Kayla Orlinsky
 Complex Analysis Exam Spring 2014

Problem 1. For $a>0$, evaluate the integral

$$
\int_{0}^{\infty} \frac{\log x}{(a+x)^{3}}
$$

being careful to justify your methods.

Solution. Note that since $x=-a$ on the negative real axis is pole of the function. Namely, "Ol Faithful" will intersect a pole in this case.

Thus, we will use the dreaded "pac man" contour around the whole plane with the branch cut on the real axis.

Now, we examine $\frac{\log ^{2} z}{(a+z)^{3}}$ simply because Fall 2013: Problem 1 showed that integrating $\log ^{2} z$ inadvertently gave us the value of $\log z$.

Let

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{\log ^{2} z}{(a+z)^{3}} d z \\
& I_{2}=\int_{\Gamma_{2}} \frac{\log ^{2} z}{(a+z)^{3}} d z \\
& I_{\varepsilon}=\int_{\Gamma_{\varepsilon}} \frac{\log ^{2} z}{(a+z)^{3}} d z \\
& I_{R}=\int_{\Gamma_{R}} \frac{\log ^{2} z}{(a+z)^{3}} d z
\end{aligned}
$$

Note that

$$
\begin{aligned}
I_{1} & =\int_{\Gamma_{1}} \frac{\log ^{2} z}{(a+z)^{3}} d z \\
& =\int_{R}^{\varepsilon} \frac{(\log x+i 2 \pi)^{2}}{(a+x)^{3}} d x \\
& =\int_{R}^{\varepsilon} \frac{\log ^{2} x+i 4 \pi \log x-4 \pi^{2}}{(a+x)^{3}} d x \\
& =-I_{2}-i 4 \pi \int_{\varepsilon}^{R} \frac{\log x}{(a+x)^{3}} d x+4 \pi^{2} \int_{\varepsilon}^{R} \frac{1}{(a+x)^{3}} d x \\
& =-I_{2}-i 4 \pi \int_{\varepsilon}^{R} \frac{\log x}{(a+x)^{3}} d x-\left.4 \pi^{2} \frac{1}{2(a+x)^{2}}\right|_{\varepsilon} ^{R} \\
& =-I_{2}-i 4 \pi \int_{\varepsilon}^{R} \frac{\log x}{(a+x)^{3}} d x-2 \pi^{2}\left[\frac{1}{(a+R)^{2}}-\frac{1}{(a+\varepsilon)^{2}}\right]
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{\log ^{2} z}{(a+z)^{3}} d z\right| \\
& \leq \int_{\Gamma_{R}} \frac{\left|\log ^{2} z\right|}{|a+z|^{3}} d|z| \\
& \leq \int_{0}^{2 \pi} \frac{R|\log R+i \theta|^{2}}{R^{3}-a^{3}} d \theta \\
& \leq 2 \pi \frac{R \log ^{2} R}{R^{3}-a^{3}}+2 \pi \frac{2 \pi R}{R^{3}-a^{3}} \rightarrow 0 \quad R \rightarrow \infty
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\left|I_{\varepsilon}\right| & \leq \int_{0}^{2 \pi} \frac{\varepsilon|\log \varepsilon+i \theta|^{2}}{a^{3}-\varepsilon^{3}} d \theta \\
& \leq 2 \pi \frac{\varepsilon \log ^{2} \varepsilon}{a^{3}-\varepsilon^{3}}+2 \pi \frac{2 \pi \varepsilon}{a^{3}-\varepsilon^{3}} \rightarrow 0 \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Thus, by the Residue Theorem,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=-a} \frac{\log ^{2} z}{(a+z)^{3}} & =\left.2 \pi i \frac{1}{2!} \frac{d^{2}}{d z^{2}} \log ^{2} z\right|_{-a} \\
& =\left.\pi i \frac{d}{d z} \frac{2 \log z}{z}\right|_{-a} \\
& =\left.2 \pi i\left[\frac{1-\log z}{z^{2}}\right]\right|_{-a} \\
& =2 \pi i\left[\frac{1-\log (-a)}{a^{2}}\right] \\
& =2 \pi i\left[\frac{1-\log a-\pi i}{a^{2}}\right] \\
& =\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left(I_{1}+I_{2}+I_{R}+I_{\varepsilon}\right) \\
& =-i 4 \pi \int_{0}^{\infty} \frac{\log x}{(a+x)^{3}} d x+\frac{2 \pi^{2}}{a^{2}} \\
\Longrightarrow \int_{0}^{\infty} \frac{\log x}{(a+x)^{3}} d x & =\frac{-1}{i 2 \pi}\left[2 \pi i\left[\frac{1-\log a-\pi i}{a^{2}}\right]-\frac{2 \pi^{2}}{a^{2}}\right] \\
& =\frac{\log a-1+\pi i}{2 a^{2}}-\frac{i \pi}{2 a^{2}} \\
& =\frac{\log a-1}{2 a^{2}}
\end{aligned}
$$

