Kayla Orlinsky Complex Analysis Exam Spring 2014

Problem 1. For a > 0, evaluate the integral

$$\int_0^\infty \frac{\log x}{(a+x)^3},$$

being careful to justify your methods.

Solution. Note that since x = -a on the negative real axis is pole of the function. Namely, "Ol Faithful" will intersect a pole in this case.

Thus, we will use the dreaded "pac man" contour around the whole plane with the branch cut on the real axis.

Now, we examine $\frac{\log^2 z}{(a+z)^3}$ simply because **Fall 2013: Problem 1** showed that integrating $\log^2 z$ inadvertently gave us the value of $\log z$.

Let

$$I_1 = \int_{\Gamma_1} \frac{\log^2 z}{(a+z)^3} dz$$
$$I_2 = \int_{\Gamma_2} \frac{\log^2 z}{(a+z)^3} dz$$
$$I_{\varepsilon} = \int_{\Gamma_{\varepsilon}} \frac{\log^2 z}{(a+z)^3} dz$$
$$I_R = \int_{\Gamma_R} \frac{\log^2 z}{(a+z)^3} dz$$

Note that

$$\begin{split} I_1 &= \int_{\Gamma_1} \frac{\log^2 z}{(a+z)^3} dz \\ &= \int_R^{\varepsilon} \frac{(\log x + i2\pi)^2}{(a+x)^3} dx \\ &= \int_R^{\varepsilon} \frac{\log^2 x + i4\pi \log x - 4\pi^2}{(a+x)^3} dx \\ &= -I_2 - i4\pi \int_{\varepsilon}^R \frac{\log x}{(a+x)^3} dx + 4\pi^2 \int_{\varepsilon}^R \frac{1}{(a+x)^3} dx \\ &= -I_2 - i4\pi \int_{\varepsilon}^R \frac{\log x}{(a+x)^3} dx - 4\pi^2 \frac{1}{2(a+x)^2} \Big|_{\varepsilon}^R \\ &= -I_2 - i4\pi \int_{\varepsilon}^R \frac{\log x}{(a+x)^3} dx - 2\pi^2 \left[\frac{1}{(a+R)^2} - \frac{1}{(a+\varepsilon)^2} \right] \end{split}$$

Now,

$$\begin{split} |I_R| &= \left| \int_{\Gamma_R} \frac{\log^2 z}{(a+z)^3} dz \right| \\ &\leq \int_{\Gamma_R} \frac{|\log^2 z|}{|a+z|^3} d|z| \\ &\leq \int_0^{2\pi} \frac{R|\log R + i\theta|^2}{R^3 - a^3} d\theta \\ &\leq 2\pi \frac{R\log^2 R}{R^3 - a^3} + 2\pi \frac{2\pi R}{R^3 - a^3} \to 0 \qquad R \to \infty \end{split}$$

Similarly,

$$|I_{\varepsilon}| \leq \int_{0}^{2\pi} \frac{\varepsilon |\log \varepsilon + i\theta|^{2}}{a^{3} - \varepsilon^{3}} d\theta$$
$$\leq 2\pi \frac{\varepsilon \log^{2} \varepsilon}{a^{3} - \varepsilon^{3}} + 2\pi \frac{2\pi\varepsilon}{a^{3} - \varepsilon^{3}} \to 0 \qquad \varepsilon \to 0$$

Thus, by the Residue Theorem,

$$2\pi i \operatorname{Res}_{z=-a} \frac{\log^2 z}{(a+z)^3} = 2\pi i \frac{1}{2!} \frac{d^2}{dz^2} \log^2 z \Big|_{-a}$$

$$= \pi i \frac{d}{dz} \frac{2 \log z}{z} \Big|_{-a}$$

$$= 2\pi i \left[\frac{1 - \log z}{z^2} \right] \Big|_{-a}$$

$$= 2\pi i \left[\frac{1 - \log(-a)}{a^2} \right]$$

$$= 2\pi i \left[\frac{1 - \log a - \pi i}{a^2} \right]$$

$$= \lim_{R \to \infty} \lim_{\varepsilon \to 0} (I_1 + I_2 + I_R + I_\varepsilon)$$

$$= -i4\pi \int_0^\infty \frac{\log x}{(a+x)^3} dx + \frac{2\pi^2}{a^2}$$

$$\implies \int_0^\infty \frac{\log x}{(a+x)^3} dx = \frac{-1}{i2\pi} \left[2\pi i \left[\frac{1 - \log a - \pi i}{a^2} \right] - \frac{2\pi^2}{a^2} \right]$$

$$= \frac{\log a - 1 + \pi i}{2a^2}$$

M
ð
Ð

Problem 2. Find a conformal mapping of the region $\{z : |z| > 1\} \setminus (1, \infty)$ onto the open unit disk $\{z : |z| < 1\}$. You may give your answer as the composition of several mappings, so long as each mapping is precisely described.

Solution. Let

$$T(z) = \frac{z - i}{z + i}$$

$$w_1(z) = \frac{1}{z}$$

$$w_2(z) = z^{\frac{1}{2}}$$
 branch at $[0, \infty)$

$$w_3(z) = -z$$

$$w_4(z) = z^2$$

S

Problem 3. Suppose that f_n are analytic functions on a connected open set $U \subset \mathbb{C}$ and that $f_n \to f$ uniformly on compact subsets of U. In each case indicate the main setps in the proofs of the following stradard results.

- (a) f is analytic in U;
- (b) $f'_n \to f'$ uniformly on compact subsets of U;
- (c) if $f_n(z) \neq 0$ for all n and all $z \in U$, then either $f(z) \neq 0$ for all $z \in U$ or else $f \equiv 0$.

Solution. What a poorly worded question... what are "main steps"?

