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á1Cauchy Formulas 1á

Theorem 1. Cauchy-Riemann Equations
f(z) = f(x, y) = u(x, y) + iv(x, y) is
analytic (C∞) in Ω ⇐⇒

ux = vy

uy = −vx
And f ′(x) = ux + ivx.

Theorem 2. Cauchy Integral Formula
If: f(z) is analytic on open simply connected region Ω containing {|ξ − z| < ρ},

Then:
f (n)(z) = n!

2πi

∫
|ξ−z|<γ

f(ξ)
(ξ − z)n+1dξ

***Note that if f is analytic in Ω, then f(z) = 1
2πi

∫

Theorem 3. Cauchy Estimate
If: f(z) is analytic in Ω containing B = {|ξ − z| < R},

Then: if MR = max
a∈∂B

|f(a)| then

|f (n)(z)| ≤ n!MR

Rn
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á1Counting Zeros 1á

Theorem 4. Rouche’s
If:

á f and g are analytic in Ω containing a closed curve Γ
á |f(z)− g(z)| < |f(z)| or |f(z)− g(z)| < |g(z)| for all z ∈ Γ,

Then: f and g have the same number of zeros inside Γ.

***Alternatively, if |g(z)| < |f(z)| on Γ, then f and f + g have the same number of
zeros inside Γ.

Theorem 5. Argument Principle

If: f is meromorphic in Ω and Γ ⊂ Ω has winding number 1 and avoids zeros and
poles of f ,

Then: then

1
2πi

∫
Γ

f ′(z)
f(z) dz = #zeros−#poles enclosed by Γ.

Example 1.

Find the number of solutions of the equation z − 2 − e−z = 0 in H = {z ∈ C :
Re(z) > 0}.

Let f(z) = z − 2− e−z. Then f(iy) = iy − 2− e−iy = −2− cos(y) + i(y − sin(y)). Thus,
Re(f(iy)) < 0 for all y ∈ R and f sends the imaginary axis to the left-half plane, away from
the origin.

On a large half-circle in the right-half plane, z = Reiθ for θ ∈ (−π/2, π/2) and

1
R
f(Reiθ) = eiθ − 2

R
− e−Re

iθ

R
→ eiθ R→∞.

Therefore, f has a total change in argument of π so f can have at most one zero in the right
half plane.

Since f(0) < 0 and f(10) = 8− 1
e10 > 7 > 0 by the intermediate value theorem, f has a

zero on the positive real axis so f has exactly one zero in the right-half plane.
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á1Bounded Functions 1á

Theorem 6. Louiville
If: f(z) is entire and bounded

Then: f(z) is constant

Theorem 7. Schwarz’
If: f : D→ D (D = {|z| < 1})

á analytic
á f(0) = 0

Then: |f(z)| ≤ |z| on D and |f ′(0)| ≤ 1.

***If, additionally |f(z)| = |z| for some z 6= 0 or if |f ′(0)| = 1, then f(z) = az for some
|a| = 1.

Theorem 8. Maximum Modulus Principle

If: If f is analytic in an open simply connected set Ω, and f has a maximum value
inside Ω

Then: f is constant.
***Namely, analytic function must attain their maximum on the boundary of any simply

connected set.

Theorem 9. Schwarz Reflection Principle
If:

á f is analytic in the upper half plane,
á f is continuous on the real line and f(x) ∈ R for all x ∈ R (f is real on the

real line)

Then: f can be extended to an analytic function on the negative half plane by the
formula f(z) = f(z).
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á1Residues 1á

Theorem 10. Residue Theorem
If:

á Γ ⊂ Ω closed curve
á Ω open and simply connected,
á f(z) is a meremorphic function in Ω
á Γ intersects no poles of f

Then: if Γ encloses {a1, ..., an} poles of f,∫
Γ
f(z)dz = 2πi

n∑
j=1

Resz=ajf(z)

Formula 1. Residue Formula If a is a pole of order n of f(z), then

Resz=af(z) = lim
z→a

1
(n− 1)!

dn−1

dzn−1 ((z − a)nf(z)).

***The residue of f(z) at a is exactly the coefficient of the 1
z
term in the Laurent

expansion of f(z) at a.

Example 2.

