Kayla Orlinsky

Complex Analysis Exam Spring 2016

Problem 1. Let $a \in \mathbb{C}$ be such that $0<|a|<1$, and set

$$
f(z)=\frac{1-z^{2}}{z^{2}-\left(a+\frac{1}{a}\right) z+1} .
$$

Find the Laurent expansion of f in a neighborhood of the unit circle $|z|=1$.

Solution. We interpret "A neighborhood of the unit circle" to actually mean for some $B_{r}(0) \subset \mathbb{D}$.

First,

$$
\begin{aligned}
z^{2}-\left(a+\frac{1}{a}\right) z+1 & =0 \\
\Longrightarrow z & =\frac{a+\frac{1}{a} \pm \sqrt{\left(a+\frac{1}{a}\right)^{2}-4}}{2} \\
& =\frac{a+\frac{1}{a} \pm \sqrt{a^{2}+2+\frac{1}{a^{2}}-4}}{2} \\
& =\frac{a+\frac{1}{a} \pm \sqrt{a^{2}-2+\frac{1}{a^{2}}}}{2} \\
& =\frac{a+\frac{1}{a} \pm \sqrt{\left(a-\frac{1}{a}\right)^{2}}}{2} \\
& =\frac{a+\frac{1}{a} \pm\left(a-\frac{1}{a}\right)}{2} \\
& =a, \frac{1}{a}
\end{aligned}
$$

Thus,

$$
f(z)=\frac{\left(1-z^{2}\right)}{(z-a)\left(z-\frac{1}{a}\right)}
$$

Now,

$$
\begin{aligned}
f(z) & =\left(1-z^{2}\right)\left[\frac{\frac{a}{a^{2}-1}}{z-a}-\frac{\frac{a}{a^{2}-1}}{z-\frac{1}{a}}\right] \\
& =\left(1-z^{2}\right)\left[\frac{\frac{a}{a^{2}-1}}{-a\left(1-\frac{z}{a}\right)}-\frac{\frac{a}{a^{2}-1}}{\frac{1}{a}(1-a z)}\right] \\
& =\left(1-z^{2}\right)\left[\frac{\frac{a^{2}}{a^{2}-1}}{1-a z}-\frac{\frac{1}{a^{2}-1}}{1-\frac{z}{a}}\right]
\end{aligned}
$$

Now, for $|z|<|a|$, we have that $|a z|<|a|^{2}<1$ and $\frac{|z|}{|a|}<1$.
Thus, on $\{|z|<|a|\}$,

$$
\frac{\frac{a^{2}}{a^{2}-1}}{1-a z}=\frac{a^{2}}{a^{2}-1} \sum_{n=0}^{\infty}(a z)^{n}
$$

and

$$
\frac{\frac{1}{a^{2}-1}}{1-\frac{z}{a}}=\frac{1}{a^{2}-1} \sum_{n=0}^{\infty}\left(\frac{z}{a}\right)^{n}
$$

SO

$$
\begin{aligned}
f(z) & =\left(1-z^{2}\right) \sum_{n=0}^{\infty}\left[\frac{a^{2}}{a^{2}-1} a^{n}-\frac{a^{-n}}{a^{2}-1}\right] z^{n} \\
& =\left(1-z^{2}\right) \sum_{n=0}^{\infty}\left[\frac{a^{n+2}-a^{-n}}{a^{2}-1}\right] z^{n} \\
& =\left(1-z^{2}\right) \sum_{n=0}^{\infty} \alpha_{n} z^{n} \quad \alpha_{n}=\frac{a^{n+2}-a^{-n}}{a^{2}-1} \\
& =\sum_{n=0}^{\infty} \alpha_{n} z^{n}-\sum_{n=0}^{\infty} \alpha_{n} z^{n+2} \\
& =\sum_{n=0}^{\infty} \alpha_{n} z^{n}-\sum_{k=-2}^{\infty} \alpha_{k+2} z^{k} \\
& =\sum_{n=0}^{\infty} \alpha_{n} z^{n}-\alpha_{0} z^{-2}-\alpha_{1} z^{-1}-\sum_{k=0}^{\infty} \alpha_{k+2} z^{k} \\
& =-\alpha_{0} z^{-2}-\alpha_{1} z^{-1}+\sum_{n=0}^{\infty} \alpha_{n} z^{n}-\sum_{n=0}^{\infty} \alpha_{n+2} z^{n} \\
& =-\alpha_{0} z^{-2}-\alpha_{1} z^{-1}+\sum_{n=0}^{\infty}\left(\alpha_{n}-\alpha_{n+2}\right) z^{n} \\
& =-z^{-2}-\frac{a^{2}+1}{a} z^{-1}+\sum_{n=0}^{\infty}\left(\alpha_{n}-\alpha_{n+2}\right) z^{n}
\end{aligned}
$$

Alternatively, note that we could have interpreted "A neighborhood of the unit circle" to actually mean that we must find the Laurent expansion in some annulus $\{s<|z|<t\}$ with $s<1<t$ so the unit circle is contained in the annulus.

