Kayla Orlinsky
 Complex Analysis Exam Spring 2018

Problem 1. Show that there is no holormophic function f in $\mathbb{D}=\{|z|<1\}$ so that $\left|f\left(z_{n}\right)\right| \rightarrow \infty$ whenever $\left|z_{n}\right| \rightarrow 1\left(z_{n} \in \mathbb{D}\right)$.

Solution. Let f be holomorphic in \mathbb{D}. Assume $\left|f\left(z_{n}\right)\right| \rightarrow \infty$ whenever $\left|z_{n}\right| \rightarrow 1$. Since zeros are isolated, there at most countably many inside \mathbb{D}.

However, if there are infinitely many zeros, then there cannot exist an accumulation point inside \mathbb{D}, otherwise $f \equiv 0$ by the identity theorem. But then there would exist a limit point inside $\overline{\mathbb{D}}$ and since the limit point is not in \mathbb{D}, its on the boundary. Thus, the sequence of zeros of $f\left\{a_{n}\right\}$, satisfies that $\left|a_{n}\right| \rightarrow 1$ and $\left|f\left(a_{n}\right)\right| \rightarrow 0$, contradicting the hypothesis.

Therefore, f can have only finitely many zeros inside \mathbb{D}.
Let $f(z)=\left(z-a_{1}\right) \cdots\left(z-a_{k}\right) g(z)$ for $g(z)$ analytic in \mathbb{D} and never zero. Then

$$
\frac{f(z)}{\left(z-a_{1}\right) \cdots\left(z-a_{k}\right)}=g(z)
$$

which is holomorphic and nonzero. Thus, $\frac{1}{g}$ is holomorphic and nonzero.
Since $a_{i} \in \mathbb{D}$, for any sequence $\left\{z_{n}\right\}$ with $\left|z_{n}\right| \rightarrow 1$, for all $\varepsilon>0$, there exists N so $\left|z_{n}-a_{i}\right| \geq \varepsilon$ for all $n \geq N$. Namely, since f explodes near the boundary of \mathbb{D}, so too must g.

Therefore, $\frac{1}{\left|g\left(z_{n}\right)\right|} \rightarrow 0$ whenever $\left|z_{n}\right| \rightarrow 1$ so by the maximum modulus principle, implies $\frac{1}{g} \equiv 0$. Clearly a contradiction.

Thus, g cannot exist and so neither can f.

Problem 2. Assume that f is analytic in the unit disk $\mathbb{D}=\{z:|z|<1\}$. Prove that f is odd if and only if all the terms in the Taylor series for f at $z_{0}=0$ have only odd powers.

Solution.

\Longrightarrow Assume f is odd. Then $f(-z)=-f(z)$ for all $z \in \mathbb{D}$. Since f is analytic, it has a taylor series at 0 . Thus,

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad z \in \mathbb{D} .
$$

Now, for $r>0$ small, we get that

$$
\begin{aligned}
a_{2 n} & =\frac{f^{2 n}(0)}{(2 n)!} \\
& =\frac{1}{2 \pi i} \int_{|z|=r} \frac{f(z)}{z^{2 n+1}} d z \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{f\left(r e^{i \theta}\right)}{r^{2 n} e^{2 n i \theta}} d \theta \quad z=r e^{i \theta} \\
& =\frac{1}{2 \pi}\left[\int_{0}^{\pi} \frac{f\left(r e^{i \theta}\right)}{r^{2 n} e^{2 n i \theta}}+\int_{\pi}^{2 \pi} \frac{f\left(r e^{i \theta}\right)}{\left.r^{2 n} e^{2 n i \theta}\right)}\right] \\
& =\frac{1}{2 \pi}\left[\int_{0}^{\pi} \frac{f\left(r e^{i \theta}\right)}{r^{2 n} e^{2 n i \theta}}+\int_{0}^{\pi} \frac{f\left(r e^{i(\theta-\pi)}\right)}{r^{2 n} e^{2 n i(\theta-\pi)}}\right] \\
& =\frac{1}{2 \pi}\left[\int_{0}^{\pi} \frac{f\left(r e^{i \theta}\right)}{r^{2 n} e^{2 n i \theta}}+\int_{0}^{\pi} \frac{f\left(-r e^{i \theta}\right)}{r^{2 n} e^{2 n i \theta}}\right] \\
& =\frac{1}{2 \pi}\left[\int_{0}^{\pi} \frac{f\left(r e^{i \theta}\right)}{r^{2 n} e^{2 n i \theta}}+\int_{0}^{\pi} \frac{-f\left(r e^{i \theta}\right)}{r^{2 n} e^{2 n i \theta}}\right] \\
& =0
\end{aligned}
$$

for all n since f is odd.
Thus,

$$
f(z)=\sum_{n=0}^{\infty} a_{2 n+1} z^{2 n+1}
$$

\Longleftarrow
This clear. Since f is analytic, it has a taylor series at 0 . Thus,

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n}=\sum_{n=0}^{\infty} a_{2 n+1} z^{2 n+1}
$$

since all the terms in the taylor series have only odd powers.
Thus,

$$
f(-z)=\sum_{n=0}^{\infty} a_{2 n+1}(-z)^{2 n+1}=\sum_{n=0}^{\infty}(-1)^{2 n+1} a_{2 n+1} z^{2 n+1}=-\sum_{n=0}^{\infty} a_{2 n+1} z^{2 n+1}=-f(z) .
$$

Kayla Orlinsky

So f is odd.

