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Problem 1. Evaluate the integral
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being careful to justify your answer.

Solution. We will use “Ol’ Faithful” the contour around the upper half plane avoiding the
origin.
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Then note that
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Thus, for £ small enough,
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Finally, by the residue theorem,
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Problem 2. Determine the number of roots of f(z) = 2z + 2% 4+ 2° + 82% + 1 inside the
annulus 1 < |z| < 2.

Solution. Let g(z) = 2. Now, on {|z|=2} we get that

f(2) = g(2)] = |2° + 2% + 82° + 1
<2°42°+8.2°4+1
= 161
< 512
= |2’
= [9(2)]
and so by Rouche’s Theorem, g and f have the same number of zeros inside {|z| < 2} which
is 9.
Let g(z) = 823, then on {|z| = 1}

[f(2) —g(2)] = 12" + 2" + 2" + 1]
<Il+1+1+1

and so by Rouche’s, f and g have the same number of zeros inside {|z| < 1} which is 3.

Therefore, f has 9 — 3 = 6 zeros inside the annulus {1 < |z| < 2}. ¥
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Problem 3. Suppose that f is holomorphic on the open unit disk D = {z € C: |z| < 1}
and suppose that for z € D one has Re(f(z)) > 0 and f(0) = 1. Prove that |f(2)] < ?_r}j

for all z € D.

Solution. Since f sends the unit disk to the right half plane, 7 f sends the unit disk to the

upper half plane.
Thus, let T'(z) =

Furthermore,
(i) =0

T(if(0)) =

and so T'(if(z)) is a map from the disk to the disk preserving the origin.

Z—jrj. Then T sends the upper half plane to the unit disk.

Therefore, by Schwarz’ Lemma,
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Problem 4. Fora, =1— 3, let

nZs

Qn

1o =117

— 2
—anz
(a) Show that f defines a holomorphic function on the unit disk D = {z € C: |z| < 1}.

(b) Prove that f does not have an analytic continuation to any larger disk {z € C :
|z| < r} for some r > 1.

Solution.

(a) Since |a,| < 1 for all n, f defines an infinite product of analytic functions in the disk.

Note that T,,(z) = .= is actually an automorphism of the disk.

Thus, f is analytic in the disk if >°° | (7,(z) — 1) converges absolutely and uniformly.

Tn(z)—1:1“”_z 1
— Q%
1—- L
= n? IZ 1

Now, for all |z| < r < 1, we have that

|z] +1 _ 2
In?2—|z| (1—-rmn2-1

T.(z) — 1] <
() 11 <

which converges uniformly as a series. Since r was arbitrary, we have that the sum
converges uniformly in the unit disk.

Thus, f defines an analytic function.

(b) If f has an analytic continuation at some larger disk, then f must have an analytic
continuation at 1, since any larger disk will contain 1.
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Note that f(a,) =0 for all n, and a,, — 1. Namely, if f has an analytic continuation g
on a larger disk then g(a,) = 0 for all n and since there is an accumulation point in
any larger disk, by the identity theorem g = 0.

This is clearly a contradiction so g cannot exist.