In this case, we would use that for $|a|<|z|<\frac{1}{|a|}$, so $\frac{|a|}{|z|}<1$ and $|a z|<1$.
Then we would simply rewrite $f(z)$ to be

$$
\begin{aligned}
f(z) & =\left(1-z^{2}\right)\left[\frac{\frac{a}{a^{2}-1}}{z-a}-\frac{\frac{a}{a^{2}-1}}{z-\frac{1}{a}}\right] \\
& =\left(1-z^{2}\right)\left[\frac{\frac{a}{a^{2}-1}}{z\left(1-\frac{a}{z}\right)}-\frac{\frac{a}{a^{2}-1}}{\frac{1}{a}(1-a z)}\right] \\
& =\left(1-z^{2}\right)\left[\frac{\frac{1}{z} \frac{a}{a^{2}-1}}{1-\frac{a}{z}}-\frac{\frac{a^{2}}{a^{2}-1}}{1-a z}\right]
\end{aligned}
$$

and so on $\left\{|a|<|z|<\frac{1}{|a|}\right\}$, which is an annulus containing the unit circle since $|a|<1<\frac{1}{|a|}$,

$$
\frac{\frac{1}{z} \frac{a}{a^{2}-1}}{1-\frac{a}{z}}=\frac{a}{a^{2}-1} \sum_{n=0}^{\infty} \frac{a^{n}}{z^{n+1}}
$$

and

$$
\begin{aligned}
& \frac{\frac{a^{2}}{a^{2}-1}}{1-a z}=\frac{a^{2}}{a^{2}-1} \sum_{n=0}^{\infty}(a z)^{n} \\
& f(z)=\left(1-z^{2}\right)\left[\frac{a}{a^{2}-1} \sum_{n=0}^{\infty} \frac{a^{n}}{z^{n+1}}-\frac{a^{2}}{a^{2}-1} \sum_{n=0}^{\infty}(a z)^{n}\right] \\
&=\frac{a}{a^{2}-1}\left[\sum_{n=0}^{\infty} \frac{a^{n}}{z^{n+1}}-\sum_{n=0}^{\infty} \frac{a^{n}}{z^{n-1}}\right]-\frac{a^{2}}{a^{2}-1}\left[\sum_{n=0}^{\infty} a^{n} z^{n}-\sum_{n=0}^{\infty} a^{n} z^{n+2}\right] \\
&=\frac{a}{a^{2}-1}\left[\sum_{n=0}^{\infty} \frac{a^{n}}{z^{n+1}}-z-a-\sum_{n=2}^{\infty} \frac{a^{n}}{z^{n-1}}\right]-\frac{a^{2}}{a^{2}-1}\left[1+a z+\sum_{n=2}^{\infty} a^{n} z^{n}-\sum_{n=0}^{\infty} a^{n} z^{n+2}\right] \\
&=\frac{a}{a^{2}-1}\left[\sum_{n=0}^{\infty} \frac{a^{n}}{z^{n+1}}-z-a-\sum_{k=0}^{\infty} \frac{a^{k+2}}{z^{k+1}}\right]-\frac{a^{2}}{a^{2}-1}\left[1+a z+\sum_{k=0}^{\infty} a^{k+2} z^{k+2}-\sum_{n=0}^{\infty} a^{n} z^{n+2}\right] \\
&=\frac{a}{a^{2}-1}\left[-z-a+\sum_{n=0}^{\infty} \frac{a^{n}-a^{n+2}}{z^{n+1}}\right]-\frac{a^{2}}{a^{2}-1}\left[1+a z+\sum_{n=0}^{\infty}\left(a^{n+2}-a^{n}\right) z^{n+2}\right] \\
&=-\frac{a}{a^{2}-1} z-\frac{a^{2}}{a^{2}-1}+\frac{a}{a^{2}-1} \sum_{n=0}^{\infty} \frac{a^{n}-a^{n+2}}{z^{n+1}}-\frac{a^{2}}{a^{2}-1}-\frac{a^{3}}{a^{2}-1} z-\frac{a^{2}}{a^{2}-1} \sum_{n=0}^{\infty}\left(a^{n+2}-a^{n}\right) z^{n+2} \\
&=-\frac{2 a^{2}}{a^{2}-1}-\frac{a+a^{3}}{a^{2}-1} z+\frac{a}{a^{2}-1} \sum_{n=0}^{\infty} \frac{a^{n}-a^{n+2}}{z^{n+1}}-\frac{a^{2}}{a^{2}-1} \sum_{n=0}^{\infty}\left(a^{n+2}-a^{n}\right) z^{n+2}
\end{aligned}
$$

