Kayla Orlinsky Complex Analysis Exam Fall 2018

Problem 1. Let *a >* 0. Compute

$$
\int_0^\pi \frac{d\theta}{a^2 + \sin^2 \theta}
$$

Solution. Since $\sin^2 \theta = \sin^2(\theta + \pi)$, we have that

$$
\int_0^{2\pi} \frac{d\theta}{a^2 + \sin^2 \theta} = 2 \int_0^{\pi} \frac{d\theta}{a^2 + \sin^2 \theta}
$$

and so

$$
\int_{0}^{\pi} \frac{d\theta}{a^{2} + \sin^{2} \theta} = \frac{1}{2} \int_{0}^{2\pi} \frac{d\theta}{a^{2} + \sin^{2} \theta}
$$
\n
$$
= \frac{1}{2} \int_{0}^{2\pi} \frac{d\theta}{a^{2} + \frac{1 - \cos \theta}{2}}
$$
\n
$$
= \frac{1}{2} \int_{0}^{2\pi} \frac{2d\theta}{2a^{2} + 1 - \frac{e^{i\theta} + e^{-i\theta}}{2}}
$$
\n
$$
= \frac{1}{2} \int_{0}^{2\pi} \frac{4d\theta}{4a^{2} + 2 - e^{i\theta} - e^{-i\theta}}
$$
\n
$$
= \frac{1}{2} \int_{0}^{2\pi} \frac{-4e^{i\theta}d\theta}{e^{2i\theta} - (4a^{2} + 2)e^{i\theta} + 1}
$$
\n
$$
= \frac{1}{2} \int_{\{|z| = 1\}} \frac{4i dz}{z^{2} - (4a^{2} + 2)z + 1} \qquad z = e^{i\theta}
$$
\n
$$
= \frac{4i}{2} \int_{\{|z| = 1\}} \frac{dz}{(z - \alpha)(z - \beta)}
$$
\n
$$
= 2i \left(2\pi i \text{Res}_{z = \beta} \frac{1}{(z - \alpha)(z - \beta)}\right)
$$
\n
$$
= -4\pi \frac{1}{\beta - \alpha}
$$
\n
$$
= \frac{-4\pi}{-4a\sqrt{a^{2} + 1}}
$$
\n
$$
= \frac{-\pi}{a\sqrt{a^{2} + 1}}
$$

$$
f_{\rm{max}}
$$

1

 $a^2 + 1$

a

with (1) since

$$
x^{2} - (4a^{2} + 2)x + 1 = 0 \implies x = \frac{4a^{2} + 2 \pm \sqrt{(4a^{2} + 2)^{2} - 4}}{2}
$$

$$
= \frac{4a^{2} + 2 \pm \sqrt{16a^{4} + 16a^{2} + 4 - 4}}{2}
$$

$$
= \frac{4a^{2} + 2 \pm \sqrt{16a^{4} + 16a^{2}}}{2}
$$

$$
= \frac{4a^{2} + 2 \pm 4a\sqrt{a^{2} + 1}}{2}
$$

$$
= 2a^{2} + 1 \pm 2a\sqrt{a^{2} + 1}
$$

$$
\alpha = 2a^{2} + 1 + 2a\sqrt{a^{2} + 1}
$$

$$
\beta = 2a^{2} + 1 - 2a\sqrt{a^{2} + 1}
$$

and (2) because $\alpha > 1$ for all $a > 0$.

Problem 2. Find the number of solutions of the equation $z - 2 - e^{-z} = 0$ in $H = \{z \in$ $\mathbb{C}: \Re(z) > 0$.

Solution. Let $f(z) = z - 2 - e^{-z}$. Then

$$
f(iy) = iy - 2 - e^{-iy} = iy - 2 - \cos(y) - i\sin(y) = -2 - \cos(y) + i(y - \sin(y))
$$

and so $\Re\left(f(iy)\right) \leq -1 < 0$ for all $y \in \mathbb{R}$. Thus, f sends the imaginary axis to the left-half plane, away from the origin.