Evaluate ∫ 2π

0

dθ

3 + cos θ + 2 sin θ .
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∫ 2π

0

dθ

3 + cos θ + 2 sin θ =
∫ 2π

0

dθ

3 + eiθ+e−iθ

2 + eiθ−e−iθ

i

=
∫ 2π

0

2ieiθdθ
6ieiθ + ie2iθ + i+ 2e2iθ − 2

=
∫
|z|=1

2dz
6iz + iz2 + i+ 2z2 − 2 z = eiθ

=
∫
|z|=1

2dz
(i+ 2)z2 + 6iz + i− 2

=
∫
|z|=1

2dz
(i+ 2)

(
z + 1

5(1 + 2i)
)

(z + 1 + 2i)
(1)

=
2πiResz=− 1

5 (1+2i)
2

(i+ 2)
(
z + 1

5(1 + 2i)
)

(z + 1 + 2i)

 (2)

= 2πi 2
(i+ 2)

(
−1

5(1 + 2i) + 1 + 2i
)

= 4πi 1
(i+ 2)4

5(1 + 2i)

= 5πi 1
(1 + 2i)(i+ 2)

= 5πi 1
i+ 2− 2 + 4i

= 5πi 1
5i

= π

Where (1) comes from the quadratic formula, and (2) because only one pole is contained
in the unit disk.

Example 3.

Evaluate the integral ∫ ∞
0

dx

1 + xn
, n ≥ 2.

Then we get that there is a pole at eiπn which can be isolated in a pizza slice of angle 2π
n
.

Thus, we integrate around the following contour:
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ΓR

Γ1

Γ2
2π
n

Re

Im

Immeidately, we get that

|IR| =
∣∣∣∣∣
∫

ΓR

dz

1 + zn

∣∣∣∣∣ ≤
∫ 2π

n

0

R

Rn − 1dθ = 2πR
n(Rn − 1) → 0 R→∞.

Since
I2 =

∫
Γ2

dz

1 + zn
=
∫ 0

R

ei
2π
n dr

1 + rne2πi = −ei 2π
n

∫ R

0

dr

1 + rn
= −ei 2π

n I1.

Thus, using the residue theorem, we get that

Res
z=ei

π
n

1
1 + xn

= lim
z→ei

π
n

x− eiπn
xn + 1 = lim

z→ei
π
n

1
nxn−1 = 1

n
e−(n−1)iπ

n

and that
2πi 1

n
e−(n−1)iπ

n = lim
R→∞

(I1 + I2 + IR) = (1− ei 2π
n )I1

and so ∫ ∞
0

dx

1 + xn
= π

n
e−(n−1)iπ

n
2i

1− ei 2π
n

= π

n

−2i
e−i

π
n − eiπn

= π/n

sin(π/n)
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á1Harmonic and Subharmonic 1á

Definition 1. Harmonic Function
u : Ω→ R where Ω is open and could be real or complex is harmonic if its Laplacian is

zero:
uxx + uyy = 0.

Theorem 11. Maximum and Minimum Principle

If: u is harmonic on an open simply connected set Ω and u attains a maximum or
minimum value inside Ω

Then: u is constant
***harmonic functions attain their maximum and minimum values on the boundary of

open sets.

Theorem 12. Mean Value Property
If: u is harmonic on an open set Ω,

Then: for each z0 ∈ Ω and r > 0 such that Br(z0) = {|z − z0| ≤ r} ⊂ Ω,

u(z0) = 1
2π

∫ 2π

0
u(z0 + reiθ)dθ.

Theorem 13. Poisson Formula
If: u is harmonic on an open set Ω and D = {|z| ≤ 1} ⊂ Ω,

Then: for all |z| < 1,

u(z) = 1
2π

∫ 2π

0

1− |z|2
|eiθ − z|2

u(eiθ)dθ.

***The Poisson Kernel is |ξ|
2 − |z|2

|ξ − z|2
.
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Theorem 14. Harnack’s Inequality
If: u is a non-negative analytic inside BR(z0) and continuous on the boundary,

Then: for all r < R,

R− r
R + r

u(z0) ≤ u(z) ≤ R + r

R− r
u(z0).

Definition 2. Subharmonic Function
v : Ω→ R where Ω is open and could be real or complex is subharmonic if its Laplacian

is non-negative:
uxx + uyy ≥ 0.

