Kayla Orlinsky

Complex Analysis Exam Cheat Sheet

Theorem 1. Cauchy-Riemann Equations
$f(z)=f(x, y)=u(x, y)+i v(x, y)$ is analytic (C^{∞}) in Ω
$u_{x}=v_{y}$

And $f^{\prime}(x)=u_{x}+i v_{x}$.

Theorem 2. Cauchy Integral Formula
If: $f(z)$ is analytic on open simply connected region Ω containing $\{|\xi-z|<\rho\}$,

Then:

$$
f^{(n)}(z)=\frac{n!}{2 \pi i} \int_{|\xi-z|<\gamma} \frac{f(\xi)}{(\xi-z)^{n+1}} d \xi
$$

${ }^{* * *}$ Note that if f is analytic in Ω, then $f(z)=\frac{1}{2 \pi i} \int$

Theorem 3. Cauchy Estimate
If: $f(z)$ is analytic in Ω containing $B=\{|\xi-z|<R\}$,
Then: if $M_{R}=\max _{a \in \partial B}|f(a)|$ then

$$
\left|f^{(n)}(z)\right| \leq \frac{n!M_{R}}{R^{n}}
$$

Theorem 4. Rouche's
If:
\&- f and g are analytic in Ω containing a closed curve Γ
\&. $|f(z)-g(z)|<|f(z)|$ or $|f(z)-g(z)|<|g(z)|$ for all $z \in \Gamma$,
Then: f and g have the same number of zeros inside Γ.
***Alternatively, if $|g(z)|<|f(z)|$ on Γ, then f and $f+g$ have the same number of zeros inside Γ.
Theorem 5. Argument Principle
If: f is meromorphic in Ω and $\Gamma \subset \Omega$ has winding number 1 and avoids zeros and poles of f,
Then: then

$$
\frac{1}{2 \pi i} \int_{\Gamma} \frac{f^{\prime}(z)}{f(z)} d z=\# \text { zeros }-\# \text { poles } \quad \text { enclosed by } \Gamma .
$$

Example 1.

Find the number of solutions of the equation $z-2-e^{-z}=0$ in $H=\{z \in \mathbb{C}$: $\operatorname{Re}(z)>0\}$.

Let $f(z)=z-2-e^{-z}$. Then $f(i y)=i y-2-e^{-i y}=-2-\cos (y)+i(y-\sin (y))$. Thus, $\mathcal{R e}(f(i y))<0$ for all $y \in \mathbb{R}$ and f sends the imaginary axis to the left-half plane, away from the origin.

On a large half-circle in the right-half plane, $z=R e^{i \theta}$ for $\theta \in(-\pi / 2, \pi / 2)$ and

$$
\frac{1}{R} f\left(R e^{i \theta}\right)=e^{i \theta}-\frac{2}{R}-\frac{e^{-R e^{i \theta}}}{R} \rightarrow e^{i \theta} \quad R \rightarrow \infty
$$

Therefore, f has a total change in argument of π so f can have at most one zero in the right half plane.

Since $f(0)<0$ and $f(10)=8-\frac{1}{e^{10}}>7>0$ by the intermediate value theorem, f has a zero on the positive real axis so f has exactly one zero in the right-half plane.

Theorem 6. Louiville
If: $f(z)$ is entire and bounded
Then: $f(z)$ is constant

Theorem 7. Schwarz'
If: $f: \mathbb{D} \rightarrow \mathbb{D}(\mathbb{D}=\{|z|<1\})$

- \cdot analytic

内. $f(0)=0$
Then: $|f(z)| \leq|z|$ on \mathbb{D} and $\left|f^{\prime}(0)\right| \leq 1$.
${ }^{* * *}$ If, additionally $|f(z)|=|z|$ for some $z \neq 0$ or if $\left|f^{\prime}(0)\right|=1$, then $f(z)=a z$ for some $|a|=1$.

Theorem 8. Maximum Modulus Principle
If: If f is analytic in an open simply connected set Ω, and f has a maximum value inside Ω
Then: f is constant.
***Namely, analytic function must attain their maximum on the boundary of any simply connected set.

Theorem 9. Schwarz Reflection Principle
If:
\&. f is analytic in the upper half plane,
内. f is continuous on the real line and $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$ (f is real on the real line)

Then: f can be extended to an analytic function on the negative half plane by the formula $f(\bar{z})=\overline{f(z)}$.

