Kayla Orlinsky
 Complex Analysis Exam Fall 2016

Problem 1. Let $A=\{z \in \mathbb{C}: r<|z|<R\}$ for some $0<r<R<\infty$. Prove that $f(z)=1 / z$ cannot be uniformly approximated in A by complex polynomials.

Solution. Let $\left\{p_{n}(z)\right\}$ be a sequence of polynomials converging uniformly to f on A.
Let $\varepsilon>0$ and N such that $\left|f(z)-p_{n}(z)\right|<\varepsilon$ for all $n \geq N$ and all $z \in A$.
Then

$$
\left|p_{n}(z)\right|-|f(z)| \leq\left|f(z)-p_{n}(z)\right|<\varepsilon
$$

and so

$$
\left|z p_{n}(z)\right|<\varepsilon|z|+1
$$

Let $q_{n}(z)=z p_{n}(z)$. Then q_{n} is entire so on $\{|z| \leq M\}$

$$
\left|q_{n}(z)\right| \leq \varepsilon M+1 .
$$

Therefore, by the Cauchy Estimate, on $\{|z| \leq M\}$,

$$
\left|q_{n}^{(2)}(z)\right| \leq \frac{2!(1+\varepsilon M)}{M^{2}} \rightarrow 0 \quad M \rightarrow \infty
$$

Therefore, there exists $a, b \in \mathbb{C}$ so $q_{n}(z)=a z+b=z p_{n}(z)$ and so

$$
p_{n}(z)=a+\frac{b}{z}
$$

which is clearly a contradiction since p_{n} is a polynomial.
Thus, no such sequence can exist.

Problem 2. Let $D=\mathbb{C} \backslash[-1,1]$. Prove that $f(z)=z^{2}-1$, for $z \in D$, has an analytic square root but does not have an analytic logarithm.

Solution. This question relies on two key facts

- f is an $n^{\text {th }}$ root if and only if

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \quad \in n \mathbb{Z}
$$

- f has an analytic logarithm if and only if f has an analytic $n^{t h}$ root for every n Since these facts are not immediately obvious, they will be proved here.

Claim 1. Let f have no zeros in an open (NOT necessarily simply connected) region Ω, then f has an $n^{\text {th }}$ root if and only if

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \quad \in n \mathbb{Z}
$$

for all closed curves $\gamma \subset \Omega$.
Proof. \square If f has an $n^{t h}$ root, then there exists an analytic $g(z)$ in Ω such that $f(z)=g^{n}(z)$.

Thus, for all $\gamma \subset \Omega$ closed,

$$
\begin{aligned}
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z & =\frac{1}{2 \pi i} \int_{\gamma} \frac{n g^{n-1}(z) g^{\prime}(z)}{g^{n}(z)} d z \\
& =n\left[\frac{1}{2 \pi i} \int_{\gamma} \frac{g^{\prime}(z)}{g(z)} d z\right] \\
& =n(\text { number of zeros of } g \text { in } \gamma) \\
& \in n \mathbb{Z}
\end{aligned}
$$

\Longleftarrow Let

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \quad \in n \mathbb{Z}
$$

for all closed curves $\gamma \subset \Omega$.
Now, fix some $z_{0} \in \Omega$ and let γ_{z} be some curve in Ω from z_{0} to some $z \in \Omega$.

Given γ_{z} and $\tilde{\gamma}_{z}$ two different paths, $\Gamma=\gamma_{z} \tilde{\gamma}_{z}^{-1}$ is a closed path and since

$$
\frac{1}{n} \int_{\Gamma} \frac{f^{\prime}(\xi)}{f(\xi)} d \xi \quad \in 2 \pi i \mathbb{Z}
$$

we have that $\frac{1}{n} \int_{\gamma_{z}} \frac{f^{\prime}(\xi)}{f(\xi)} d \xi$ differs by choice of path by integer multiples of $2 \pi i$.
Let

$$
h(z)=e^{\frac{1}{n} \int_{\gamma_{z}} \frac{f^{\prime}(\xi)}{f(\xi)} d \xi}
$$

