Kayla Orlinsky
 Complex Analysis Exam Fall 2015

Problem 1. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x
$$

being careful to justify your answer.

Solution. We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin.

Let

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{1-e^{2 i z}}{z^{2}} d z \\
& I_{2}=\int_{\Gamma_{2}} \frac{1-e^{2 i z}}{z^{2}} d z \\
& I_{\varepsilon}=\int_{\Gamma_{\varepsilon}} \frac{1-e^{2 i z}}{z^{2}} d z \\
& I_{R}=\int_{\Gamma_{R}} \frac{1-e^{2 i z}}{z^{2}} d z
\end{aligned}
$$

Then note that

$$
\begin{aligned}
I_{1} & =\int_{\Gamma_{1}} \frac{1-e^{2 i z}}{z^{2}} d z \\
& =\int_{-R}^{-\varepsilon} \frac{1-e^{2 i x}}{x^{2}} d x \\
& \int_{R}^{\varepsilon}-\frac{1-e^{-2 i x}}{x^{2}} d x \\
& =\int_{\varepsilon}^{R} \frac{1-e^{-2 i x}}{x^{2}} d x
\end{aligned}
$$

Next, note that

$$
I_{1}+I_{2}=\int_{\varepsilon}^{R} \frac{2-e^{2 i x}-e^{-2 i x}}{x^{2}} d x=\int_{\varepsilon}^{R} \frac{2\left(1-\frac{e^{2 i x}+e^{-2 i x}}{2}\right)}{x^{2}} d x=2 \int_{\varepsilon}^{R} \frac{1-\cos (2 x)}{x^{2}}=4 \int_{\varepsilon}^{R} \frac{\sin ^{2} x}{x^{2}} d x
$$

Thus,

$$
\begin{aligned}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{1-e^{2 i z}}{z^{2}} d z\right| \\
& \leq \int_{\Gamma_{R}} \frac{\left|1-e^{2 i z}\right|^{2}}{|z|^{2}} d z \\
& \leq \int_{0}^{\pi} \frac{1+\left|e^{2 i R e^{i \theta}}\right|}{R} d \theta \quad z=R e^{i \theta} \\
& =\int_{0}^{\pi} \frac{1+e^{-2 R \sin \theta}}{R} d \theta \quad 0 \leq \sin \theta \leq 1 \Longrightarrow e^{-2 R \sin \theta} \leq 1 \\
& \leq \int_{0}^{\pi} \frac{2}{R} d \theta \\
& =\frac{2 \pi}{R} \rightarrow 0 \quad R \rightarrow \infty
\end{aligned}
$$

Now, for I_{ε}, note that $\frac{1-e^{2 i z}}{z^{2}}$ has an isolated pole of order 2 at 0 . Thus, we can write

$$
\frac{1-e^{2 i z}}{z^{2}}=\frac{a}{z^{2}}+\frac{b}{z}+f(z)
$$

with f analytic at 0,

$$
b=\operatorname{Res}_{z=0} \frac{1-e^{2 i z}}{z^{2}}=\left.\frac{d}{d z}\left(1-e^{2 i z}\right)\right|_{0}=-\left.2 i e^{2 i z}\right|_{0}=-2 i
$$

and

$$
a=\lim _{z \rightarrow 0} z^{2} \frac{1-e^{2 i z}}{z^{2}}=\lim _{z \rightarrow 0}\left(1-e^{2 i z}\right)=1-1=0 .
$$

Thus, for ε small enough,

$$
\begin{aligned}
I_{\varepsilon} & =\int_{\Gamma_{\varepsilon}} \frac{1-e^{2 i z}}{z^{2}} d z \\
& =\int_{\Gamma_{\varepsilon}} \frac{-2 i}{z}+f(z) d z \\
& =\int_{\pi}^{0} 2+i \varepsilon e^{i \theta} f\left(\varepsilon e^{i \theta}\right) d \theta \quad z=\varepsilon e^{i \theta} \\
& =-2 \pi+\int_{\pi}^{0} i \varepsilon e^{i \theta} f\left(\varepsilon e^{i \theta}\right) d \theta \rightarrow 2 \pi i \quad \varepsilon \rightarrow 0
\end{aligned}
$$

since f is analytic so

$$
\lim _{\varepsilon \rightarrow 0} \int_{\pi}^{0} i \varepsilon e^{i \theta} f\left(\varepsilon e^{i \theta}\right) d \theta=\int_{\pi}^{0} \lim _{\varepsilon \rightarrow 0} i \varepsilon e^{i \theta} f\left(\varepsilon e^{i \theta}\right) d \theta=0
$$

Finally, by the residue theorem,

$$
\begin{aligned}
0 & =\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left(I_{1}+I_{2}+I_{R}+I_{\varepsilon}\right) \\
& =4 \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x-2 \pi \\
\Longrightarrow \int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x & =\frac{\pi}{2}
\end{aligned}
$$

Problem 2. Determine the number of roots of $f(z)=z^{9}+z^{6}+z^{5}+8 z^{3}+1$ inside the annulus $1<|z|<2$.

