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Problem 1. Let f(z) = u(z)+iv(z) be an entire function and assume that |u(z)| ≥ |v(z)|
for all z ∈ C. Show that f is a constant.

Solution. Clearly f(C) ⊂ {x+ iy : |y| ≤ |x|}. This set can be broken down into the four
quadrants to get

Re

Im

Now, since C is open, by the open mapping theorem, f(C) must be open. Therefore,
f(C) cannot contain 0.

Furthermore, f(C) must be connected. Thus, f(C) is either entirely in the left-half plane
or entirely in the right-half plane.

WLOG, assume Re(f(z)) > 0 for all z. Namely, that f is contained in the right half
plane.

Then, let g(z) = iz and T (z) = z−i
z+i .

Then T ◦ g ◦ f is an entire map from C to the unit disk D. Therefore, by Louiville’s
Theorem, T ◦ g ◦ f is constant.

However, this forces f to be constant since g and T certainly are not constant. �
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Problem 2. Let α ∈ (0, 1) and n ∈ N. Prove that the equation ez(z − 1)n = α has
exactly n simple roots in the right half plane {z : Re(z) > 0}.

Solution. This problem is nearly identical to Spring 2016: Problem 2, with the only
difference being that the root is now a real number.

First, we note that if ez(z − 1)n = α and z is in the right half plane, then Re(z) ≥ 0 so
|ez| ≥ 1. Namely,

|z − 1|n ≤ |ez||z − 1|n

= |α|
< 1

Thus, |z − 1| < 1 and so the roots that lie in the right half plane are all contained in the
circle {|z − 1| < 1}.

Now, let f(z) = ez(z − 1)n − α and g(z) = ez(z − 1)n.
Then, in the circle {|z − 1| ≤ 1}, g has exactly n roots (since multiplicities are counted).
Furthermore, on {|z − 1| = 1}, we have that

|f(z)− g(z)| = |α| < 1 = |z − 1| ≤ |g(z)|

and so f and g have the same number of roots inside the circle {|z − 1| < 1} which is n.
Now, if f has any non-simple roots (any repeated roots), then f and f ′ would have a

root in common.
However,

f ′(z) = ez(z − 1)n + nez(z − 1)n−1 = ez(z − 1)n−1[z − 1 + n]

and so if f and f ′ are simultaneously zero, then

f(z) = 0
ez(z − 1)n = α

ez(z − 1)n−1 = α

z − 1
f ′(z) = 0

ez(z − 1)n−1[z − 1 + n] = 0
α

z − 1[z − 1 + n] = 0

since z = 1 is not a root of f since α 6= 0 and z − 1 = −n is not in {|z − 1| < 1} for any n,
f ′ and f share no roots in {|z − 1| < 1}. And since we have already shown that all of the
roots of f in the right half plane lie in this circle, all n roots of f in the right-half plane have
multiplicity 1 and so are simple. �
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Problem 3. Evaluate the integral ∫ 2π

0

dt

cos t− 2 .

Solution. By the Residue Theorem,∫ 2π

0

dt

cos t− 2 =
∫ 2π

0

dt
eit+e−it

2 − 2

=
∫ 2π

0

2eitdt
e2it − 4eit + 1

=
∫
|z|=1

−2idz
z2 − 4z + 1 z = eit

=
∫
|z|=1

−2idz
(z − (2 +

√
3))(z − (2−

√
3))

(1)

= 2πiResz=2−
√

3
−2i

(z − (2 +
√

3))(z − (2−
√

3))

= 4π 1
2−
√

3− (2 +
√

3)

= 4π 1
−2
√

3

= −2π√
3

With (1) since

z2 − 4z + 1 = 0

z = 4±
√

16− 4
2

= 4± 2
√

3
2

= 2±
√

3

and (2) since |2 +
√

3| > 1 and |2−
√

3| < 1. �
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Problem 4. Write an entire function which has the simple zeros 1, 4, 9, 16, 25, ... and
has no other zeros.

Solution. The zeros are 12, 22, 32, 42, 52, .... Namely, if such a function exists then it is of
the form

f(z) =
∞∏
n=1

(z − n2)
n2 =

∞∏
n=1

(
z

n2 − 1
)

= −
∞∏
n=1

(
1− z

n2

)
If we can show that the product converges uniformly, then f will be analytic everywhere.

Since∏(1−an) converges absolutely and uniformly if and only if∑ an converges absolutely
and uniformly.

However, clearly,
∞∑
n=1

|z|
n2 <∞

for all z, and since for {|z| < M} we get that |z|
n2 <

M
n2 and so the sum converges uniformly.

Since this holds for all M, the sum converges uniforly everywhere and so f defines an
analytic function whose only zeros are {n2}∞1 as desired. �
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