 \pi}{12}$.
(b) $\int_{-\pi}^{\pi} \frac{d \theta}{5+4 \sin (\theta)}$

Proof. We let $\theta=2 \tan ^{-1}(z)$. Then $d \theta=\frac{2}{1+z^{2}} d z$. We also have

$$
\begin{equation*}
\sin (\theta)=\sin \left(2 \tan ^{-1}(z)\right)=\cos \left(\tan ^{-1}(z)\right) \sin \left(\tan ^{-1}(z)\right)=\frac{z}{z^{2}+1} \tag{1.6}
\end{equation*}
$$

Thus, our integral is equal to

$$
\begin{equation*}
2 \int_{-\infty}^{\infty} \frac{1}{5+4 \frac{z}{z^{2}+1}} \frac{2}{1+z^{2}} d z=4 \int_{-\infty}^{\infty} \frac{1}{5+4 z+5 z^{2}} d z \tag{1.7}
\end{equation*}
$$

Let us integrate this in the complex plane with respect to complex variable z, consider the path γ from $-R$ to R, then moving along $R e^{i t}$ for $t \in[0, \pi]$ back to $-R$. Let us consider the contribution
of the integral around the path $z=R e^{i t}$ for $t \in[0, \pi]$. Changing the variable of integration from z to t yields:

$$
\begin{align*}
\left|4 \int_{-\infty}^{\infty} \frac{1}{5+4 z+5 z^{2}} d z\right| & =\left|4 \int_{0}^{2 \pi} \frac{1}{5+4 R e^{i t}+5 R^{2} e^{2 i t}} R e^{i t} d t\right| \tag{1.8}\\
& \leq M \int_{0}^{2 \pi} \frac{1}{R} \tag{1.9}
\end{align*}
$$

which goes to 0 as $R \rightarrow \infty$. Thus the integral around γ as $R \rightarrow \infty$ goes towards the integral along the real line from $-\infty$ to ∞. We now use the calculus of residues to evaluate the integral around γ. There is 1 pole located at $z=\frac{-4+\sqrt{4^{2}-4\left(5^{2}\right)}}{2(5)}=z=\frac{-2+i \sqrt{21}}{5}$.

$$
\begin{equation*}
\operatorname{Res}\left(z=\frac{-2+i \sqrt{21}}{5} ; f(z)\right)=\lim _{z \rightarrow \frac{-2+i \sqrt{21}}{5}} \frac{4 / 5}{z-\frac{-2-i \sqrt{21}}{5}}=\frac{-2 i \sqrt{21}}{21} \tag{1.10}
\end{equation*}
$$

And thus the integral is $2 \pi i\left(\frac{-2 i \sqrt{21}}{21}\right)=\frac{4 \pi}{\sqrt{21}}$
2. Map the region inside the circle $|z|=1$ and outside the circle $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ conformally onto the unit disk $\{z:|z|<1\}$.

Proof. Let us first consider the map $f(z)=\frac{1}{z-1}$. Let us consider how this affects the two circles. Every point on $|z|=1$ can be expressed as a $e^{i \theta}$ for some $\theta \in[0,2 \pi]$. We thus have

$$
\begin{align*}
f\left(e^{i \theta}\right) & =\frac{1}{e^{i \theta}-1} \tag{1.11}\\
& =\frac{\cos (\theta)-1+i \sin (\theta)}{(\cos (\theta)-1)^{2}+\sin ^{2}(\theta)} \tag{1.12}\\
& =\frac{\cos (\theta)-1+i \sin (\theta)}{2-2 \cos (\theta)} \tag{1.13}\\
& =-\frac{1}{2}+i \frac{\sin (\theta)}{2-2 \cos (\theta)} \tag{1.14}
\end{align*}
$$