Solution. Let $g(z)=z^{9}$. Now, on $\{|z|=2\}$ we get that

$$
\begin{aligned}
|f(z)-g(z)| & =\left|z^{6}+z^{5}+8 z^{3}+1\right| \\
& \leq 2^{6}+2^{5}+8 \cdot 2^{3}+1 \\
& =161 \\
& <512 \\
& =|z|^{9} \\
& =|g(z)|
\end{aligned}
$$

and so by Rouche's Theorem, g and f have the same number of zeros inside $\{|z|<2\}$ which is 9 .

Let $g(z)=8 z^{3}$, then on $\{|z|=1\}$

$$
\begin{aligned}
|f(z)-g(z)| & =\left|z^{9}+z^{6}+z^{5}+1\right| \\
& \leq 1+1+1+1 \\
& =4 \\
& <8 \\
& =8|z|^{3} \\
& =|g(z)|
\end{aligned}
$$

and so by Rouche's, f and g have the same number of zeros inside $\{|z|<1\}$ which is 3 .
Therefore, f has $9-3=6$ zeros inside the annulus $\{1<|z|<2\}$.

Problem 3. Suppose that f is holomorphic on the open unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$ and suppose that for $z \in \mathbb{D}$ one has $\operatorname{Re}(f(z))>0$ and $f(0)=1$. Prove that $|f(z)| \leq \frac{1+|z|}{1-|z|}$ for all $z \in \mathbb{D}$.

Solution. Since f sends the unit disk to the right half plane, if sends the unit disk to the upper half plane.

Thus, let $T(z)=\frac{z-i}{z+i}$. Then T sends the upper half plane to the unit disk.
Furthermore,

$$
T(i f(0))=T(i)=0
$$

and so $T(i f(z))$ is a map from the disk to the disk preserving the origin.
Therefore, by Schwarz' Lemma,

$$
\begin{aligned}
|T(i f(z))| & \leq|z| \\
\left|\frac{i f(z)-i}{i f(z)+i}\right| & \leq|z| \\
\frac{|f(z)-1|}{|f(z)+1|} & \leq|z| \\
|f(z)-1| & \leq|z||f(z)+1| \\
|f(z)|-1 \leq|f(z)-1| & \leq|z||f(z)+1| \leq|z|(|f(z)|+1) \\
(1-|z|)|f(z)| & \leq 1+|z| \\
|f(z)| & \leq \frac{1+|z|}{1-|z|}
\end{aligned}
$$

Problem 4. For $a_{n}=1-\frac{1}{n^{2}}$, let

$$
f(z)=\prod_{n=1}^{\infty} \frac{a_{n}-z}{1-a_{n} z}
$$

(a) Show that f defines a holomorphic function on the unit disk $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$.
(b) Prove that f does not have an analytic continuation to any larger disk $\{z \in \mathbb{C}$: $|z|<r\}$ for some $r>1$.

Solution.

(a) Since $\left|a_{n}\right|<1$ for all n, f defines an infinite product of analytic functions in the disk. Note that $T_{n}(z)=\frac{a_{n}-z}{1-a_{n} z}$ is actually an automorphism of the disk.
Thus, f is analytic in the disk if $\sum_{n=1}^{\infty}\left(T_{n}(z)-1\right)$ converges absolutely and uniformly.

$$
\begin{aligned}
T_{n}(z)-1 & =\frac{a_{n}-z}{1-a_{n} z}-1 \\
& =\frac{1-\frac{1}{n^{2}}-z}{1-\left(1-\frac{1}{n^{2}}\right) z}-1 \\
& =\frac{n^{2}-1-n^{2} z}{n^{2}-\left(n^{2}-1\right) z}-1 \\
& =\frac{n^{2}-1-n^{2} z}{n^{2}-n^{2} z+z}-1 \\
& =\frac{n^{2}-1-n^{2} z-\left(n^{2}-n^{2} z+z\right)}{n^{2}-n^{2} z+z} \\
& =\frac{-z-1}{n^{2}-n^{2} z-z} \\
& =\frac{z+1}{n^{2} z+z-n^{2}}
\end{aligned}
$$

Now, for all $|z|<r<1$, we have that

$$
\left|T_{n}(z)-1\right| \leq \frac{|z|+1}{|z-1| n^{2}-|z|}<\frac{2}{(1-r) n^{2}-1}
$$

which converges uniformly as a series. Since r was arbitrary, we have that the sum converges uniformly in the unit disk.
Thus, f defines an analytic function.
(b) If f has an analytic continuation at some larger disk, then f must have an analytic continuation at 1 , since any larger disk will contain 1 .

Note that $f\left(a_{n}\right)=0$ for all n, and $a_{n} \rightarrow 1$. Namely, if f has an analytic continuation g on a larger disk then $g\left(a_{n}\right)=0$ for all n and since there is an accumulation point in any larger disk, by the identity theorem $g \equiv 0$.
This is clearly a contradiction so g cannot exist.