Theorem 10. Residue Theorem
If:

- $\Gamma \subset \Omega$ closed curve

新 Ω open and simply connected,
\&. $f(z)$ is a meremorphic function in Ω

- Γ intersects no poles of f

Then: if Γ encloses $\left\{a_{1}, \ldots, a_{n}\right\}$ poles of f,

$$
\int_{\Gamma} f(z) d z=2 \pi i \sum_{j=1}^{n} \operatorname{Res}_{z=a_{j}} f(z)
$$

Formula 1. Residue Formula If a is a pole of order n of $f(z)$, then

$$
\operatorname{Res}_{z=a} f(z)=\lim _{z \rightarrow a} \frac{1}{(n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left((z-a)^{n} f(z)\right) .
$$

***The residue of $f(z)$ at a is exactly the coefficient of the $\frac{1}{z}$ term in the Laurent expansion of $f(z)$ at a.

Example 2.

Evaluate

$$
\int_{0}^{2 \pi} \frac{d \theta}{3+\cos \theta+2 \sin \theta}
$$

$$
\begin{align*}
\int_{0}^{2 \pi} \frac{d \theta}{3+\cos \theta+2 \sin \theta} & =\int_{0}^{2 \pi} \frac{d \theta}{3+\frac{e^{i \theta}+e^{-i \theta}}{2}+\frac{e^{i \theta}-e^{-i \theta}}{i}} \\
& =\int_{0}^{2 \pi} \frac{2 i e^{i \theta} d \theta}{6 i e^{i \theta}+i e^{2 i \theta}+i+2 e^{2 i \theta}-2} \\
& =\int_{|z|=1} \frac{2 d z}{6 i z+i z^{2}+i+2 z^{2}-2} \quad z=e^{i \theta} \\
& =\int_{|z|=1} \frac{2 d z}{(i+2) z^{2}+6 i z+i-2} \\
& =\int_{|z|=1} \frac{2 d z}{(i+2)\left(z+\frac{1}{5}(1+2 i)\right)(z+1+2 i)} \tag{1}\\
& =\left(2 \pi i \operatorname{Res}_{z=-\frac{1}{5}(1+2 i)}^{(i+2)\left(z+\frac{1}{5}(1+2 i)\right)(z+1+2 i)}\right) \tag{2}\\
& =2 \pi i \frac{2}{(i+2)\left(-\frac{1}{5}(1+2 i)+1+2 i\right)} \\
& =4 \pi i \frac{1}{(i+2) \frac{4}{5}(1+2 i)} \\
& =5 \pi i \frac{1}{(1+2 i)(i+2)} \\
& =5 \pi i \frac{1}{i+2-2+4 i} \\
& =5 \pi i \frac{1}{5 i} \\
& =\pi
\end{align*}
$$

Where (1) comes from the quadratic formula, and (2) because only one pole is contained in the unit disk.

Example 3.

Evaluate the integral

$$
\int_{0}^{\infty} \frac{d x}{1+x^{n}}, \quad n \geq 2
$$

Then we get that there is a pole at $e^{i \frac{\pi}{n}}$ which can be isolated in a pizza slice of angle $\frac{2 \pi}{n}$. Thus, we integrate around the following contour:

Immeidately, we get that

$$
\left|I_{R}\right|=\left|\int_{\Gamma_{R}} \frac{d z}{1+z^{n}}\right| \leq \int_{0}^{\frac{2 \pi}{n}} \frac{R}{R^{n}-1} d \theta=\frac{2 \pi R}{n\left(R^{n}-1\right)} \rightarrow 0 \quad R \rightarrow \infty
$$

Since

$$
I_{2}=\int_{\Gamma_{2}} \frac{d z}{1+z^{n}}=\int_{R}^{0} \frac{e^{i \frac{2 \pi}{n}} d r}{1+r^{n} e^{2 \pi i}}=-e^{i \frac{2 \pi}{n}} \int_{0}^{R} \frac{d r}{1+r^{n}}=-e^{i \frac{2 \pi}{n}} I_{1} .
$$