And it is clear that this region is mapped to the vertical line $\operatorname{Re} z=-\frac{1}{2}$. On the other hand, every point on $\left|z-\frac{1}{2}\right|=\frac{1}{2}$ is $\frac{1}{2}+\frac{1}{2} e^{i \theta}$ for some $\theta \in[0,2 \pi]$ so that

$$
\begin{align*}
f\left(\frac{1}{2}+\frac{1}{2} e^{i \theta}\right) & =\frac{1}{\frac{1}{2}+\frac{1}{2} e^{i \theta}-1} \tag{1.15}\\
& =\frac{\cos (\theta)-1+i \sin (\theta)}{\left(\frac{1}{2} \cos (\theta)-\frac{1}{2}\right)^{2}+\frac{1}{4} \sin ^{2}(\theta)} \tag{1.16}\\
& =\frac{\cos (\theta)-1+i \sin (\theta)}{\frac{1}{2}-\frac{1}{2} \cos (\theta)} \tag{1.17}\\
& =-2+i \frac{\sin (\theta)}{\frac{1}{2}-\frac{1}{2} \cos (\theta)} \tag{1.18}
\end{align*}
$$

Thus, $f(z)$ maps the given region to a vertical strip between $\operatorname{Re} z=-2$ and $\operatorname{Re} z=-\frac{1}{2}$. We now just have to map this strip conformally onto the unit disk by $g(z)=\frac{4 i}{3}\left(z+\frac{5}{4}\right)$ which takes this vertical strip to the horizontal strip between $\operatorname{Im} z=-1$ and $\operatorname{Im} z=1$. The map $h(z)=e^{\frac{\pi z}{2}}$ will give the right halfplane, and finally, the Mobius transformation $z \mapsto \frac{z-1}{z+1}$ puts the half plane onto the unit disk. Thus, our total transformation is:

$$
\begin{align*}
& \frac{h(g(f(z)))-1}{h(g(f(z)))+1}=\frac{e^{\frac{\pi g(f(z))}{2}}-1}{e^{\frac{\pi g(f(z))}{2}}+1} \tag{1.19}\\
&=\frac{e^{\frac{\pi i}{3}\left(f(z)+\frac{5}{4}\right)} 2}{2}-1 \tag{1.20}\\
& e^{\frac{\pi \frac{4 i}{3}\left(f(z)+\frac{5}{4}\right)}{2}}+1 \tag{1.21}\\
&=\frac{e^{\frac{\pi \frac{4 i}{3}\left(\frac{1}{z-1}+\frac{5}{4}\right)}{2}}-1}{e^{\frac{\pi \frac{4 i}{3}\left(\frac{1}{z-1}+\frac{5}{4}\right)}{2}}+1}
\end{align*}
$$

3. Determine all entire $f(z)$ and $\mathfrak{R} f(z)>1$ and $\mathfrak{I} f(z)<-1$, where \mathfrak{R} and \mathfrak{I} denote the real and imaginary part.

Proof. We note that $\left|e^{-f(z)}\right|=e^{-\Re}<e^{-1}$ so that $e^{-f(z)}$ is bounded. Since $f(z)$ is entire, it follows that $e^{-f(z)}$ is also entire, and thus by Liouville's Theorem, it follows that $e^{-f(z)}$ is a constant. Thus $f(z)$ must also be a constant. Our final answer is $f(z)=c$ where $c=a+b i$ for some $a>1$ and $b<-1$.
4. How many roots does the equation

$$
\begin{equation*}
z^{15}-2 z^{11}+7 z^{3}-2 z^{2}+1=0 \tag{1.22}
\end{equation*}
$$

have in the unit disk $|z|<1$.

Proof. Let $g(z)=z^{15}-2 z^{11}+7 z^{3}-2 z^{2}+1$ and consider $f(z)=7 z^{3}+1$. Then when $|z|=1$, we have $|f(z)| \geq 6$. On the other hand $|f(z)-g(z)|=\left|z^{15}-2 z^{11}-2 z^{2}\right| \leq 1+2+2<|f(z)|$. Thus, by Rouche's theorem, it follows that $f(z)$ and $g(z)$ have the same number of roots. It' clear that $f(z)=0$ implies $z=-\frac{1}{\sqrt[3]{7}},-\frac{1}{\sqrt[3]{7}} e^{2 \pi / 3},-\frac{1}{\sqrt[3]{7}} e^{4 \pi / 3}$, all of which are in the unit disk. The given function thus has 3 roots in the unit disk.

2 Spring 1993

1. Compute the following integral using residues

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{\frac{1}{2}} \log x}{\left(x^{2}+1\right)^{2}} d x \tag{2.1}
\end{equation*}
$$

Proof.
2. Map the upper half disk $\{z:|z|<1, \mathfrak{I} z>0\}$ conformally onto the unit disk $\{z:|z|<1\}$.