Theorem 15. Maximum Principle for Subharmonic Functions
If: v is subharmonic in Ω, and u is any harmonic function in Ω

Then:
u− v has the maximum principle (but not necessarily the minimum principle).

Theorem 16. MVP for Subharmonic Functions
If: v is subharmonic on Ω

Then: for each z0 ∈ Ω and r > 0 such that Br(z0) = {|z − z0| ≤ r} ⊂ Ω,

v(z0) ≤ 1
2π

∫ 2π

0
u(z0 + reiθ)dθ.

8



Kayla Orlinsky
Complex Analysis

á1Infinite Series and Products 1á

Theorem 17. Taylor’s

f(z) is analytic at a point z0 ⇐⇒
There exists a neighborhood U of z0
such that f has a convergent Taylor
Series at z0 in U.

The Taylor Series is unique and converges uniformly on compact subsets.

Theorem 18. Laurent
f(z) has an isolated singularity at z0 ⇐⇒

There exists Laurent series at z0
which converges in some annulus
avoiding z0.

The Laurent Series is unique and converges uniformly on compact subsets.

Theorem 19. Convergence Criterion for Infinite product
∞∏
n=1

an converges ⇐⇒
∞∑
n=1

log(an) converges for some branch

cut of log .

∞∏
n=1

(1 + an) converges absolutely ⇐⇒
∞∑
n=1
|an| converges

Theorem 20. Analyticitiy of an Infinite product
∞∏
n=1

fn(z) represents an analytic func-

tion
⇐⇒

∞∏
n=1

fn(z) converges uniformly on com-

pact subsets.

∞∏
n=1

fn(z) converges uniformly on com-

pact subsets
⇐⇒

∞∑
n=1
|fn(z)−1| converges uniformly on

compact subsets
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Theorem 21. Weierstrauss M-test
If: there exists a sequence {Mn}∞n=1 ⊂ R+ (Mn ≥ 0 for all n) such that |fn(z)| ≤Mn

for all n

Then:
∞∑
n=1

fn(z) converges absolutely and uniformly on compact subsets.

Definition 3. Radius of Convergence
The radius of convergence R of a series (Taylor or otherwise)

∞∑
n=1

an(z − z0)n is given by

the formula 1
R

= lim sup
n→∞

|an|1/n

Formula 2. Taylor Series


1

1− z =
∞∑
n=0

zn |z| < 1

 ez =
∞∑
n=0

zn

n!

 log(1− z) =
∞∑
n=1

zn

n
|z| < 1

 sin(z) =
∞∑
n=0

z2n+1

(2n+ 1)!

 cos(z) =
∞∑
n=0

z2n

(2n)!

Example 4.

Write an entire function which has the simple zeros 1, 4, 9, 16, 25, ... and has no other
zeros.

The zeros are 12, 22, 32, 42, 52, .... Then let

f(z) =
∞∏
n=1

(z − n2)
n2 =

∞∏
n=1

(
z

n2 − 1
)

= −
∞∏
n=1

(
1− z

n2

)
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Since for all z, there exists M so |z| < M , we have that |z|
n2 <

M
n2 and so

∞∑
n=1

|z|
n2

converges uniformly on compact subsets. Therefore, f is entire.

Example 5. Let
f(z) = 1

z(z + 1) .

Then f has singularities at −1 and 0. Namely, f(z) will have a Laurent series expansion for
0 < |z| < 1 and for |z| > 1.

On 0 < |z| < 1,

f(z) = 1
z(z + 1)

= 1
z
− 1
z + 1

= 1
z
− 1

1− (−z)

= 1
z
−
∞∑
n=0

(−z)n

=
∞∑

n=−1
(−1)n+1 1

zn

On |z| > 1, 1
|z| < 1, so

f(z) = 1
z(z + 1)

= 1
z
− 1
z + 1

= 1
z
− 1
z(1 + 1

z
)

= 1
z
− 1
z

1
1−

(
−1
z

)
= 1
z
− 1
z

∞∑
n=0

(−1)n 1
zn

= 1
z

+
∞∑
n=0

(−1)n+1 1
zn+1

=
∞∑
n=2

(−1)n 1
zn

Now, if we were being asked to find the Laurent Expansion on {1 < |z − 1| < 2}, then
we would be being asked to find the expansion at a = 1. Since on {1 < |z − 1| < 2} we have
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that 1 > 1
|z−1| >