Then h is independent of choice of γ_{z} and so is well defined.
Finally, since f has no zeros in Ω, then $\frac{f^{\prime}}{f}$ is analytic in Ω and so $h^{\prime}(z)$ exists and

$$
\begin{aligned}
h^{\prime}(z) & =e^{\frac{1}{n} \int_{\gamma_{z}} \frac{f^{\prime}(\xi)}{f(\xi)} d \xi} \frac{f^{\prime}(z)}{n f(z)}=h(z) \frac{f^{\prime}(z)}{n f(z)} . \\
\frac{d}{d z} \frac{f(z)}{h^{n}(z)} & =\frac{f^{\prime}(z) h^{n}(z)-n f(z) h^{n-1}(z) h^{\prime}(z)}{h^{2 n}(z)} \\
& =\frac{f^{\prime}(z) h^{n}(z)-n f(z) h^{n-1}(z) h(z) \frac{f^{\prime}(z)}{n f(z)}}{h^{2 n}(z)} \\
& =\frac{f^{\prime}(z) h^{n}(z)-h^{n}(z) f^{\prime}(z)}{h^{2 n}(z)} \\
& =0
\end{aligned}
$$

Therefore, $\frac{f(z)}{h^{n}(z)}=c$ some constant and so $f(z)=c h^{n}(z)=\left(c^{1 / n} h(z)\right)^{n}$.
Finally, then f must have an $n^{\text {th }}$ root.
Now,

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{2 z}{z^{2}-1}
$$

which has poles at $-1,1 \notin D$. Therefore, any closed curve $\gamma \subset D$ either dodges the line segment $[-1,1]$ and so cannot contain either of the two poles, or it wraps around the line segment $[-1,1]$ in which case, it must contain both poles.

Namely,

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \in 2 \mathbb{Z}
$$

for all closed curves $\gamma \subset D$.
Thus, by Claim 1 a square root of f exists.
Finally, we note that f has an analytic logarithm if and only if f has an analytic $n^{\text {th }}$ root for all n.

Claim 2. If f has no zeros in Ω, then f has an analytic logarithm if and only if f has an analytic $n^{\text {th }}$ root for all n.

Proof. \Longrightarrow If f has an analytic logarithm, then there exists an analytic $g(z)$ such that $f(z)=e^{g(z)}$.

Thus, for all closed curves γ,

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{e^{g(z)} g^{\prime}(z)}{e^{g(z)}} d z=\frac{1}{2 \pi i} \int_{\gamma} g^{\prime}(z) d z=0
$$

since g^{\prime} is also analytic.
Since $0 \in n \mathbb{Z}$ for all n, by Claim $1, f$ has an $n^{\text {th }}$ root for all n.
\qquad If f has an $n^{\text {th }}$ root for all n, then

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for all γ closed in the domain.
Namely,

$$
g(z)=\frac{1}{n} \int_{z_{0}}^{z} \frac{f^{\prime}(z)}{f(z)} d z
$$

is an analytic function and well defined for all z and all fixed z_{0}.
Therefore, using the same idea as Claim 1, we get that $f=e^{g(z)}$ where g is analytic and so f has an analytic logarithm in Ω.

Therefore, by Claim 2, f cannot have an analytic logarithm, since $\gamma=|z|=2$ gives

$$
\frac{1}{2 \pi i} \int_{|z|=2} \frac{f^{\prime}(z)}{f(z)} d z=\frac{1}{2 \pi i} \int_{|z|=2} \frac{2 z}{z^{2}-1} d z=\operatorname{Res}_{z=1} \frac{2 z}{z^{2}-1}+\operatorname{Res}_{z=-1} \frac{2 z}{z^{2}-1}=\frac{2}{1+1}+\frac{-2}{-1-1}=2 \neq 0
$$

Note that to actually determine the value of $\int_{\gamma} \frac{f^{\prime}}{f} d z$, we can view the integral in \mathbb{C} and apply the argument principle or residue theorem there.

Since the integral exists in D, the two values must be the same.

Problem 3. Evaluate

$$
\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x
$$

Solution. We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin since every branch cut of $\log x$ intersects 0 .

Then we take any branch which does not intersect the upper half plane (including the real line).

Let

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{\log z}{z^{2}+1} d z \\
& I_{2}=\int_{\Gamma_{2}} \frac{\log z}{z^{2}+1} d z \\
& I_{\varepsilon}=\int_{\Gamma_{\varepsilon}} \frac{\log z}{z^{2}+1} d z \\
& I_{R}=\int_{\Gamma_{R}} \frac{\log z}{z^{2}+1} d z
\end{aligned}
$$