Proof. Let us consider the mapping $f(z)=z+\frac{1}{z}$ which maps the given region to the upper half plane. Now $g(z)=i z$ maps the upper half plane to the right half plane. Finally $h(z)=\frac{z-1}{z+1}$ maps the right half plane to the unit circle. Thus the composition yields:

$$
\begin{align*}
h(g(f(z))) & =\frac{g(f(z))-1}{g(f(z))+1} \tag{2.2}\\
& =\frac{i f(z)-1}{i f(z)+1} \tag{2.3}\\
& =\frac{i z+\frac{i}{z}-1}{i z+\frac{i}{z}+1} \tag{2.4}\\
& =\frac{i z^{2}+i-z}{i z^{2}+i+z} \tag{2.5}
\end{align*}
$$

3. How many roots does the equation

$$
\begin{equation*}
z^{11}+4 z^{10}-z^{9}+12 z^{5}-2 z^{4}+z-1=0 \tag{2.6}
\end{equation*}
$$

have in the annulus $1<|z|<2$.

Proof. We count the number of roots inside $|z|<2$ and subtract it from the number of roots inside $|z|<1$.

First let $f(z)=z^{11}+4 z^{10} \geq 2^{11}$ and $g(z)$ the given function. Then $|f(z)-g(z)|=\mid-z^{9}+12 z^{5}-$ $2 z^{4}+z-1\left|\leq 2^{9}+12 \cdot 2^{5}+2^{4}+2+1=2^{9}+2^{8}+2^{7}+2^{4}+2+1<|f(z)|\right.$. Thus, we can apply Rouche's theorem and conclude that $g(z)$ has 10 roots in $|z|<2$.
We now subtract from the roots that are in $|z|<1$. Let $f(z)=4 z^{10}+12 z^{4}$ so that $|f(z)-g(z)|=$ $\left|z^{11}-z^{9}-2 z^{4}+z-1\right| \leq 6 \leq 12-4 \leq|f(z)|$. Thus by Rouche's theorem, $g(z)$ must have 4 roots in the unit disk. Combining everything there must be $10-4=6$ in the annulus.

$3 \quad$ Fall 1993

1. Define $D_{r}=\{z \in \mathbb{C}:|z|<r\}$, the open r-disk. Let $M>0$ and $f_{n}: D_{1} \rightarrow D_{M}$ for $n=1,2, \ldots$ be a sequence of analytic functions. Prove there is a subsequence which converges uniformly on $D_{1 / 2}$.

Proof. Since f_{n} analytic on the complex space, it is also holomorphic. It's also clear that D_{r} is uniformly bounded Since $D_{1 / 2}$ is compact, can apply Montel's therem if we can prove that f_{n} is
2. Prove or find a counterexample: Let D be a coutable dense subset of $(0,1)$ and let G be an open subset of \mathbb{R} such that $G \supset D$, then $G \supset(0,1)$.

Proof. We shall find a counterexample. Let D be the rational numbers in $(0,1)$, which is dense and countable in $(0,1)$. Now let $G=\left(0, \frac{\sqrt{2}}{2}\right) \cup\left(\frac{\sqrt{2}}{2}, 1\right)$. It's clear that $G \supset D$, and that G is open. However, G doesn't contain $(0,1)$, thus giving us our counterexample.
3. Let f be a non-constant meromorphic function with is doubly periodic (i.e. has two periods linearly independent over the reals). Prove that f has at least one singularity.

Proof. Since the reals is one dimensional vector space, I assume they mean "has two periods linearly independent over the complex numbers". Let the periods be $a, b \in \mathbb{C}$. Then every point in the complex plane can be expressed as $z=x a+y b$ for some $x, y \in \mathbb{R}$. Since f is periodic, we have $f(x a+y b)=f((x \pm 1) a, y(\pm 1) b)$. Thus, we have $f(z)=f\left(z^{\prime}\right)$ for some z^{\prime} within the parallelogram with vertices $0, a, a+b, b$. If there is no singularity, since this is a compact set f will reach its maximum on this parallelogram, and thus f will have a global maximum. However, by the maximum principles, f, being a complex valued function, cannot attain a maximum on an open set. Thus f has at least one singularity.
4. How many roots of the equation $f(z)=0$ lie in the right half-plane, where

$$
\begin{equation*}
f(z)=z^{4}+\sqrt{2} z^{3}+2 z^{2}-5 z+2 \tag{3.1}
\end{equation*}
$$