Thus, using the residue theorem, we get that

$$
\operatorname{Res}_{z=e^{i \frac{\pi}{n}}} \frac{1}{1+x^{n}}=\lim _{z \rightarrow e^{i \frac{\pi}{n}}} \frac{x-e^{i \frac{\pi}{n}}}{x^{n}+1}=\lim _{z \rightarrow e^{i \frac{\pi}{n}}} \frac{1}{n x^{n-1}}=\frac{1}{n} e^{-(n-1) i \frac{\pi}{n}}
$$

and that

$$
2 \pi i \frac{1}{n} e^{-(n-1) i \frac{\pi}{n}}=\lim _{R \rightarrow \infty}\left(I_{1}+I_{2}+I_{R}\right)=\left(1-e^{i \frac{2 \pi}{n}}\right) I_{1}
$$

and so

$$
\int_{0}^{\infty} \frac{d x}{1+x^{n}}=\frac{\pi}{n} e^{-(n-1) i \frac{\pi}{n}} \frac{2 i}{1-e^{i \frac{2 \pi}{n}}}=\frac{\pi}{n} \frac{-2 i}{e^{-i \frac{\pi}{n}}-e^{i \frac{\pi}{n}}}=\frac{\pi / n}{\sin (\pi / n)}
$$

Definition 1. Harmonic Function

$u: \Omega \rightarrow \mathbb{R}$ where Ω is open and could be real or complex is harmonic if its Laplacian is zero:

$$
u_{x x}+u_{y y}=0 .
$$

Theorem 11. Maximum and Minimum Principle
If: u is harmonic on an open simply connected set Ω and u attains a maximum or minimum value inside Ω
Then: u is constant
*** harmonic functions attain their maximum and minimum values on the boundary of open sets.

Theorem 12. Mean Value Property
If: u is harmonic on an open set Ω,
Then: for each $z_{0} \in \Omega$ and $r>0$ such that $\overline{B_{r}\left(z_{0}\right)}=\left\{\left|z-z_{0}\right| \leq r\right\} \subset \Omega$,

$$
u\left(z_{0}\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Theorem 13. Poisson Formula
If: u is harmonic on an open set Ω and $\overline{\mathbb{D}}=\{|z| \leq 1\} \subset \Omega$,
Then: for all $|z|<1$,

$$
u(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-|z|^{2}}{\left|e^{i \theta}-z\right|^{2}} u\left(e^{i \theta}\right) d \theta
$$

*** The Poisson Kernel is $\frac{|\xi|^{2}-|z|^{2}}{|\xi-z|^{2}}$.

Theorem 14. Harnack's Inequality

If: u is a non-negative analytic inside $B_{R}\left(z_{0}\right)$ and continuous on the boundary,
Then: for all $r<R$,

$$
\frac{R-r}{R+r} u\left(z_{0}\right) \leq u(z) \leq \frac{R+r}{R-r} u\left(z_{0}\right) .
$$

Definition 2. Subharmonic Function
$v: \Omega \rightarrow \mathbb{R}$ where Ω is open and could be real or complex is subharmonic if its Laplacian is non-negative:

$$
u_{x x}+u_{y y} \geq 0 .
$$

Theorem 15. Maximum Principle for Subharmonic Functions
If: v is subharmonic in Ω, and u is any harmonic function in Ω
Then: $u-v$ has the maximum principle (but not necessarily the minimum principle).

Theorem 16. MVP for Subharmonic Functions
If: v is subharmonic on Ω
Then: for each $z_{0} \in \Omega$ and $r>0$ such that $\overline{B_{r}\left(z_{0}\right)}=\left\{\left|z-z_{0}\right| \leq r\right\} \subset \Omega$,

$$
v\left(z_{0}\right) \leq \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z_{0}+r e^{i \theta}\right) d \theta
$$

Theorem 17. Taylor's
$f(z)$ is analytic at a point z_{0} \Longleftrightarrow

There exists a neighborhood U of z_{0} such that f has a convergent Taylor Series at z_{0} in U.

The Taylor Series is unique and converges uniformly on compact subsets.

Theorem 18. Laurent
$f(z)$ has an isolated singularity at $z_{0} \quad \square \Longleftrightarrow$
There exists Laurent series at z_{0} which converges in some annulus avoiding z_{0}.

The Laurent Series is unique and converges uniformly on compact subsets.

