Kayla Orlinsky

Complex Analysis Exam Spring 2015

Problem 1. Evaluate the integral

$$
\int_{0}^{\infty} \frac{x^{1 / 3}}{1+x^{2}} d x
$$

being careful to justify your answer.

Solution. We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin since every branch cut of $x^{1 / 3}=e^{\frac{1}{3} \log x}$ intersects 0 .

Then we take any branch which does not intersect the upper half plane (including the real line).

Let

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{e^{1 / 3 \log z}}{z^{2}+1} d z \\
& I_{2}=\int_{\Gamma_{2}} \frac{e^{1 / 3 \log z}}{z^{2}+1} d z \\
& I_{\varepsilon}=\int_{\Gamma_{\varepsilon}} \frac{e^{1 / 3 \log z}}{z^{2}+1} d z \\
& I_{R}=\int_{\Gamma_{R}} \frac{e^{1 / 3 \log z}}{z^{2}+1} d z
\end{aligned}
$$

Note that

$$
\begin{aligned}
I_{1} & =\int_{\Gamma_{1}} \frac{e^{1 / 3 \log z}}{z^{2}+1} d z \\
& =\int_{-R}^{-\varepsilon} \frac{e^{1 / 3 \log x}}{x^{2}+1} d x \\
& =\int_{R}^{\varepsilon} \frac{-e^{1 / 3 \log (-x)}}{x^{2}+1} d x \\
& =\int_{\varepsilon}^{R} \frac{e^{1 / 3(\log x+i \pi}}{x^{2}+1} d x \\
& =e^{i \pi / 3} \int_{\varepsilon}^{R} \frac{x^{1 / 3}}{x^{2}+1} d x \\
& =e^{i \pi / 3} I_{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{e^{1 / 3 \log z}}{z^{2}+1} d z\right| \\
& \leq \int_{\Gamma_{R}} \frac{\left|e^{1 / 3 \log z}\right|}{\left|z^{2}+1\right|} d|z| \\
& \leq \int_{0}^{\pi} \frac{R e^{1 / 3 \log R}}{R^{2}-1} d \theta \quad z=R e^{i \theta} \\
& =\frac{\pi R^{4 / 3}}{R^{2}-1} \rightarrow 0 \quad R \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
\left|I_{\varepsilon}\right| & =\left|\int_{\Gamma_{\varepsilon}} \frac{e^{1 / 3 \log z}}{z^{2}+1} d z\right| \\
& \leq \int_{\Gamma_{\varepsilon}} \frac{\left|e^{1 / 3 \log z}\right|}{\left|z^{2}+1\right|} d|z| \\
& \leq \int_{\pi}^{0} \frac{\varepsilon e^{1 / 3 \log \varepsilon}}{1-\varepsilon^{2}} d \theta \quad z=\varepsilon e^{i \theta} \\
& =\frac{\pi \varepsilon^{4 / 3}}{1-\varepsilon^{2}} \rightarrow 0 \quad \varepsilon \rightarrow 0 .
\end{aligned}
$$

Thus, by the Residue Theorem,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=i} \frac{e^{1 / 3 \log z}}{z^{2}+1} & =2 \pi i \frac{e^{1 / 3 \log (i)}}{i+i} \\
& =\pi e^{1 / 3(i \pi / 2)} \\
& =\pi e^{i \pi / 6} \\
& =\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left(I_{1}+I_{2}+I_{R}+I_{\varepsilon}\right) \\
& =\left(e^{i \pi / 3}+1\right) \int_{0}^{\infty} \frac{x^{1 / 3}}{x^{2}+1} d x \\
\Longrightarrow \int_{0}^{\infty} \frac{x^{1 / 3}}{x^{2}+1} d x & =\frac{\pi e^{i \pi / 6}}{e^{i \pi / 3}+1} \\
& =\frac{\pi}{e^{i \pi / 6}+e^{i \pi / 6}} \\
& =\frac{\pi / 2}{\cos (\pi / 6)} \\
& =\frac{\pi / 2}{\sqrt{3} / 2} \\
& =\frac{\pi}{\sqrt{3}}
\end{aligned}
$$

Problem 2. Let

$$
f(z)=\sum_{n=0}^{\infty} z^{n!}
$$

(a) Show that f is analytic in the open unit disk $D=\{z \in \mathbb{C}:|z|<1\}$.
(b) Show that f can not be analytically continued to any open set properly containing D. (Hint: First consider $z=r^{2 \pi i p} / q$ where p and q are integers.

Solution.

(a) f is holormophic if and only if the sum converges uniformly. For $|z|<r<1$, we have that $|z|^{n!} \leq r^{n!} \leq r^{n}$ since $r<1$, and so f converges uniformly by Weierstrass M-test on $\{|z|<r\}$. Since this holds for all $r<1$, we have that f converges uniformly and is therefore analytic on D.
(b) Let $D \subsetneq U$ open. Since $U \neq D$ and U is open, U must contain some z_{0} with $\left|z_{0}\right|=1$.

Again, since U is open, any neighborhood of z_{0} must contain some $z=e^{i \pi / m}$ for $m \in \mathbb{Z}$ since $|z|=1$.
However, then

$$
f(z)=\sum_{n=0}^{m-1} e^{i n!\pi / m}+\sum_{n=m}^{\infty} e^{i \pi n!/ m}=\sum_{n=0}^{m-1} e^{i n!\pi / m}+\sum_{n=m}^{\infty} 1=\infty
$$

since $n!/ m \in \mathbb{Z}$ for $n \geq m$.
Now, f has a non-removable singularity in every neighborhood of z_{0}.
Namely, f cannot be extended to a neighborhood to z_{0} since it will not converge in any punctured neighborhood of z_{0}.