Proof. We let our contour be the curve from $i R$ to $-i R$, and around the semicircle of radius R in the right half plane. If we set $g(z)=z^{4}+2$ then $|g(z)| \geq R^{4}-2$ when $|z|=R$ On the other hand, when z is on the imaginary axis, we have:

$$
\begin{equation*}
f(i t)=t^{4}-i \sqrt{2} t^{3}-2 t^{2}-5 i t+2 \tag{3.2}
\end{equation*}
$$

for $t \in \mathbb{R}$. We let our o $|f(i t)|=\sqrt{\left(t^{4}-2 t^{2}+2\right)^{2}+\left(\sqrt{2} t^{3}+5 t\right)^{2}}$. Let $g(z)=z^{4}-5 z$ Let $g(z)=$ $z^{4}+2$
5. Show that a function $f:(a, b) \rightarrow \mathbb{R}$ which is absolutely continuous is both uniformly continuous and of bounded variation.

Proof. Since f is absolutely continuous, for all $\epsilon>0$, there exists $\delta>0$ such that if a sequence of pairwise disjoint subintervals $\left(x_{k}, y_{k}\right)$ of (a, b) satisfy $\sum_{k}\left(y_{k}-x_{k}\right)<\delta$, then $\sum_{k}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<\epsilon$. Letting $k=1$ proves that f is uniformly continuous.

Now we prove that f has bounded variation. Let define $\operatorname{var}_{(a, b)} f$ to be the variation of f on the interval (a, b). By hypothesis, there is a $\delta>0$ such that $\sum_{k}\left|f\left(y_{k}\right)-f\left(x_{k}\right)\right|<1$ for all disjoint subintervals
$\left(x_{i}, y_{i}\right)$ and $\sum_{k}\left|y_{k}-x_{k}\right|<\delta$. Let N be an integer greater than $\frac{b-a}{\delta}$, and partition (a, b) into N evenly space intervals $\left(a+\frac{j(b-a)}{N}, a+\frac{(j+1)(b-a)}{N}\right)$. Thus, $\operatorname{var}_{(a, b)} f=\sum_{j=1}^{N} \operatorname{var}_{\left(a+\frac{j(b-a)}{N}, a+\frac{(j+1)(b-a)}{N}\right)}<\sum_{j=1}^{N} 1=$ N.
6. Show that $\frac{\sin x}{x} \in L^{2}\left(\mathbb{R}^{+}\right)$and evaluate its L^{2} norm.

Proof. We first show $\left(\int_{0}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{\frac{1}{2}}<\infty$. By Lhopital's rule, $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$ so by continuity of $\frac{\sin x}{x}$, it follows that $\left(\int_{0}^{1}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{\frac{1}{2}}<\infty$. Now we just have to show that $\left(\int_{1}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{2}<\infty$. This follows from

$$
\begin{equation*}
\left(\int_{1}^{\infty}\left(\frac{\sin x}{x}\right)^{2} d x\right)^{\frac{1}{2}}<\left(\int_{1}^{\infty} \frac{1}{x^{2}} d x\right)^{\frac{1}{2}}<\infty=1<\infty \tag{3.3}
\end{equation*}
$$

Now to evaluate this integral, we can use calculus of residues. Since this function is even we can Evaluated it from $-\infty$ to ∞ and divide the result by 2 .
7. Suppose f is a non-negative function which is Lebesgue integrable on $[0,1]$, and $\left\{r_{n}: n=1,2, \ldots\right\}$ is an enumeration of the rational numbers in $[0,1]$. Show that the infinite series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(\left|x-r_{n}\right|\right) \tag{3.4}
\end{equation*}
$$

converges for a.e. $x \in[0,1]$.