Problem 2. Let $a \in \mathbb{C}$ be such that $0<|a|<1$ and let $n \in \mathbb{N}$. Show that $e^{z}(z-1)^{n}=a$ has exactly n simple roots in the half-plane $\{z \in \mathbb{C}: \operatorname{Re}(z)>0\}$.

Solution. First, note that if z is in the right-half plane and $e^{z}(z-1)^{n}=a$ then

$$
\begin{aligned}
|z-1|^{n} & <\left|e^{z}\right||z-1|^{n} \quad\left|e^{z}\right|=e^{\operatorname{Re}(z)}>e^{0}=1 \\
& =|a|<1 \\
\Longrightarrow|z-1| & <1
\end{aligned}
$$

so if $f(z)=e^{z}(z-1)^{n}-a$ has a zero in the right half plane, it is in the disk $\{|z-1|<1\}$.
Now, let $g(z)=e^{z}(z-1)^{n}$. Then g has n zeros in the right half plane, namely, $g(1)=0$ with multiplicity n.

Furthermore, on $\{|z-1|=1\}$, we have that

$$
|f(z)-g(z)|=|\alpha|<1=|z-1| \leq|g(z)|
$$

and so f and g have the same number of roots inside the circle $\{|z-1|<1\}$ which is n.
Now, if f has any non-simple roots (any repeated roots), then f and f^{\prime} would have a root in common.

However,

$$
f^{\prime}(z)=e^{z}(z-1)^{n}+n e^{z}(z-1)^{n-1}=e^{z}(z-1)^{n-1}[z-1+n]
$$

and so if f and f^{\prime} are simultaneously zero, then

$$
\begin{aligned}
f(z) & =0 \\
e^{z}(z-1)^{n} & =a \\
e^{z}(z-1)^{n-1} & =\frac{a}{z-1} \\
f^{\prime}(z) & =0 \\
e^{z}(z-1)^{n-1}[z-1+n] & =0 \\
\frac{a}{z-1}[z-1+n] & =0
\end{aligned}
$$

since $z=1$ is not a root of f since $a \neq 0$ and $z-1=-n$ is not in $\{|z-1|<1\}$ for any n, f^{\prime} and f share no roots in $\{|z-1|<1\}$. And since we have already shown that all of the roots of f in the right half plane lie in this circle, all n roots of f in the right-half plane have multiplicity 1 and so are simple.

Problem 3. Evaluate

$$
\int_{0}^{\infty} \frac{\log ^{2} x}{1+x^{2}} d x
$$

Solution. This question is identical to Fall 2013: Problem 1. The same proof given there is provided here.

We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin since every branch cut of $\log x$ intersects 0 .

Then we take any branch which does not intersect the upper half plane (including the real line).

Let

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{\log ^{2} z}{z^{2}+1} d z \\
& I_{2}=\int_{\Gamma_{2}} \frac{\log z}{z^{2}+1} d z \\
& I_{\varepsilon}=\int_{\Gamma_{\varepsilon}} \frac{\log z}{z^{2}+1} d z \\
& I_{R}=\int_{\Gamma_{R}} \frac{\log z}{z^{2}+1} d z
\end{aligned}
$$

