Kayla Orlinsky

Complex Analysis Exam Spring 2017

Problem 1. Let γ be a circle with radius 1 and center 0 with positive direction of integration. Compute

$$
\int_{\gamma} e^{1 / z} d z
$$

Solution.

$$
\begin{aligned}
\int_{|z|=1} e^{1 / z} d z & \left.=\int_{\{ }|z|=1\right\} \sum_{n=0}^{\infty} \frac{1}{z^{n} n!} d z \\
& =\sum_{n=0}^{\infty} \int_{|z|=1} \frac{1}{z^{n} n!} d z \quad \text { since both the integral and sums exist } \\
& =\sum_{n=1}^{\infty} \int_{|z|=1} \frac{1}{z^{n} n!} d z \quad \text { first integral is of an analytic function so it dies } \\
& =\sum_{n=1}^{\infty}\left(\frac{2 \pi i f^{(n-1)}(0)}{(n!)^{2}}\right) \quad f(z)=1 \\
& =2 \pi i
\end{aligned}
$$

Problem 2. Assume that f is a holomorphic function on the unit disk $D=\{z \in \mathbb{C}$: $|z|<1\}$ satisfying

$$
f(z)^{3}=\overline{f(z)} \quad z \in D
$$

Prove that f is constant.

Solution.

$$
f^{4}(z)=\overline{f(z)} f(z)=|f(z)|^{2} \Longrightarrow f^{2}(z)=|f(z)| \in \mathbb{R} \quad z \in D
$$

Thus, for each $z \in D, f(z)$ must be either purely real or purely imaginary. Namely,

$$
f(D) \subset\{x: x \in \mathbb{R}\} \bigcup\{i y: y \in \mathbb{R}\} .
$$

However, by the open mapping theorem, if f is nonconstant, then $f(D)$ must be an open subset of the plane, since f is holomorphic. Since subsets of the real and imaginary lines are not open in \mathbb{C}, f must be constant.

Alternatively,

$$
|f(z)|^{3}=|\overline{f(z)}|=|f(z)| \Longrightarrow|f(z)|^{3}=|f(z)| \Longrightarrow|f(z)|=0 \text { or } 1 \forall z \in \mathbb{D}
$$

Thus, f is either identically 0 (constant) or f sends the open disk to the unit circle which contradicts the open mapping theorem.

Problem 3. Let $f(z)=\sum_{n=1}^{\infty} z^{n!}$.
(a) Show that $f(z)$ is holomorphic in the unit disk $D=\{z \in \mathbb{C}:|z|<1\}$.
(b) Show that f does not have any holomorphic extension, that is, there exists no g holomorphic on some open set $U \supset D$ such that $U \neq D$ and $f=\left.g\right|_{D}$. (Hint: Consider $e^{i \theta}$ where θ is rational.)

Solution. This question is nearly identical to Spring 2015: Problem 2. Thus, the proof here is the same as the one given there.
(a) f is holormophic if and only if the sum converges uniformly. For $|z|<r<1$, we have that $|z|^{n!} \leq r^{n!} \leq r^{n}$ since $r<1$, and so f converges uniformly by Weierstrass M-test on $\{|z|<r\}$. Since this holds for all $r<1$, we have that f converges uniformly and is therefore analytic on D.
(b) Let $D \subsetneq U$ open. Since $U \neq D$ and U is open, U must contain some z_{0} with $\left|z_{0}\right|=1$.

Again, since U is open, any neighborhood of z_{0} must contain some $z=e^{i \pi / m}$ for $m \in \mathbb{Z}$ since $|z|=1$.

However, then

$$
f(z)=\sum_{n=0}^{m-1} e^{i n!\pi / m}+\sum_{n=m}^{\infty} e^{i \pi n!/ m}=\sum_{n=0}^{m-1} e^{i n!\pi / m}+\sum_{n=m}^{\infty} 1=\infty
$$

since $n!/ m \in \mathbb{Z}$ for $n \geq m$.
Now, f has a non-removable singularity in every neighborhood of z_{0}.
Namely, f cannot be extended to a neighborhood to z_{0} since it will not converge in any punctured neighborhood of z_{0}.

Problem 4. Let f be an entire function such that

$$
f(z+m+n i)=f(z), \quad z \in \mathbb{C} \quad m, n \in \mathbb{Z}
$$

Prove that f is a constant function.

Solution. WLOG, let $f(0)=0$, else we can let $g(z)=f(z)-f(0)$.
Let $z \in \mathbb{C}$. Then let m be the integer component of $\mathcal{R e}(z)$ and n be the integer part of $\operatorname{Im}(z)$. Then for some $\alpha, \beta \in(0,1)$, we can write

$$
z=(m+\alpha)+(n+\beta) i \Longrightarrow f(z)=f((\alpha+\beta i)+(m+n i))=f(\alpha+\beta i) .
$$

Namely, f is uniquely determined by the values in takes in $\mathbb{D}=\{|z|<1\}$. Since f is entire, by the maximum modulus principle, f must attain a maximum on $\partial \overline{\mathbb{D}}=\{|z|=1\}$.

Now, because f is entire, it has no poles, so

$$
M=\sup _{z \in \partial \overline{\mathbb{D}}}|f(z)|<\infty
$$

and

$$
|f(z)| \leq M \quad \text { for all } z \in \mathbb{C}
$$

so by Louiville's f is entire and bounded so it is constant.