Now, if $z - 2 - e^{-z} = 0$ then

$$
|e^{-z}| = e^{\Re(e-z)} = |z - 2| \ge |z| - 2 > 1
$$
 for all $|z| > 3$

and so for if *z* is a root of *f* and $|z| > 3$, then $Re(-z) = -Re(z) > 0$ and so $Re(z) < 0$ and z lies in the left-half plane. Namely, the total change in argument is at most π .

Now, let $z = Re^{i\theta}$ for $\theta \in (-\pi/2, \pi/2)$.

Then

$$
\frac{1}{R}f(Re^{i\theta}) = e^{i\theta} - \frac{2}{R} - \frac{e^{-Re^{i\theta}}}{R} \to e^{i\theta} \qquad R \to \infty
$$

and so by the argument principle, f has a total change in argument of π .

Namely, *f* can have at most one zero in the right half plane.

Since $f(0) < 0$ and $f(10) = 8 - \frac{1}{e^1}$ $\frac{1}{e^{10}}$ > 7 > 0 by the intermediate value theorem, *f* has a zero on the positive real axis.

Namely, *f* has exactly one zero in the right-half plane.

₩

Problem 3. Let $\Omega \neq \mathbb{C}$ be simply connected and let for any $c \in \Omega$, the mapping $\varphi_c : \Omega \to \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ be conformal so that $\varphi_c(c) = 0$. Let $g_c(z) = \log |\varphi_c(z)|$, $z \in \Omega \backslash \{c\}.$ Show that $g_a(b) = g_b(a)$ for any distinct $a, b \in \Omega$.

Solution. Let $a, b \in \Omega$ be distinct and let

$$
T: \mathbb{D} \to \mathbb{D}
$$

$$
z \mapsto \frac{z - \varphi_a(b)}{1 - \overline{\varphi_a(b)}z}
$$

Then *T* is a conformal map and isomorphism of the unit disk.

Note that φ_c being conformal for all *c*, implies that φ_c is locally invertible by the inverse function theorem.

Now, we examine $f(z) = (T \circ \varphi_a \circ \varphi_b^{-1})(z)$.

Then $f : \mathbb{D} \to \mathbb{D}$ with

$$
f(0) = T(\varphi_a(\varphi_b^{-1}(0))) = T(\varphi_a(b)) = 0.
$$

Therefore, by Schwarz' Lemma,

$$
|f(z)| \le |z| \qquad z \in \mathbb{D}
$$

and so namely,

$$
|f(\varphi_b(a))| = |T(\varphi_a(\varphi_b^{-1}(\varphi_b(a))))|
$$

= |T(\varphi_a(a))|
= |T(0)|
= |\varphi_a(b)|
 $\leq |\varphi_b(a)|$

Similarly, we can show using a different isomorphism of the disk that

$$
|\varphi_b(a)| \le |\varphi_a(b)|
$$

and so

$$
|\varphi_a(b)| = |\varphi_b(a)| \implies g_a(b) = g_b(a).
$$

₩

Problem 4. Let $a \in \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$, and

$$
f_a(z) = \frac{a-z}{1-\overline{a}z}, \qquad z \in \overline{\mathbb{D}}.
$$

Show that f_a is a holomorphic bijective mapping of D onto D which is its own inverse.

Solution. *f* is a Mobius Transform, and so namely it is bijective with inverse

$$
f_a^{-1}(z) = \frac{z - a}{\overline{a}z - 1} = \frac{a - z}{1 - \overline{a}z} = f_a(z).
$$

Note that being able to write the inverse directly implies that *f* is bijective.

Since $|a| < 1$, $\Big|$ 1 *a* $\frac{1}{|a|} > 1$ and so f_a does not have any poles inside the unit disk. Namely, f_a is holomorphic, bijective, and analytic in the unit disk.