Note that

$$
\begin{aligned}
I_{1} & =\int_{-R}^{-\varepsilon} \frac{\log ^{2} x}{1+x^{2}} d x \\
& =\int_{R}^{\varepsilon} \frac{-(\log x+\pi i)^{2}}{1+x^{2}} d x \\
& =\int_{\varepsilon}^{R} \frac{\log ^{2} x+2 \pi i \log x-\pi^{2}}{1+x^{2}} d x \\
& =I_{2}+2 \pi i \int_{\varepsilon}^{R} \frac{\log x}{1+x^{2}} d x-\pi^{2} \int_{\varepsilon}^{R} \frac{1}{1+x^{2}} d x \\
& =I_{2}-\pi^{2}\left(\tan ^{-1}(R)-\tan ^{-1}(\varepsilon)\right)+2 \pi i \int_{\varepsilon}^{R} \frac{\log x}{1+x^{2}} d x
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{\log ^{2} z}{1+z^{2}} d z\right| \\
& \leq \int_{0}^{\pi} \frac{R|\log R+i \theta|^{2}}{R^{2}-1} d \theta \\
& \leq \pi \frac{R \log ^{2} R+2 R \pi \log R+R \pi^{2}}{R^{2}-1} \rightarrow 0 \quad R \rightarrow \infty
\end{aligned}
$$

since

$$
\lim _{R \rightarrow \infty} \frac{\log ^{2} R}{R}=\lim _{R \rightarrow \infty} \frac{2 \log R}{R}=\lim _{R \rightarrow \infty} \frac{2}{R}=0
$$

by L'Hopital's Rule and similarly, $\frac{\log R}{R} \rightarrow 0$.
Similarly,

$$
\begin{aligned}
\left|I_{\varepsilon}\right| & \leq \int_{\pi}^{0} \frac{\varepsilon|\log \varepsilon+i \theta|^{2}}{\varepsilon^{2}-1} d \theta \\
& \leq \pi \frac{\varepsilon \log ^{2} \varepsilon+2 \varepsilon \pi \log \varepsilon+\varepsilon \pi^{2}}{\varepsilon^{2}-1} \rightarrow 0 \quad \varepsilon \rightarrow 0
\end{aligned}
$$

since

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \log ^{2} \varepsilon=\lim _{\varepsilon \rightarrow 0} \frac{2 \log \varepsilon}{\frac{-1}{\varepsilon}}=\lim _{\varepsilon \rightarrow 0} \frac{2}{\frac{1}{\varepsilon}}=0
$$

by L'Hopital's Rule.

Thus, by the Residue Theorem,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=i} \frac{\log ^{2} z}{z^{2}+1} & =2 \pi i \frac{\log ^{2}(i)}{i+i} \\
& =\pi\left(i \frac{\pi}{2}\right)^{2} \\
& =-\frac{\pi^{3}}{4} \\
& =\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left(I_{1}+I_{2}+I_{\varepsilon}+I_{R}\right. \\
& =2 \int_{0}^{\infty} \frac{\log ^{2} x}{1+x^{2}} d x-\frac{\pi^{3}}{2} \\
\Longrightarrow \int_{0}^{\infty} \frac{\log ^{2} x}{1+x^{2}} d x & =\frac{\pi^{3}}{8}
\end{aligned}
$$

Note that since the residue is real this forces $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=0$.

Problem 4. Denote $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. Assume that $f: \mathbb{D} \rightarrow \mathbb{D}$ is analytic. Show that if $z_{1} \neq z_{2}$ are fixed points of f in \mathbb{D}, then f is the identity map.

Solution. Since \mathbb{D} is an open simply connected subset of \mathbb{C} which is not all of \mathbb{C}, by the Riemann Mapping Theorem, there exists a $g: \mathbb{D} \rightarrow \mathbb{D}$ which is analytic, bijective, has an analytic inverse and is such that $g\left(z_{1}\right)=0$. Say $g\left(z_{2}\right)=w$. Then

Then $g \circ f \circ g^{-1}: \mathbb{D} \rightarrow \mathbb{D}$ such that

$$
g\left(f\left(g^{-1}(0)\right)\right)=g\left(f\left(z_{1}\right)\right)=g\left(z_{1}\right)=0 .
$$

Furthermore,

$$
g\left(f\left(g^{-1}(w)\right)\right)=g\left(f\left(z_{2}\right)\right)=g\left(z_{2}\right)=w
$$

and so

$$
\left|\left(g \circ f \circ g^{-1}\right)(w)\right|=|w|
$$

and so by Schwarz's Lemma, $g \circ f \circ g^{-1}=a z$ where $|a|=1$. However, since

$$
g\left(f\left(g^{-1}(w)\right)\right)=w=a w \Longrightarrow a=1 .
$$

Namely, $g \circ f \circ g^{-1}$ is the identity map and so f must be the identity map.