(a) Let $\varepsilon > 0$. Then, there exists an N such that $|f_n(z) - f(z)| < \varepsilon$ for all $n \ge N$ and all $z \in K$ compact $\subset U$.

Clearly this forces any singularities of f to be isolated. Else uniform convergene via analytic functions is not possible.

Furthermore, if f has a removable singularity at $z_0 \in K$, then $f(z_0) = w$ but $\lim_{z\to z_0} f(z) = w' = \lim_{n\to\infty} f_n(z_0)$, so uniform convergence is not possible unless w' = w, namely f cannot have a removable singularity.

Similarly, if f has a pole or essential singularity in K, then again this will contradict uniform convergence. So f is analytic in all compact subsets of U. Namely, f is analytic in U.

(b) Let $K \subset U$ be compact. Let $z \in K$ and ρ such that $B_{\rho}(z) \subset K$. Then let $\varepsilon > 0$ and N such that $|f_n(z) - f(z)| < \varepsilon$ for all $n \ge N$ and all $z \in K$. Then

$$\begin{split} |f_n'(z) - f'(z)| &= \left| \int_{|\xi-z|=\rho} \frac{f_n(\xi)}{(\xi-z)^2} d\xi - \int_{|\xi-z|=\rho} \frac{f(\xi)}{(\xi-z)^2} d\xi \right| \\ &= \left| \int_{|\xi-z|=\rho} \frac{f_n(\xi) - f(\xi)}{(\xi-z)^2} d\xi \right| \\ &\leq \int_{|\xi-z|=\rho} \frac{|f_n(\xi) - f(\xi)|}{|\xi-z|} d|\xi| \\ &\leq \int_0^{2\pi} \frac{\varepsilon}{\rho} d\theta \\ &= \frac{2\pi\varepsilon}{\rho} \end{split}$$

for all $n \ge N$ and so $f'_n \to f$ for all $z \in K$.

(c) Let f(z) = 0 for some z. Let $\rho > 0$ be such that $B_{\rho}(z)$ contains only one zero of f,

namely z itself. Then from (b), $f'_n \to f'$, so

$$0 = \text{Number of zeros of } f_n \text{ in } B_\rho(z)$$

= $\frac{1}{2\pi i} \int_{|\xi-z|=\rho} \frac{f_n(\xi)}{f'_n(\xi)} d\xi \rightarrow \frac{1}{2\pi i} \int_{|\xi-z|=\rho} \frac{f(\xi)}{f'(\xi)} d\xi$
= Number of zeros of f in $B_\rho(z)$
= 1

a contradiction unless $f\equiv 0$ in which case,

$$\frac{1}{2\pi i}\int_{|\xi-z|=\rho}\frac{f_n(\xi)}{f_n'(\xi)}d\xi\to 0.$$

٢	l	Ŋ
6	Ş	7
	-	-

Problem 4.

- (a) Suppose that f is analytic on the open unit disk $\{z : |z| < 1\}$ and that there exists a constant M such that $|f^k(0)| \le k^4 M^k$ for all $k \ge 0$. Show that f can be extended to be analytic on \mathbb{C} .
- (b) Suppose that f is analytic on the open unit disk $\{z : |z| < 1\}$ and that there exists a cosntant M > 1 such that $|f(1/k)| \le M^{-k}$ for all $k \ge 1$. Show that f is identically zero.

Solution.

(a) Note that this forces f(0) = 0 and so the statement as written, makes no sense since $f^k(0) = 0$ for all k.

Thus, $|f^{(k)}(0)| \le k^4 M^k$ for all $k \ge 0$.

We can write a Taylor Series for f inside the disk.

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^n.$$

Now, for arbitrary $z \in \mathbb{C}$,

$$\begin{split} |f(z)| &\leq \sum_{n=0}^{\infty} \frac{|f^{(n)}(0)|}{n!} |z|^n \\ &\leq \sum_{n=0}^{\infty} \frac{n^4 M^n}{n!} |z|^n \\ &= \sum_{n=0}^{\infty} \frac{n^4 R^n}{n!} \qquad R = M |z| \end{split}$$

This is a real sum, and we can check that it converges by ratio test. Namely, $\sum_{n=0}^{\infty} a_n$ converges absolutely if

$$\lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|} < 1$$

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{\frac{(n+1)^4 R^{n+1}}{(n+1)!}}{\frac{n^4 R^n}{n!}}$$
$$= \lim_{n \to \infty} \frac{(n+1)^4 R^{n+1} n!}{(n+1)! n^4 R^n}$$
$$= \lim_{n \to \infty} \frac{(n+1)^4 R}{n^4 (n+1)}$$
$$= \lim_{n \to \infty} \frac{(n+1)^3 R}{n^4} = 0$$

Thus, the series absolutely converges. Furthermore, for all $|z| < \frac{R}{M}$, convergence is clearly uniform and since R is arbitrary, we get that f can be extended analytically to all of \mathbb{C} .

(b) Suppose that f is analytic on the open unit disk $\{z : |z| < 1\}$ and that there exists a constant M > 1 such that $|f(1/k)| \le M^{-k}$ for all $k \ge 1$.

This gives that f(0) = 0. Assume f is non-constant. Then we can write $f(z) = z^n g(z)$ where g is analytic and nonzero at 0.

Then

$$|f(1/k)| = \frac{|g(1/k)|}{k^n} \le \frac{1}{M^k}.$$

Namely,

$$\lim_{k \to \infty} |g(1/k)| \le \lim_{k \to \infty} \frac{k^n}{M^k} = 0$$

by induction.

This contradicts that g is nonzero at 0 and so g cannot exist. Namely, f cannot exist and must therefore be constant.

Since $f(0) = 0, f \equiv 0$.

H