Theorem 19. Convergence Criterion for Infinite product
$\prod_{n=1}^{\infty} a_{n}$ converges

$\sum_{n=1}^{\infty} \log \left(a_{n}\right)$ converges for some branch
cut of \log.
$\prod_{n=1}^{\infty}\left(1+a_{n}\right)$ converges absolutely $\quad \Longleftrightarrow \sum_{n=1}^{\infty}\left|a_{n}\right|$ converges

Theorem 20. Analyticitiy of an Infinite product

Theorem 21．Weierstrauss M－test

If：there exists a sequence $\left\{M_{n}\right\}_{n=1}^{\infty} \subset \mathbb{R}^{+}\left(M_{n} \geq 0\right.$ for all $\left.n\right)$ such that $\left|f_{n}(z)\right| \leq M_{n}$ for all n
Then：$\sum_{n=1}^{\infty} f_{n}(z)$ converges absolutely and uniformly on compact subsets．

Definition 3．Radius of Convergence

The radius of convergence R of a series（Taylor or otherwise）$\sum_{n=1}^{\infty} a_{n}\left(z-z_{0}\right)^{n}$ is given by the formula $\frac{1}{R}=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}$

Formula 2．Taylor Series

$$
\begin{aligned}
& \text { y } \frac{1}{1-z} \quad=\sum_{n=0}^{\infty} z^{n} \quad|z|<1 \\
& \text {) } \quad e^{z} \quad=\sum_{n=0}^{\infty} \frac{z^{n}}{n!} \\
& \text { 应 } \log (1-z) \quad=\sum_{n=1}^{\infty} \frac{z^{n}}{n} \quad|z|<1 \\
& \text {) } \quad \sin (z) \quad=\sum_{n=0}^{\infty} \frac{z^{2 n+1}}{(2 n+1)!} \\
& \text { 〕. } \quad \cos (z) \quad=\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}
\end{aligned}
$$

Example 4.

Write an entire function which has the simple zeros $1,4,9,16,25, \ldots$ and has no other zeros．

The zeros are $1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, \ldots$ ．Then let

$$
f(z)=\prod_{n=1}^{\infty} \frac{\left(z-n^{2}\right)}{n^{2}}=\prod_{n=1}^{\infty}\left(\frac{z}{n^{2}}-1\right)=-\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{2}}\right)
$$

Since for all z, there exists M so $|z|<M$, we have that $\frac{|z|}{n^{2}}<\frac{M}{n^{2}}$ and so

$$
\sum_{n=1}^{\infty} \frac{|z|}{n^{2}}
$$

converges uniformly on compact subsets. Therefore, f is entire.

Example 5. Let

$$
f(z)=\frac{1}{z(z+1)}
$$

Then f has singularities at -1 and 0 . Namely, $f(z)$ will have a Laurent series expansion for $0<|z|<1$ and for $|z|>1$.

$$
\begin{aligned}
& \text { On } 0<|z|<1, \\
& \qquad \begin{array}{rlrl}
f(z) & =\frac{1}{z(z+1)} & \text { On }|z|> & , \frac{1}{|z|}<1 \text {, so } \\
& =\frac{1}{z}-\frac{1}{z+1} & & =\frac{1}{z}-\frac{1}{z+1} \\
& =\frac{1}{z}-\frac{1}{1-(-z)} & & =\frac{1}{z}-\frac{1}{z\left(1+\frac{1}{z}\right)} \\
& =\frac{1}{z}-\sum_{n=0}^{\infty}(-z)^{n} & & =\frac{1}{z}-\frac{1}{z} \frac{1}{1-\left(-\frac{1}{z}\right)} \\
& =\sum_{n=-1}^{\infty}(-1)^{n+1} \frac{1}{z^{n}} & & =\frac{1}{z}-\frac{1}{z} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{z^{n}} \\
& & =\frac{1}{z}+\sum_{n=0}^{\infty}(-1)^{n+1} \frac{1}{z^{n+1}} \\
& & =\sum_{n=2}^{\infty}(-1)^{n} \frac{1}{z^{n}}
\end{array}
\end{aligned}
$$

Now, if we were being asked to find the Laurent Expansion on $\{1<|z-1|<2\}$, then we would be being asked to find the expansion at $a=1$. Since on $\{1<|z-1|<2\}$ we have
that $1>\frac{1}{|z-1|}>\frac{1}{2}$ and $\frac{|z-1|}{2}<1$ so

$$
\begin{aligned}
\frac{1}{z(z+1)} & =\frac{1}{z}-\frac{1}{z+1} \\
& =\frac{1}{(z-1)+1}-\frac{1}{(z-1)+2} \\
& =\frac{\frac{1}{z-1}}{1+\frac{1}{z-1}}-\frac{\frac{1}{2}}{1+\frac{z-1}{2}} \\
& =\frac{1}{z-1} \frac{1}{1-\frac{1}{1-z}}-\frac{1}{2} \frac{1}{1-\frac{1-z}{2}} \\
& =\frac{1}{z-1} \sum_{l=0}^{\infty}\left(\frac{1}{1-z}\right)^{l}-\frac{1}{2} \sum_{k=0}^{\infty}\left(\frac{1-z}{2}\right)^{k} \\
& =\sum_{l=0}^{\infty} \frac{1}{(1-z)^{l+1}}-\sum_{k=0}^{\infty} \frac{(1-z)^{k}}{2^{k+1}}
\end{aligned}
$$

