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Problem 1. Evaluate the integral
∫ ∞

0

sin2 x

x2 dx

being careful to justify your answer.

Solution. We will use “Ol’ Faithful” the contour around the upper half plane avoiding the
origin.

ΓR

Γε
Γ2Γ1

Re

Im

Let

I1 =
∫

Γ1

1− e2iz

z2 dz

I2 =
∫

Γ2

1− e2iz

z2 dz

Iε =
∫

Γε

1− e2iz

z2 dz

IR =
∫

ΓR

1− e2iz

z2 dz
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Then note that

I1 =
∫

Γ1

1− e2iz

z2 dz

=
∫ −ε
−R

1− e2ix

x2 dx∫ ε

R
−1− e−2ix

x2 dx

=
∫ R

ε

1− e−2ix

x2 dx

Next, note that

I1+I2 =
∫ R

ε

2− e2ix − e−2ix

x2 dx =
∫ R

ε

2
(
1− e2ix+e−2ix

2

)
x2 dx = 2

∫ R

ε

1− cos(2x)
x2 = 4

∫ R

ε

sin2 x

x2 dx

Thus,

|IR| =
∣∣∣∣∣
∫

ΓR

1− e2iz

z2 dz

∣∣∣∣∣
≤
∫

ΓR

|1− e2iz|2

|z|2
dz

≤
∫ π

0

1 + |e2iReiθ |
R

dθ z = Reiθ

=
∫ π

0

1 + e−2R sin θ

R
dθ 0 ≤ sin θ ≤ 1 =⇒ e−2R sin θ ≤ 1

≤
∫ π

0

2
R
dθ

= 2π
R
→ 0 R→∞

Now, for Iε, note that 1−e2iz

z2 has an isolated pole of order 2 at 0. Thus, we can write

1− e2iz

z2 = a

z2 + b

z
+ f(z)

with f analytic at 0,

b = Resz=0
1− e2iz

z2 = d

dz
(1− e2iz)

∣∣∣∣
0

= −2ie2iz
∣∣∣∣
0

= −2i

and
a = lim

z→0
z2 1− e2iz

z2 = lim
z→0

(1− e2iz) = 1− 1 = 0.
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Thus, for ε small enough,

Iε =
∫

Γε

1− e2iz

z2 dz

=
∫

Γε

−2i
z

+ f(z)dz

=
∫ 0

π
2 + iεeiθf(εeiθ)dθ z = εeiθ

= −2π +
∫ 0

π
iεeiθf(εeiθ)dθ → 2πi ε→ 0

since f is analytic so

lim
ε→0

∫ 0

π
iεeiθf(εeiθ)dθ =

∫ 0

π
lim
ε→0

iεeiθf(εeiθ)dθ = 0.

Finally, by the residue theorem,

0 = lim
R→∞

lim
ε→0

(I1 + I2 + IR + Iε)

= 4
∫ ∞

0

sin2 x

x2 dx− 2π

=⇒
∫ ∞

0

sin2 x

x2 dx = π

2

�
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Problem 2. Determine the number of roots of f(z) = z9 + z6 + z5 + 8z3 + 1 inside the
annulus 1 < |z| < 2.

Solution. Let g(z) = z9. Now, on {|z|=2} we get that

|f(z)− g(z)| = |z6 + z5 + 8z3 + 1|
≤ 26 + 25 + 8 · 23 + 1
= 161
< 512
= |z|9

= |g(z)|

and so by Rouche’s Theorem, g and f have the same number of zeros inside {|z| < 2} which
is 9.

Let g(z) = 8z3, then on {|z| = 1}

|f(z)− g(z)| = |z9 + z6 + z5 + 1|
≤ 1 + 1 + 1 + 1
= 4
< 8
= 8|z|3

= |g(z)|

and so by Rouche’s, f and g have the same number of zeros inside {|z| < 1} which is 3.
Therefore, f has 9− 3 = 6 zeros inside the annulus {1 < |z| < 2}. �
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Problem 3. Suppose that f is holomorphic on the open unit disk D = {z ∈ C : |z| < 1}
and suppose that for z ∈ D one has Re(f(z)) > 0 and f(0) = 1. Prove that |f(z)| ≤ 1+|z|

1−|z|
for all z ∈ D.

Solution. Since f sends the unit disk to the right half plane, if sends the unit disk to the
upper half plane.

Thus, let T (z) = z−i
z+i . Then T sends the upper half plane to the unit disk.

Furthermore,
T (if(0)) = T (i) = 0

and so T (if(z)) is a map from the disk to the disk preserving the origin.
Therefore, by Schwarz’ Lemma,

|T (if(z))| ≤ |z|∣∣∣∣∣if(z)− i
if(z) + i

∣∣∣∣∣ ≤ |z|
|f(z)− 1|
|f(z) + 1| ≤ |z|

|f(z)− 1| ≤ |z||f(z) + 1|
|f(z)| − 1 ≤ |f(z)− 1| ≤ |z||f(z) + 1| ≤ |z|(|f(z)|+ 1)

(1− |z|)|f(z)| ≤ 1 + |z|

|f(z)| ≤ 1 + |z|
1− |z|

�
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Problem 4. For an = 1− 1
n2 , let

f(z) =
∞∏
n=1

an − z
1− anz

.

(a) Show that f defines a holomorphic function on the unit disk D = {z ∈ C : |z| < 1}.

(b) Prove that f does not have an analytic continuation to any larger disk {z ∈ C :
|z| < r} for some r > 1.

Solution.

(a) Since |an| < 1 for all n, f defines an infinite product of analytic functions in the disk.
Note that Tn(z) = an−z

1−anz is actually an automorphism of the disk.
Thus, f is analytic in the disk if ∑∞n=1(Tn(z)− 1) converges absolutely and uniformly.

Tn(z)− 1 = an − z
1− anz

− 1

=
1− 1

n2 − z
1− (1− 1

n2 )z − 1

= n2 − 1− n2z

n2 − (n2 − 1)z − 1

= n2 − 1− n2z

n2 − n2z + z
− 1

= n2 − 1− n2z − (n2 − n2z + z)
n2 − n2z + z

= −z − 1
n2 − n2z − z

= z + 1
n2z + z − n2

Now, for all |z| < r < 1, we have that

|Tn(z)− 1| ≤ |z|+ 1
|z − 1|n2 − |z|

<
2

(1− r)n2 − 1

which converges uniformly as a series. Since r was arbitrary, we have that the sum
converges uniformly in the unit disk.
Thus, f defines an analytic function.

(b) If f has an analytic continuation at some larger disk, then f must have an analytic
continuation at 1, since any larger disk will contain 1.
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Note that f(an) = 0 for all n, and an → 1. Namely, if f has an analytic continuation g
on a larger disk then g(an) = 0 for all n and since there is an accumulation point in
any larger disk, by the identity theorem g ≡ 0.
This is clearly a contradiction so g cannot exist.

�
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