1
2 and |z−1|

2 < 1 so

1
z(z + 1) = 1

z
− 1
z + 1

= 1
(z − 1) + 1 −

1
(z − 1) + 2

=
1
z−1

1 + 1
z−1
−

1
2

1 + z−1
2

= 1
z − 1

1
1− 1

1−z
− 1

2
1

1− 1−z
2

= 1
z − 1

∞∑
l=0

( 1
1− z

)l
− 1

2

∞∑
k=0

(1− z
2

)k

=
∞∑
l=0

1
(1− z)l+1 −

∞∑
k=0

(1− z)k
2k+1
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á1Singularities 1á

Definition 4. Singularities
1 Exceptional Point: lim

z→a
(z − a)f(z) = 0.

1 Zeros: f(a) = 0, there exists k and g analytic (and nonzero at a) such that f(z) =
(z − a)kg(z).

1 Poles: |f(a)| =∞, there exists a k and g analytic such that f(z) = g(z)
(z − a)k .

1 Essential Singularity: Any isolated singularity that is not a pole and is not removable.

***Exceptional points are exactly removable singularities. Namely, if f(z) has an
exceptional point, it can be extended to an analytic function at that point.

***If f(z) has any type of removable singularity at ∞, then f(1/z) has a singularity of
the same type at 0.

Theorem 22. Picard’s Little Theorem
If: f(z) is entire and non-constant

Then: f assumes all but at most 1 point in C.

Theorem 23. Picard’s Great Theorem
If: f(z) has an essential singularity z0,

Then: for every punctured neighborhood U of z0, f(z) for z ∈ U assumes all but at
most 2 points in C ∪ {∞} infinitely often.
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á1Normal Families 1á

Definition 5. Singularities
If F is a family (set) of holomorphic functions f : Ω→ C is called normal if for every

sequence {fn}∞n=1 ⊂ F there exists a subsequence {fnk}∞k=1 which converges uniformly on
compact subsets of Ω.

***Note that any sequence of holomorphic functions converging uniformly must converge
to a holomorphic function.

Theorem 24. Montel’s
If F is a family of holomorphic functions on an open set Ω, then

F is normal ⇐⇒
F is locally uniformly bounded
(for each compact subset K of Ω, there exists M so
|f(z)| ≤M for all z ∈ K and for all f ∈ F)
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á1Conformal Mapping 1á

Definition 6. Conformal Map
A map f on an open region Ω is conformal if

1 f is analytic on Ω

1 f ′(z) 6= 0 for all z ∈ Ω

***Conformal maps are angle preserving.

Theorem 25. Identity Theorem

If: f, g : Ω→ C where Ω is open and simply connected and f = g on some subset
S ⊂ Ω having an accumulation point in Ω

Then: f = g on all of Ω.

Theorem 26. Open Mapping Theorem
If: f is analytic

Then: the image of any open set under f is also open (f sends open sets to open sets).

Theorem 27. Riemann Mapping Theorem
If: Ω ⊂ C is

á open,
á simply connected,
á and not all of C (Ω lacks at least one point of C or lacks at least two points of

C)

Then: For each α ∈ Ω there exists a unique conformal biholomorphic (bijective,
analytic, with analytic inverse) function

g : Ω→ D = {|z| < 1} g(α) = 0
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Definition 7. Cross Ratio
The cross ratio

(z, w2, w3, w4) = z − w3

z − w4
: w2 − w3

w2 − w4
.

And
T (z) = z − w3

z − w4
: w2 − w3

w2 − w4

is the unique transformation sending w2 7→ 1, w3 7→ 0, w4 7→ ∞.

Formula 3. Conformal Maps

|z| < 1

1
Re

Im

−1

1
z

|z| < 1

1
Re

Im

−1

πi

Re

Im

ez

Re

Im

Re

Im
z − i
z + i

= T

|z| < 1

1
Re

Im

−1
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1−1
Re

Im

i
z + 1
−z + 1 = T−1

Re

Im

 z2 doubles angles,


√
z halves angles,

 iz rotates 90◦ counterclockwise
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