Problem 3. Let A be an open subset of \mathbb{C}, and suppose $u(x, y)$ is twice continuously differentiable harmonic function on A.
(a) Show that if A is simply connected, then there exists an analytic function f on A such that $u=\operatorname{Re}(f)$. Hint: First find g so that $\partial u / \partial x=\operatorname{Re}(g))$.
(b) Find f explicitly when $A=\mathbb{C}$ and $u(x, y)=e^{x} \cos (y)+x y$.
(c) Give an example in which A is not simply connected and f as in (a) does not exist.

Solution.

(a) Let $v(x, y)=\int_{y_{0}}^{y} u_{x}(x, t) d t+g(x)-g\left(x_{0}\right)$. Then in order for Cauchy Riemann to be satisfied,

$$
\begin{align*}
-u_{y}(x, y) & =v_{x}(x, y) \\
& =\int_{y_{0}}^{y} u_{x x}(x, t) d t+g^{\prime}(x) \\
& =\int_{y_{0}}^{y}-u_{y y}(x, t) d t+g^{\prime}(x) \tag{1}\\
& =-u_{y}(x, y)+u_{y}\left(x, y_{0}\right)+g^{\prime}(x) \\
\Longrightarrow-u_{y}\left(x, y_{0}\right) & =g^{\prime}(x) \\
\Longrightarrow \int_{x_{0}}^{x}-u_{y}\left(s, y_{0}\right) d x & =g(x)-g\left(x_{0}\right)
\end{align*}
$$

with (1) since u is harmonic so $u_{x x}+u_{y y}=0$.
Therefore,

$$
v(x, y)=\int_{y_{0}}^{y} u_{x}(x, t) d t-\int_{x_{0}}^{x} u_{y}\left(s, y_{0}\right) d x
$$

Then

$$
\begin{aligned}
v_{x}(x, y) & =\int_{y_{0}}^{y} u_{x x}(x, t) d t-u_{y}\left(x, y_{0}\right) \\
& =\int_{y_{0}}^{y}-u_{y y}(x, t) d t-u_{y}\left(x, y_{0}\right) \\
& =-u_{y}(x, y)+u_{y}\left(x, y_{0}\right)-u_{y}\left(x, y_{0}\right) \\
& =-u_{y}(x, y)
\end{aligned}
$$

and $v_{y}(x, y)=u_{x}(x, y)$ since $u_{y}\left(x, y_{0}\right)$ is constant in y.
Therefore, $f=u+i v$ is analytic by the Cauchy Riemann with $\operatorname{Re}(f)=u$.
(b) Let $u(x, y)=e^{x} \cos (y)+x y$. Then

$$
u_{y}=-e^{x} \sin (y)+x
$$

and so

$$
\begin{aligned}
v(x, y) & =-\int u_{y}(x, y) d x \\
& =-\int-e^{x} \sin (y)+x d x \\
& =-\left(-e^{x} \sin (y)+\frac{x^{2}}{2}+h(y)\right) \\
& =e^{x} \sin (y)-\frac{x^{2}}{2}+h(y)
\end{aligned}
$$

Since

$$
u_{x}=e^{x} \cos (y)+y=v_{y}=e^{x} \cos (y)+h^{\prime}(y) \Longrightarrow h^{\prime}(y)=y
$$

and so $h=\frac{y^{2}}{2}$ so

$$
v(x, y)=e^{x} \sin (y)-\frac{x^{2}}{2}+\frac{y^{2}}{2}
$$

and

$$
f(x, y)=e^{x} \sin (y)+x y+i\left(e^{x} \sin (y)-\frac{x^{2}}{2}+\frac{y^{2}}{2}\right)
$$

Once can verify that

$$
u_{y}=-e^{x} \sin (y)+x=-\left(e^{x} \sin (y)+x\right)=-v_{x}
$$

and so indeed f is analytic by Cauchy-Riemann.
(c) Let $A=\mathbb{C} \backslash\{0\}$. Then A is not simply connected. Let $u(x, y)=\frac{1}{2} \log \left(x^{2}+y^{2}\right)$.

Then

$$
u_{x}=\frac{2 x}{2\left(x^{2}+y^{2}\right)}=\frac{x}{x^{2}+y^{2}}
$$

and

$$
u_{y}=\frac{y}{x^{2}+y^{2}}
$$

so

$$
\begin{aligned}
u_{x x} & =\frac{x^{2}+y^{2}-2 x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =-\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
& =-u_{y y}
\end{aligned}
$$

so u is harmonic in A.
However, u cannot be the real part of an analytic function, since it is the real part of the complex $\log |z|+\operatorname{iarg}(z)$ which is not well defined on A. Namely, there is not analytic continuation of $\log z$ (any branch cut) to A and so u cannot be the real part of an analytic function.

Problem 4. Determine whether it is possible for a function f to be analytic in a neighborhood of 0 and take the values $\frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{4}, \frac{1}{6}, \frac{1}{6}, \frac{1}{8}, \frac{1}{8}, \ldots$ at the points $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \ldots$.

Solution. Assume such an f does exist. By continuity,

$$
\lim _{n \rightarrow \infty} f\left(\frac{1}{n}\right)=f(0)=0
$$

Therefore,

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} & =\lim _{n \rightarrow \infty} \frac{f\left(\frac{1}{n}\right)}{1 / n} \\
& =\lim _{n \rightarrow \infty} \begin{cases}\frac{1 / n}{1 / n} & n \text { even } \\
\frac{1 /(n+1)}{1 / n} & n \text { odd } \\
& =1\end{cases}
\end{aligned}
$$

so f is injective in a neighborhood of 0 , which is clearly not true.
Thus, f cannot exist.