Proof. We will set $g(x)=\sum_{n=1}^{\infty} \frac{1}{2^{n}} f\left(\left|x-r_{n}\right|\right)$, and prove that $\int_{0}^{1} g(x) d x<\infty$. From this it will immediately follow that $g(x)<\infty$ a.e. First, we note that $\int_{0}^{1} f\left(\left|x-r_{n}\right|\right) \leq \int_{-1}^{1} f\left(\left|x-r_{n}\right|\right)=2 \int_{0}^{1} f(x)$. Thus:

$$
\begin{align*}
\int_{0}^{1} g(x) d x & =\sum_{n=1}^{\infty} \int_{0}^{1} \frac{1}{2^{n}} f\left(\left|x-r_{n}\right|\right) \tag{3.5}\\
& \leq 2 \int_{0}^{1} f(x) d x \sum_{n=1}^{\infty} \frac{1}{2^{n}} \tag{3.6}\\
& =2 \int_{0}^{1} f(x)<\infty \tag{3.7}
\end{align*}
$$

as desired.

4 Spring 1994

1. Evaluate $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x$.

Proof. Let us integrate this in the complex plane with respect to complex variable z, consider the path γ from $-R$ to R, then moving along $R e^{i t}$ for $t \in[0, \pi]$ back to $-R$. Let us consider the contribution
of the integral around the path $z=R e^{i t}$ for $t \in[0, \pi]$. Changing the variable of integration from z to t yields:

$$
\begin{array}{r}
\left|\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x\right|<M \int_{0}^{2 \pi} \\
\frac{\log R}{\left|1+R^{2}\right|} d t \tag{4.2}\\
\leq M \frac{\log R}{R}
\end{array}
$$

for some constant M and sufficiently large R. Thus, the integral around γ reduces to the portion of the integral on the real number line as $R \rightarrow \infty$. We can use the calculus of residues to evaluate this integral. There is only 1 reside at $z=i$ evaluated as follows:

$$
\begin{equation*}
\operatorname{Res}(f(z) ; z=i)=\lim _{z \rightarrow i}(z-i) \frac{\log z}{(z-i)(z+i)} \tag{4.3}
\end{equation*}
$$

$$
\begin{equation*}
= \tag{4.4}
\end{equation*}
$$

2. Show that $[0,1]$ cannot be written as the countably infinite union of disjoint nonempty closed intervals.

Proof. We prove this statement by contradiction. Suppose $[0,1]$ was the union of countably many closed intervals. Then removing the endpoints of each interval we get that there is a sequence of disjoint open intervals I_{n} such that

$$
\begin{equation*}
[0,1]=\cup_{n=1}^{\infty} I_{n} \tag{4.5}
\end{equation*}
$$

Letting $I_{n}=\left[x_{n}, y_{n}\right]$ we consider the union of the endpoints;

$$
\begin{equation*}
U=\cup_{n=1}^{\infty}\left\{x_{n}, b_{n}\right\} \tag{4.6}
\end{equation*}
$$

U is clearly closed, and we can see that U is also perfect since every point in U is a limit point. We can now apply the Baire category theorem which shows that a perfect subset of a complete metric space can't be countable infinite. The result follows.
3. Let $f: D \rightarrow \mathbb{C}$ be analytic such that $\Re f(z)>0$ for all z. Prove

$$
\begin{equation*}
|f(z)| \leq|f(0)| \frac{1+|z|}{1-|z|} \tag{4.7}
\end{equation*}
$$

Proof. We note the map $g(z)=\frac{f(0)-z}{f(0)+z}$ maps the right half complex plane conformally onto the unit disk such that $g(f(0))=0$. Thus, we can apply Schwarz's lemma to the function $g(f(z))$ to obtain $|g(f(z))| \leq|z|$. We also have

$$
\begin{equation*}
g^{-1}(z)=f(0) \frac{1-z}{1+z} \tag{4.8}
\end{equation*}
$$

Thus, $|f(z)| \leq g^{-1}(|z|)=f(0) \frac{1-|z|}{1+|z|}$ as desired.
4. Let $f:[1,+\infty) \rightarrow[0,+\infty)$ be Lebesgue measurable. Prove:

$$
\begin{equation*}
\int_{1}^{\infty} \frac{f(x)^{2}}{x^{2}}<+\infty \Rightarrow \int_{1}^{\infty} \frac{f(x)}{x^{2}} d x<+\infty \tag{4.9}
\end{equation*}
$$