Problem 2. Find a conformal mapping of the region $\{z:|z|>1\} \backslash(1, \infty)$ onto the open unit disk $\{z:|z|<1\}$. You may give your answer as the composition of several mappings, so long as each mapping is precisely described.

Solution. Let

$$
\begin{aligned}
T(z) & =\frac{z-i}{z+i} \\
w_{1}(z) & =\frac{1}{z} \\
w_{2}(z) & =z^{\frac{1}{2}} \quad \text { branch at }[0, \infty) \\
w_{3}(z) & =-z \\
w_{4}(z) & =z^{2}
\end{aligned}
$$

8

Problem 3. Suppose that f_{n} are analytic functions on a connected open set $U \subset \mathbb{C}$ and that $f_{n} \rightarrow f$ uniformly on compact subsets of U. In each case indicate the main setps in the proofs of the following stnadard results.
(a) f is analytic in U;
(b) $f_{n}^{\prime} \rightarrow f^{\prime}$ uniformly on compact subsets of U;
(c) if $f_{n}(z) \neq 0$ for all n and all $z \in U$, then either $f(z) \neq 0$ for all $z \in U$ or else $f \equiv 0$.

Solution. What a poorly worded question... what are "main steps"?

(a) Let $\varepsilon>0$. Then, there exists an N such that $\left|f_{n}(z)-f(z)\right|<\varepsilon$ for all $n \geq N$ and all $z \in K$ compact $\subset U$.
Clearly this forces any singularities of f to be isolated. Else uniform convergene via analytic functions is not possible.
Furthermore, if f has a removable singularity at $z_{0} \in K$, then $f\left(z_{0}\right)=w$ but $\lim _{z \rightarrow z_{0}} f(z)=w^{\prime}=\lim _{n \rightarrow \infty} f_{n}\left(z_{0}\right)$, so uniform convergence is not possible unless $w^{\prime}=w$, namely f cannot have a removable singularity.

Similarly, if f has a pole or essential singularity in K, then again this will contradict uniform convergence. So f is analytic in all compact subsets of U. Namely, f is analytic in U.
(b) Let $K \subset U$ be compact. Let $z \in K$ and ρ such that $B_{\rho}(z) \subset K$. Then let $\varepsilon>0$ and N such that $\left|f_{n}(z)-f(z)\right|<\varepsilon$ for all $n \geq N$ and all $z \in K$. Then

$$
\begin{aligned}
\left|f_{n}^{\prime}(z)-f^{\prime}(z)\right| & =\left|\int_{|\xi-z|=\rho} \frac{f_{n}(\xi)}{(\xi-z)^{2}} d \xi-\int_{|\xi-z|=\rho} \frac{f(\xi)}{(\xi-z)^{2}} d \xi\right| \\
& =\left|\int_{|\xi-z|=\rho} \frac{f_{n}(\xi)-f(\xi)}{(\xi-z)^{2}} d \xi\right| \\
& \leq \int_{|\xi-z|=\rho} \frac{\left|f_{n}(\xi)-f(\xi)\right|}{|\xi-z|} d|\xi| \\
& \leq \int_{0}^{2 \pi} \frac{\varepsilon}{\rho} d \theta \\
& =\frac{2 \pi \varepsilon}{\rho}
\end{aligned}
$$

