Kayla Orlinsky
 Complex Analysis Exam Fall 2017

Problem 1. Let $f(z)=u(z)+i v(z)$ be an entire function and assume that $|u(z)| \geq|v(z)|$ for all $z \in \mathbb{C}$. Show that f is a constant.

Solution. Clearly $f(\mathbb{C}) \subset\{x+i y:|y| \leq|x|\}$. This set can be broken down into the four quadrants to get

Now, since \mathbb{C} is open, by the open mapping theorem, $f(\mathbb{C})$ must be open. Therefore, $f(\mathbb{C})$ cannot contain 0 .

Furthermore, $f(\mathbb{C})$ must be connected. Thus, $f(\mathbb{C})$ is either entirely in the left-half plane or entirely in the right-half plane.

WLOG, assume $\operatorname{Re}(f(z))>0$ for all z. Namely, that f is contained in the right half plane.

Then, let $g(z)=i z$ and $T(z)=\frac{z-i}{z+i}$.
Then $T \circ g \circ f$ is an entire map from \mathbb{C} to the unit disk \mathbb{D}. Therefore, by Louiville's Theorem, $T \circ g \circ f$ is constant.

However, this forces f to be constant since g and T certainly are not constant.

Problem 2. Let $\alpha \in(0,1)$ and $n \in \mathbb{N}$. Prove that the equation $e^{z}(z-1)^{n}=\alpha$ has exactly n simple roots in the right half plane $\{z: \operatorname{Re}(z)>0\}$.

Solution. This problem is nearly identical to Spring 2016: Problem 2, with the only difference being that the root is now a real number.

First, we note that if $e^{z}(z-1)^{n}=\alpha$ and z is in the right half plane, then $\operatorname{Re}(z) \geq 0$ so $\left|e^{z}\right| \geq 1$. Namely,

$$
\begin{aligned}
|z-1|^{n} & \leq\left|e^{z}\right||z-1|^{n} \\
& =|\alpha| \\
& <1
\end{aligned}
$$

Thus, $|z-1|<1$ and so the roots that lie in the right half plane are all contained in the circle $\{|z-1|<1\}$.

Now, let $f(z)=e^{z}(z-1)^{n}-\alpha$ and $g(z)=e^{z}(z-1)^{n}$.
Then, in the circle $\{|z-1| \leq 1\}, g$ has exactly n roots (since multiplicities are counted).
Furthermore, on $\{|z-1|=1\}$, we have that

$$
|f(z)-g(z)|=|\alpha|<1=|z-1| \leq|g(z)|
$$

and so f and g have the same number of roots inside the circle $\{|z-1|<1\}$ which is n.
Now, if f has any non-simple roots (any repeated roots), then f and f^{\prime} would have a root in common.

However,

$$
f^{\prime}(z)=e^{z}(z-1)^{n}+n e^{z}(z-1)^{n-1}=e^{z}(z-1)^{n-1}[z-1+n]
$$

and so if f and f^{\prime} are simultaneously zero, then

$$
\begin{aligned}
f(z) & =0 \\
e^{z}(z-1)^{n} & =\alpha \\
e^{z}(z-1)^{n-1} & =\frac{\alpha}{z-1} \\
f^{\prime}(z) & =0 \\
e^{z}(z-1)^{n-1}[z-1+n] & =0 \\
\frac{\alpha}{z-1}[z-1+n] & =0
\end{aligned}
$$

since $z=1$ is not a root of f since $\alpha \neq 0$ and $z-1=-n$ is not in $\{|z-1|<1\}$ for any n, f^{\prime} and f share no roots in $\{|z-1|<1\}$. And since we have already shown that all of the roots of f in the right half plane lie in this circle, all n roots of f in the right-half plane have multiplicity 1 and so are simple.

Problem 3. Evaluate the integral

$$
\int_{0}^{2 \pi} \frac{d t}{\cos t-2}
$$

Solution. By the Residue Theorem,

$$
\begin{align*}
\int_{0}^{2 \pi} \frac{d t}{\cos t-2} & =\int_{0}^{2 \pi} \frac{d t}{\frac{e^{i t}+e^{-i t}}{2}-2} \\
& =\int_{0}^{2 \pi} \frac{2 e^{i t} d t}{e^{2 i t}-4 e^{i t}+1} \\
& =\int_{|z|=1} \frac{-2 i d z}{z^{2}-4 z+1} \quad z=e^{i t} \\
& =\int_{|z|=1} \frac{-2 i d z}{(z-(2+\sqrt{3}))(z-(2-\sqrt{3}))} \tag{1}\\
& =2 \pi i \operatorname{Res}_{z=2-\sqrt{3}}^{(z-(2+\sqrt{3}))(z-(2-\sqrt{3}))} \\
& =4 \pi \frac{1}{2-\sqrt{3}-(2+\sqrt{3})} \\
& =4 \pi \frac{1}{-2 \sqrt{3}} \\
& =\frac{-2 \pi}{\sqrt{3}}
\end{align*}
$$

With (1) since

$$
\begin{aligned}
z^{2}-4 z+1 & =0 \\
z & =\frac{4 \pm \sqrt{16-4}}{2} \\
& =\frac{4 \pm 2 \sqrt{3}}{2} \\
& =2 \pm \sqrt{3}
\end{aligned}
$$

and (2) since $|2+\sqrt{3}|>1$ and $|2-\sqrt{3}|<1$.

Problem 4. Write an entire function which has the simple zeros $1,4,9,16,25, \ldots$ and has no other zeros.

Solution. The zeros are $1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, \ldots$ Namely, if such a function exists then it is of the form

$$
f(z)=\prod_{n=1}^{\infty} \frac{\left(z-n^{2}\right)}{n^{2}}=\prod_{n=1}^{\infty}\left(\frac{z}{n^{2}}-1\right)=-\prod_{n=1}^{\infty}\left(1-\frac{z}{n^{2}}\right)
$$

If we can show that the product converges uniformly, then f will be analytic everywhere.
Since $\Pi\left(1-a_{n}\right)$ converges absolutely and uniformly if and only if $\sum a_{n}$ converges absolutely and uniformly.

However, clearly,

$$
\sum_{n=1}^{\infty} \frac{|z|}{n^{2}}<\infty
$$

for all z, and since for $\{|z|<M\}$ we get that $\frac{|z|}{n^{2}}<\frac{M}{n^{2}}$ and so the sum converges uniformly.
Since this holds for all M, the sum converges uniforly everywhere and so f defines an analytic function whose only zeros are $\left\{n^{2}\right\}_{1}^{\infty}$ as desired.