Now,

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{\log z}{z^{2}+1} d z \\
&=\int_{-R}^{-\varepsilon} \frac{\log x}{x^{2}+1} d x \\
&=\int_{R}^{\varepsilon} \frac{-\log (-x)}{x^{2}+1} d x \\
&=\int_{\varepsilon}^{R} \frac{\log x+\pi i}{x^{2}+1} d x \\
&=I_{2}+\left.\pi i \tan ^{-1}(x)\right|_{\varepsilon} ^{R} \\
&=I_{2}+\pi i\left(\tan ^{-1}(R)-\tan ^{-1}(\varepsilon)\right) \\
&\left|I_{R}\right|=\left|\int_{\Gamma_{R}} \frac{\log z}{z^{2}+1} d z\right| \\
& \leq \int_{\Gamma_{R}} \frac{|\log z|}{\left|z^{2}+1\right|} d|z| \\
& \leq \int_{\Gamma_{R}} \frac{|\log z|}{|z|^{2}-1} d|z| \\
&=\int_{0}^{\pi} \frac{R\left|\log \left(R e^{i \theta}\right)\right|}{R^{2}-1} d \theta \\
&=\int_{0}^{\pi} \frac{R|\log (R)+i \theta|}{R^{2}-1} d \theta \\
& \leq \int_{0}^{\pi} \frac{R \log (R)+R \pi}{R^{2}-1} d \theta \\
&=\pi \frac{R(\log R+\pi)}{R^{2}-1} \rightarrow 0 \\
& R \rightarrow \infty
\end{aligned}
$$

since

$$
\lim _{R \rightarrow \infty} \frac{R \log R}{R^{2}-1}=\lim _{R \rightarrow \infty} \frac{\log R+1}{2 R} \lim _{R \rightarrow \infty} \frac{1}{R}=0
$$

by L'Hopital's Rule.

Similarly,

$$
\begin{aligned}
\left|I_{\varepsilon}\right| & =\left|\int_{\Gamma_{\varepsilon}} \frac{\log z}{z^{2}+1} d z\right| \\
& \leq \int_{\Gamma_{\varepsilon}} \frac{|\log z|}{1-|z|^{2}} d|z| \\
& =\int_{0}^{\pi} \frac{\varepsilon\left|\log \left(\varepsilon e^{i \theta}\right)\right|}{\varepsilon^{2}-1} d \theta \\
& \leq \int_{0}^{\pi} \frac{\varepsilon \log (\varepsilon)+\varepsilon \pi}{\varepsilon^{2}-1} d \theta \\
& =\pi \frac{\varepsilon(\log \varepsilon+\pi)}{\varepsilon^{2}-1} \rightarrow 0 \quad \varepsilon \rightarrow 0
\end{aligned}
$$

since

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \log \varepsilon=\lim _{\varepsilon \rightarrow 0} \frac{\log \varepsilon}{\frac{1}{\varepsilon}}=\lim _{\varepsilon \rightarrow 0} \frac{\frac{1}{\varepsilon}}{-\frac{1}{\varepsilon^{2}}}=\lim _{\varepsilon \rightarrow 0}-\varepsilon=0
$$

by L'Hopital's Rule.
Finally, by the Residue Theorem,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=i} \frac{\log z}{z^{2}+1} & =2 \pi i \frac{\log (i)}{i+i} \\
& =\pi\left(\log |i|+i \frac{\pi}{2}\right) \\
& =i \frac{\pi^{2}}{2} \\
& =\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left(I_{1}+I_{2}+I_{R}+I_{\varepsilon}\right) \\
& =2 \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x+\pi i\left(\frac{\pi}{2}\right) \\
\Longrightarrow \int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x & =0
\end{aligned}
$$

Note that this is consistent with what we found in Fall 2013: Problem 1.

Problem 4. Show that the range of a nonconstant entire function is dense in \mathbb{C}.

Solution. Let f be nonconstant and entire. Assume that $f(\mathbb{C})$ is not dense in \mathbb{C}.
Then there exists some $z_{0} \in \mathbb{C}$ and some $\rho>0$ such that $f(\mathbb{C}) \cap B_{\rho}\left(z_{0}\right)=\varnothing$.
Namely,

$$
\left|f(z)-z_{0}\right| \geq \rho
$$

for all $z \in \mathbb{C}$.
However, then we can let $g(z)=\frac{1}{f(z)-z_{0}}$. Then g is clearly entire but

$$
|g(z)|=\frac{1}{\left|f(z)-z_{0}\right|} \leq \frac{1}{\rho}
$$

and so g is bounded on \mathbb{C}, so by Louiville's g is constant.
However, then f is constant which is a contradiction.
Thus, if f is non-constant then it is dense in \mathbb{C}.