Problem 3. Evaluate

$$
\int_{-\infty}^{\infty} \frac{\cos (2 x)}{x^{2}+1} d x
$$

Solution. We examine $\int \frac{e^{i 2 z}}{z^{2}+1} d z$ and use "Ol' Faithful" with the origin. Namely, the contour around the upper half plane.

Let

$$
\begin{aligned}
I_{1} & =\int_{\Gamma_{1}} \frac{e^{2 i z}}{z^{2}+1} d z \\
I_{2} & =\int_{\Gamma_{2}} \frac{e^{2 i z}}{z^{2}+1} d z \\
I_{R} & =\int_{\Gamma_{R}} \frac{e^{2 i z}}{z^{2}+1} d z
\end{aligned}
$$

Now, we note that $\cos (-2 x)=\cos (2 x)$ since \cos is an even real function and so

$$
\int_{-\infty}^{\infty} \frac{\cos (2 x)}{x^{2}+1} d x=2 \int_{0}^{\infty} \frac{\cos (2 x)}{x^{2}+1} d x
$$

Then, we note that

$$
\begin{aligned}
I_{1}+I_{2} & =\int_{\Gamma_{1}} \frac{e^{2 i z}}{z^{2}+1} d z+\int_{\Gamma_{2}} \frac{e^{2 i z}}{z^{2}+1} d z \\
& =\int_{-R}^{0} \frac{e^{2 i x}}{x^{2}+1} d x+\int_{0}^{R} \frac{e^{2 i x}}{x^{2}+1} d x \\
& =\int_{R}^{0}-\frac{e^{-2 i x}}{x^{2}+1} d x+\int_{0}^{R} \frac{e^{2 i x}}{x^{2}+1} d x \\
& =\int_{0}^{R} \frac{e^{-2 i x}}{x^{2}+1} d x+\int_{0}^{R} \frac{e^{2 i x}}{x^{2}+1} d x \\
& =\int_{0}^{R} \frac{e^{2 i x}+e^{-2 i x}}{x^{2}+1} d x \\
& =\int_{0}^{R} \frac{2 \cos (2 x)}{x^{2}+1} d x \\
& =2 \int_{0}^{R} \frac{\cos (2 x)}{x^{2}+1} d x
\end{aligned}
$$

Finally,

$$
\begin{aligned}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{e^{2 i z}}{z^{2}+1} d z\right| \\
& \leq \int_{\Gamma_{R}} \frac{\left|e^{2 i z}\right|}{\left|z^{2}+1\right|} d|z| \\
& \leq \int_{\Gamma_{R}} \frac{e^{-2 J \mathrm{~m}(z)}}{|z|^{2}-1} d|z| \\
& \leq \int_{0}^{\pi} \frac{R e^{-2 R \sin \theta}}{R^{2}-1} d \theta \quad z=R e^{i \theta} \\
& =\frac{R}{R^{2}-1} \int_{0}^{\pi} e^{-2 R \sin \theta} d \theta \\
& \leq \frac{R}{R^{2}-1} \int_{0}^{\pi} d \theta \quad \sin \theta \geq 0 \text { on upper half plane } \\
& =\frac{\pi R}{R^{2}-1} \rightarrow 0 \quad R \rightarrow \infty
\end{aligned}
$$

Therefore, by the residue theorem,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=i} \frac{e^{2 i z}}{z^{2}+1} & =2 \pi i \frac{e^{-2}}{i+i} \\
& =\frac{\pi}{e^{2}} \\
& =\lim _{R \rightarrow 0}\left(I_{1}+I_{2}+I_{R}\right) \\
& =2 \int_{0}^{\infty} \frac{\cos (2 x)}{x^{2}+1} d x \\
\int_{-\infty}^{\infty} \frac{\cos (2 x)}{x^{2}+1} d x & =\frac{\pi}{e^{2}}
\end{aligned}
$$

Kayla Orlinsky
Spring 2018

Problem 4. Let $\mathbb{D}=\{|z|<1\}$ be the open unit disk and $\overline{\mathbb{D}}$ its closure. Let $f: \mathbb{D} \rightarrow \mathbb{C}$ be analytic on \mathbb{D} and continuous on $\overline{\mathbb{D}}$. Assume that f only takes real values on $\partial \overline{\mathbb{D}}=$ $\{|z|=1\}$. Prove that f is constant.

Solution. Now, since f is analytic $\operatorname{Im}(f(z))$ is a harmonic function in the disk which is continuous ont he boundary of the unit disk. Thus, by the maximimum modulus principle, $|\operatorname{Im}(f(z))|$ has to reach a maximum on $\partial \overline{\mathbb{D}}$.

However,

$$
\begin{aligned}
|\operatorname{Im}(f(z))| & \leq \sup _{z \in \partial \overline{\mathbb{D}}}|\operatorname{Im}(f(z))| \\
& =\sup _{z \in \partial \overline{\mathbb{D}}}\left|\frac{1}{2}(f(z)-\overline{f(z)})\right| \\
& =\sup _{z \in \partial \overline{\mathbb{D}}}\left|\frac{1}{2}(f(z)-f(z))\right| \quad f(z) \in \mathbb{R} \text { whenever } z \in \partial \overline{\mathbb{D}} \\
& =0
\end{aligned}
$$

Thus, f is a real function.
However, Cauchy-Riemann then implies that $f=u+i v=u$ must be a constant since u must be a constant because $u_{x}=v_{y}=0$ and $u_{y}=-v_{x}=0$.

Thus, f is a real constant.