Proof. Define $S_{0}=\{x: f(x)<1\}$, and $S_{1}=\{x: f(x) \geq 1\}$. It's clear that $\int_{1}^{\infty} \frac{f(x)}{x^{2}} d x=\int_{S_{0}} \frac{f(x)}{x^{2}} d x+$ $\int_{S_{1}} \frac{f(x)}{x^{2}}$, so if we can bound each of the integrals then we are done.
First, we have $\int_{S_{0}} \frac{f(x)}{x^{2}} d x \leq \int_{S_{0}} \frac{1}{x^{2}} d x<\int_{1}^{\infty} \frac{1}{x^{2}} d x<\infty$.
On the other hand, we have $\int_{S_{1}} \frac{f(x)}{x^{2}}<\int_{S_{1}} \frac{f(x)^{2}}{x^{2}}<\int_{1}^{\infty} \frac{f(x)^{2}}{x^{2}}<\infty$ by hypothesis. Putting everything together yields our desired result.
5.
6. Let $([0,1], \mathcal{A}, \mu)$ denote the Lebesgue space on $f:[0,1] \rightarrow \mathbb{R}$ the condition " f is continuous a.e." neither implies, nor is implied by, the condition "there exists a continuous function $g:[0,1] \rightarrow \mathbb{R}$ such that $f=g$ a.e."

Proof. Let $g(x)=0$ and define $f(x)$ as follows:

$$
f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q} \tag{4.10}\\ 0 & \text { if } x \notin \mathbb{Q}\end{cases}
$$

Then because \mathbb{Q} has Lebesgue measure 0, it follows that $g(x)=f(x)$ a.e. However, $f(x)$ is nowhere continuous.

Conversely, let

$$
f(x)= \begin{cases}0 & \text { if } x \leq \frac{1}{2} \tag{4.11}\\ 1 & \text { if } x>\frac{1}{2}\end{cases}
$$

which will always differ from a continuous function g around an interval centered at $x=\frac{1}{2}$, and thus not equal to g a.e.
7. An entire function is said to have finite order if there exists $c>0$ such that $|f(z)| \leq \exp \left(|z|^{c}\right)$ for all $|z|$ sufficiently large; the order of f is the infimum of all such $c>0$. Prove that the following function is entire and has order $\frac{1}{2}$.

$$
\begin{equation*}
f(z)=\prod_{k=1}^{\infty}\left(1+\frac{z}{k^{2}}\right) \tag{4.12}
\end{equation*}
$$

Proof.
8. Let $\left\{f_{n}\right\}$ be a sequence of measurable functions on some measure space (X, \mathcal{A}, μ) with $\mu(X)<\infty$. We say the sequence is uniformly integrable if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu=0 \tag{4.13}
\end{equation*}
$$

(a) Show that if there exists $g \in L^{1}(X)$ such that $\left|f_{n}(x)\right| \leq|g(x)|$ for all x, n then the $\left\{f_{n}\right\}$ are uniformly integrable.

Proof. Since $\mu(X)<\infty$, and $g \in L^{1}(X)$, it follows that ess $\sup _{x \in X} g(x)<\infty$. Thus, whenever $R>\operatorname{ess} \sup _{x \in X} g(x), \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu=0$ for all n, and thus $\lim _{n \rightarrow \infty} \sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu=0$ as desired.
(b) Prove that if $f_{n} \rightarrow f$ pointwise and the $\left\{f_{n}\right\}$ are uniformly integrable then $f \in L^{1}(\mathbb{R})$ and

$$
\begin{equation*}
\lim _{n} \int f_{n} d \mu=\int f d \mu \tag{4.14}
\end{equation*}
$$

Proof. We have the following inequality:

$$
\begin{equation*}
\int_{X}|f| d \mu=\int_{|f| \leq R}|f|+\int_{|f|>R}|f| d \mu<\int_{|f| \leq R}|f|+\sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right| d \mu<\infty \tag{4.15}
\end{equation*}
$$

where in the last inequality follows we assume R is sufficiently large such that $\sum_{n} \int_{\left|f_{n}\right|>R}\left|f_{n}\right|<$ ∞. Thus $f \in L^{1}(X)$ and by the Lebesgue dominated convergence theorem, it follows that $\lim _{n} \int f_{n} d \mu=\int f d \mu$ as desired.

