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Problem 1. Let A = {z ∈ C : r < |z| < R} for some 0 < r < R < ∞. Prove that
f(z) = 1/z cannot be uniformly approximated in A by complex polynomials.

Solution. Let {pn(z)} be a sequence of polynomials converging uniformly to f on A.
Let ε > 0 and N such that |f(z)− pn(z)| < ε for all n ≥ N and all z ∈ A.
Then

|pn(z)| − |f(z)| ≤ |f(z)− pn(z)| < ε

and so
|zpn(z)| < ε|z|+ 1.

Let qn(z) = zpn(z). Then qn is entire so on {|z| ≤M}

|qn(z)| ≤ εM + 1.

Therefore, by the Cauchy Estimate, on {|z| ≤M},

|q(2)
n (z)| ≤ 2!(1 + εM)

M2 → 0 M →∞.

Therefore, there exists a, b ∈ C so qn(z) = az + b = zpn(z) and so

pn(z) = a+ b

z

which is clearly a contradiction since pn is a polynomial.
Thus, no such sequence can exist. �
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Problem 2. Let D = C\[−1, 1]. Prove that f(z) = z2 − 1, for z ∈ D, has an analytic
square root but does not have an analytic logarithm.

Solution. This question relies on two key facts

• f is an nth root if and only if

1
2πi

∫
γ

f ′(z)
f(z) dz ∈ nZ

• f has an analytic logarithm if and only if f has an analytic nth root for every n

Since these facts are not immediately obvious, they will be proved here.

Claim 1. Let f have no zeros in an open (NOT necessarily simply connected)
region Ω, then f has an nth root if and only if

1
2πi

∫
γ

f ′(z)
f(z) dz ∈ nZ

for all closed curves γ ⊂ Ω.

Proof. =⇒ If f has an nth root, then there exists an analytic g(z) in Ω such
that f(z) = gn(z).

Thus, for all γ ⊂ Ω closed,

1
2πi

∫
γ

f ′(z)
f(z) dz = 1

2πi

∫
γ

ngn−1(z)g′(z)
gn(z) dz

= n

[
1

2πi

∫
γ

g′(z)
g(z) dz

]
= n(number of zeros of g in γ)
∈ nZ

⇐= Let
1

2πi

∫
γ

f ′(z)
f(z) dz ∈ nZ

for all closed curves γ ⊂ Ω.
Now, fix some z0 ∈ Ω and let γz be some curve in Ω from z0 to some z ∈ Ω.
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Given γz and γ̃z two different paths, Γ = γzγ̃
−1
z is a closed path and since

1
n

∫
Γ

f ′(ξ)
f(ξ) dξ ∈ 2πiZ

we have that 1
n

∫
γz

f ′(ξ)
f(ξ) dξ differs by choice of path by integer multiples of 2πi.

Let
h(z) = e

1
n

∫
γz

f ′(ξ)
f(ξ) dξ.

Then h is independent of choice of γz and so is well defined.
Finally, since f has no zeros in Ω, then f ′

f
is analytic in Ω and so h′(z) exists

and
h′(z) = e

1
n

∫
γz

f ′(ξ)
f(ξ) dξ

f ′(z)
nf(z) = h(z) f

′(z)
nf(z) .

d

dz

f(z)
hn(z) = f ′(z)hn(z)− nf(z)hn−1(z)h′(z)

h2n(z)

=
f ′(z)hn(z)− nf(z)hn−1(z)h(z) f

′(z)
nf(z)

h2n(z)

= f ′(z)hn(z)− hn(z)f ′(z)
h2n(z)

= 0

Therefore, f(z)
hn(z) = c some constant and so f(z) = chn(z) = (c1/nh(z))n.

Finally, then f must have an nth root. �

Now,
f ′(z)
f(z) = 2z

z2 − 1
which has poles at −1, 1 /∈ D. Therefore, any closed curve γ ⊂ D either dodges the line
segment [−1, 1] and so cannot contain either of the two poles, or it wraps around the line
segment [−1, 1] in which case, it must contain both poles.

Namely,
1

2πi

∫
γ

f ′(z)
f(z) dz ∈ 2Z

for all closed curves γ ⊂ D.
Thus, by Claim 1 a square root of f exists.
Finally, we note that f has an analytic logarithm if and only if f has an analytic nth

root for all n.
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Claim 2. If f has no zeros in Ω, then f has an analytic logarithm if and only if
f has an analytic nth root for all n.

Proof. =⇒ If f has an analytic logarithm, then there exists an analytic g(z)
such that f(z) = eg(z).