Definition 4. Singularities

E Exceptional Point: $\lim _{z \rightarrow a}(z-a) f(z)=0$.
E Zeros: $f(a)=0$, there exists k and g analytic (and nonzero at a) such that $f(z)=$ $(z-a)^{k} g(z)$.

E Poles: $|f(a)|=\infty$, there exists a k and g analytic such that $f(z)=\frac{g(z)}{(z-a)^{k}}$.
E Essential Singularity: Any isolated singularity that is not a pole and is not removable.
${ }^{* * *}$ Exceptional points are exactly removable singularities. Namely, if $f(z)$ has an exceptional point, it can be extended to an analytic function at that point.
***If $f(z)$ has any type of removable singularity at ∞, then $f(1 / z)$ has a singularity of the same type at 0 .

Theorem 22. Picard's Little Theorem
If: $f(z)$ is entire and non-constant
Then: f assumes all but at most 1 point in \mathbb{C}.

Theorem 23. Picard's Great Theorem
If: $f(z)$ has an essential singularity z_{0},
Then: for every punctured neighborhood U of $z_{0}, f(z)$ for $z \in U$ assumes all but at most 2 points in $\mathbb{C} \cup\{\infty\}$ infinitely often.

Definition 5. Singularities

If \mathcal{F} is a family (set) of holomorphic functions $f: \Omega \rightarrow \mathbb{C}$ is called normal if for every sequence $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{F}$ there exists a subsequence $\left\{f_{n_{k}}\right\}_{k=1}^{\infty}$ which converges uniformly on compact subsets of Ω.
${ }^{* * *}$ Note that any sequence of holomorphic functions converging uniformly must converge to a holomorphic function.

Theorem 24. Montel's
If \mathcal{F} is a family of holomorphic functions on an open set Ω, then
\mathcal{F} is locally uniformly bounded
\mathcal{F} is normal

(for each compact subset K of Ω, there exists M so $|f(z)| \leq M$ for all $z \in K$ and for all $f \in \mathcal{F}$)

Definition 6. Conformal Map
A map f on an open region Ω is conformal if

- f is analytic on Ω

트 $f^{\prime}(z) \neq 0$ for all $z \in \Omega$
*** Conformal maps are angle preserving.
Theorem 25. Identity Theorem
If: $f, g: \Omega \rightarrow \mathbb{C}$ where Ω is open and simply connected and $f=g$ on some subset $S \subset \Omega$ having an accumulation point in Ω
Then: $f=g$ on all of Ω.

Theorem 26. Open Mapping Theorem
If: f is analytic
Then: the image of any open set under f is also open (f sends open sets to open sets).

Theorem 27. Riemann Mapping Theorem
If: $\Omega \subset \mathbb{C}$ is
\& open,
ㄴ. simply connected,
\& and not all of $\mathbb{C}(\Omega$ lacks at least one point of \mathbb{C} or lacks at least two points of $\overline{\mathbb{C}}$)

Then: For each $\alpha \in \Omega$ there exists a unique conformal biholomorphic (bijective, analytic, with analytic inverse) function

$$
g: \Omega \rightarrow \mathbb{D}=\{|z|<1\} \quad g(\alpha)=0
$$

Definition 7. Cross Ratio

The cross ratio

$$
\left(z, w_{2}, w_{3}, w_{4}\right)=\frac{z-w_{3}}{z-w_{4}}: \frac{w_{2}-w_{3}}{w_{2}-w_{4}} .
$$

And

$$
T(z)=\frac{z-w_{3}}{z-w_{4}}: \frac{w_{2}-w_{3}}{w_{2}-w_{4}}
$$

is the unique transformation sending $w_{2} \mapsto 1, w_{3} \mapsto 0, w_{4} \mapsto \infty$.
Formula 3. Conformal Maps

*) z^{2} doubles angles,
鱾 \sqrt{z} halves angles,
(i) $i z$ rotates 90° counterclockwise