for all $n \geq N$ and so $f_{n}^{\prime} \rightarrow f$ for all $z \in K$.
(c) Let $f(z)=0$ for some z. Let $\rho>0$ be such that $B_{\rho}(z)$ contains only one zero of f,
namely z itself. Then from (b), $f_{n}^{\prime} \rightarrow f^{\prime}$, so

$$
\begin{aligned}
0 & =\text { Number of zeros of } f_{n} \text { in } B_{\rho}(z) \\
& =\frac{1}{2 \pi i} \int_{|\xi-z|=\rho} \frac{f_{n}(\xi)}{f_{n}^{\prime}(\xi)} d \xi \rightarrow \frac{1}{2 \pi i} \int_{|\xi-z|=\rho} \frac{f(\xi)}{f^{\prime}(\xi)} d \xi \\
& =\text { Number of zeros of } f \text { in } B_{\rho}(z) \\
& =1
\end{aligned}
$$

a contradiction unless $f \equiv 0$ in which case,

$$
\frac{1}{2 \pi i} \int_{|\xi-z|=\rho} \frac{f_{n}(\xi)}{f_{n}^{\prime}(\xi)} d \xi \rightarrow 0
$$

Problem 4.

(a) Suppose that f is analytic on the open unit disk $\{z:|z|<1\}$ and that there exists a constant M such that $\left|f^{k}(0)\right| \leq k^{4} M^{k}$ for all $k \geq 0$. Show that f can be extended to be analytic on \mathbb{C}.
(b) Suppose that f is analytic on the open unit disk $\{z:|z|<1\}$ and that there exists a cosntant $M>1$ such that $|f(1 / k)| \leq M^{-k}$ for all $k \geq 1$. Show that f is identically zero.

Solution.

(a) Note that this forces $f(0)=0$ and so the statement as written, makes no sense since $f^{k}(0)=0$ for all k.
Thus, $\left|f^{(k)}(0)\right| \leq k^{4} M^{k}$ for all $k \geq 0$.
We can write a Taylor Series for f inside the disk.

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}
$$

Now, for arbitrary $z \in \mathbb{C}$,

$$
\begin{aligned}
|f(z)| & \leq \sum_{n=0}^{\infty} \frac{\left|f^{(n)}(0)\right|}{n!}|z|^{n} \\
& \leq \sum_{n=0}^{\infty} \frac{n^{4} M^{n}}{n!}|z|^{n} \\
& =\sum_{n=0}^{\infty} \frac{n^{4} R^{n}}{n!} \quad R=M|z|
\end{aligned}
$$

This is a real sum, and we can check that it converges by ratio test. Namely, $\sum_{n=0}^{\infty} a_{n}$ converges absolutely if

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}<1 \\
& \lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{\frac{(n+1)^{4} R^{n+1}}{(n+1)!}}{\frac{n^{4} R^{n}}{n!}} \\
&=\lim _{n \rightarrow \infty} \frac{(n+1)^{4} R^{n+1} n!}{(n+1)!n^{4} R^{n}} \\
&=\lim _{n \rightarrow \infty} \frac{(n+1)^{4} R}{n^{4}(n+1)} \\
&=\lim _{n \rightarrow \infty} \frac{(n+1)^{3} R}{n^{4}}=0
\end{aligned}
$$

Thus, the series absolutely converges. Furthermore, for all $|z|<\frac{R}{M}$, convergence is clearly uniform and since R is arbitrary, we get that f can be extended analytically to all of \mathbb{C}.
(b) Suppose that f is analytic on the open unit disk $\{z:|z|<1\}$ and that there exists a constant $M>1$ such that $|f(1 / k)| \leq M^{-k}$ for all $k \geq 1$.
This gives that $f(0)=0$. Assume f is non-constant. Then we can write $f(z)=z^{n} g(z)$ where g is analytic and nonzero at 0 .
Then

$$
|f(1 / k)|=\frac{|g(1 / k)|}{k^{n}} \leq \frac{1}{M^{k}} .
$$

Namely,

$$
\lim _{k \rightarrow \infty}|g(1 / k)| \leq \lim _{k \rightarrow \infty} \frac{k^{n}}{M^{k}}=0
$$

by induction.
This contradicts that g is nonzero at 0 and so g cannot exist. Namely, f cannot exist and must therefore be constant.
Since $f(0)=0, f \equiv 0$.