Thus, for all closed curves γ,

1
2πi

∫
γ

f ′(z)
f(z) dz = 1

2πi

∫
γ

eg(z)g′(z)
eg(z)

dz = 1
2πi

∫
γ
g′(z)dz = 0

since g′ is also analytic.
Since 0 ∈ nZ for all n, by Claim 1, f has an nth root for all n.
⇐= If f has an nth root for all n, then

1
2πi

∫
γ

f ′(z)
f(z) dz = 0

for all γ closed in the domain.
Namely,

g(z) = 1
n

∫ z

z0

f ′(z)
f(z) dz

is an analytic function and well defined for all z and all fixed z0.
Therefore, using the same idea as Claim 1, we get that f = eg(z) where g

is analytic and so f has an analytic logarithm in Ω. �

Therefore, by Claim 2, f cannot have an analytic logarithm, since γ = |z| = 2 gives

1
2πi

∫
|z|=2

f ′(z)
f(z) dz = 1

2πi

∫
|z|=2

2z
z2 − 1dz = Resz=1

2z
z2 − 1+Resz=−1

2z
z2 − 1 = 2

1 + 1+ −2
−1− 1 = 2 6= 0.

Note that to actually determine the value of
∫
γ

f ′

f
dz, we can view the integral in C

and apply the argument principle or residue theorem there.
Since the integral exists in D, the two values must be the same.

�
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Problem 3. Evaluate ∫ ∞
0

log x
1 + x2dx

Solution. We will use “Ol’ Faithful” the contour around the upper half plane avoiding the
origin since every branch cut of log x intersects 0.

Then we take any branch which does not intersect the upper half plane (including the
real line).

ΓR

Γε
Γ2Γ1

Re

Im

Let

I1 =
∫

Γ1

log z
z2 + 1dz

I2 =
∫

Γ2

log z
z2 + 1dz

Iε =
∫

Γε

log z
z2 + 1dz

IR =
∫

ΓR

log z
z2 + 1dz
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Now,

I1 =
∫

Γ1

log z
z2 + 1dz

=
∫ −ε
−R

log x
x2 + 1dx

=
∫ ε

R

− log(−x)
x2 + 1 dx

=
∫ R

ε

log x+ πi

x2 + 1 dx

= I2 + πi tan−1(x)
∣∣∣R
ε

= I2 + πi(tan−1(R)− tan−1(ε))

|IR| =
∣∣∣∣∣
∫

ΓR

log z
z2 + 1dz

∣∣∣∣∣
≤
∫

ΓR

| log z|
|z2 + 1|d|z|

≤
∫

ΓR

| log z|
|z|2 − 1d|z|

=
∫ π

0

R| log(Reiθ)|
R2 − 1 dθ

=
∫ π

0

R| log(R) + iθ|
R2 − 1 dθ

≤
∫ π

0

R log(R) +Rπ

R2 − 1 dθ

= π
R(logR + π)

R2 − 1 → 0 R→∞

since
lim
R→∞

R logR
R2 − 1 = lim

R→∞

logR + 1
2R lim

R→∞

1
R

= 0

by L’Hopital’s Rule.
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Similarly,

|Iε| =
∣∣∣∣∣
∫

Γε

log z
z2 + 1dz

∣∣∣∣∣
≤
∫

Γε

| log z|
1− |z|2d|z|

=
∫ π

0

ε| log(εeiθ)|
ε2 − 1 dθ

≤
∫ π

0

ε log(ε) + επ

ε2 − 1 dθ

= π
ε(log ε+ π)
ε2 − 1 → 0 ε→ 0

since
lim
ε→0

ε log ε = lim
ε→0

log ε
1
ε

= lim
ε→0

1
ε

− 1
ε2

= lim
ε→0
−ε = 0

by L’Hopital’s Rule.
Finally, by the Residue Theorem,

2πiResz=i
log z
z2 + 1 = 2πi log(i)

i+ i

= π
(

log |i|+ i
π

2

)
= i

π2

2
= lim

R→∞
lim
ε→0

(I1 + I2 + IR + Iε)

= 2
∫ ∞

0

log x
1 + x2dx+ πi

(
π

2

)
=⇒

∫ ∞
0

log x
1 + x2dx = 0

Note that this is consistent with what we found in Fall 2013: Problem 1. �
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Problem 4. Show that the range of a nonconstant entire function is dense in C.

Solution. Let f be nonconstant and entire. Assume that f(C) is not dense in C.
Then there exists some z0 ∈ C and some ρ > 0 such that f(C) ∩Bρ(z0) = ∅.
Namely,

|f(z)− z0| ≥ ρ

for all z ∈ C.
However, then we can let g(z) = 1

f(z)−z0
. Then g is clearly entire but

|g(z)| = 1
|f(z)− z0|

≤ 1
ρ

and so g is bounded on C, so by Louiville’s g is constant.
However, then f is constant which is a contradiction.
Thus, if f is non-constant then it is dense in C.

�
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