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Problem 1. For a > 0, evaluate the integral∫ ∞
0

log x
(a+ x)3 ,

being careful to justify your methods.

Solution. Note that since x = −a on the negative real axis is pole of the function. Namely,
“Ol Faithful” will intersect a pole in this case.

Thus, we will use the dreaded “pac man” contour around the whole plane with the
branch cut on the real axis.

ΓR

Γε
Γ2

Γ1

Re

Im

Now, we examine log2 z
(a+z)3 simply because Fall 2013: Problem 1 showed that integrating

log2 z inadvertently gave us the value of log z.
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Let

I1 =
∫

Γ1

log2 z

(a+ z)3dz

I2 =
∫

Γ2

log2 z

(a+ z)3dz

Iε =
∫

Γε

log2 z

(a+ z)3dz

IR =
∫

ΓR

log2 z

(a+ z)3dz

Note that

I1 =
∫

Γ1

log2 z

(a+ z)3dz

=
∫ ε

R

(log x+ i2π)2

(a+ x)3 dx

=
∫ ε

R

log2 x+ i4π log x− 4π2

(a+ x)3 dx

= −I2 − i4π
∫ R

ε

log x
(a+ x)3dx+ 4π2

∫ R

ε

1
(a+ x)3dx

= −I2 − i4π
∫ R

ε

log x
(a+ x)3dx− 4π2 1

2(a+ x)2

∣∣∣∣R
ε

= −I2 − i4π
∫ R

ε

log x
(a+ x)3dx− 2π2

[
1

(a+R)2 −
1

(a+ ε)2

]

Now,

|IR| =
∣∣∣∣∣
∫

ΓR

log2 z

(a+ z)3dz

∣∣∣∣∣
≤
∫

ΓR

| log2 z|
|a+ z|3

d|z|

≤
∫ 2π

0

R| logR + iθ|2

R3 − a3 dθ

≤ 2πR log2R

R3 − a3 + 2π 2πR
R3 − a3 → 0 R→∞

Similarly,

|Iε| ≤
∫ 2π

0

ε| log ε+ iθ|2

a3 − ε3 dθ

≤ 2π ε log2 ε

a3 − ε3 + 2π 2πε
a3 − ε3 → 0 ε→ 0
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Thus, by the Residue Theorem,

2πiResz=−a
log2 z

(a+ z)3 = 2πi 1
2!
d2

dz2 log2 z

∣∣∣∣
−a

= πi
d

dz

2 log z
z

∣∣∣∣
−a

= 2πi
[

1− log z
z2

] ∣∣∣∣
−a

= 2πi
[

1− log(−a)
a2

]

= 2πi
[

1− log a− πi
a2

]
= lim

R→∞
lim
ε→0

(I1 + I2 + IR + Iε)

= −i4π
∫ ∞

0

log x
(a+ x)3dx+ 2π2

a2

=⇒
∫ ∞

0

log x
(a+ x)3dx = −1

i2π

[
2πi

[
1− log a− πi

a2

]
− 2π2

a2

]

= log a− 1 + πi

2a2 − iπ

2a2

= log a− 1
2a2

�
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Problem 2. Find a conformal mapping of the region {z : |z| > 1}\(1,∞) onto the open
unit disk {z : |z| < 1}. You may give your answer as the composition of several mappings,
so long as each mapping is precisely described.

Solution. Let

T (z) = z − i
z + i

w1(z) = 1
z

w2(z) = z
1
2 branch at [0,∞)

w3(z) = −z
w4(z) = z2

|z| < 1

1
Re

Im

−1

w1

|z| < 1

1
Re

Im

−1

w2

|z| < 1

1−1
Re

Im

w3

1−1
Re

Im

T−1

Re

Im

w4

Re

Im

T |z| < 1

1
Re

Im

−1

�
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Problem 3. Suppose that fn are analytic functions on a connected open set U ⊂ C and
that fn → f uniformly on compact subsets of U . In each case indicate the main setps in
the proofs of the following stnadard results.

(a) f is analytic in U ;

(b) f ′n → f ′ uniformly on compact subsets of U ;

(c) if fn(z) 6= 0 for all n and all z ∈ U , then either f(z) 6= 0 for all z ∈ U or else f ≡ 0.

Solution. What a poorly worded question... what are “main steps”?

(a) Let ε > 0. Then, there exists an N such that |fn(z)− f(z)| < ε for all n ≥ N and all
z ∈ K compact ⊂ U .
Clearly this forces any singularities of f to be isolated. Else uniform convergene via
analytic functions is not possible.
Furthermore, if f has a removable singularity at z0 ∈ K, then f(z0) = w but
limz→z0 f(z) = w′ = limn→∞ fn(z0), so uniform convergence is not possible unless
w′ = w, namely f cannot have a removable singularity.
Similarly, if f has a pole or essential singularity in K, then again this will contradict
uniform convergence. So f is analytic in all compact subsets of U . Namely, f is analytic
in U.

(b) Let K ⊂ U be compact. Let z ∈ K and ρ such that Bρ(z) ⊂ K. Then let ε > 0 and N
such that |fn(z)− f(z)| < ε for all n ≥ N and all z ∈ K. Then

|f ′n(z)− f ′(z)| =
∣∣∣∣∣
∫
|ξ−z|=ρ

fn(ξ)
(ξ − z)2dξ −

∫
|ξ−z|=ρ

f(ξ)
(ξ − z)2dξ

∣∣∣∣∣
=
∣∣∣∣∣
∫
|ξ−z|=ρ

fn(ξ)− f(ξ)
(ξ − z)2 dξ

∣∣∣∣∣
≤
∫
|ξ−z|=ρ

|fn(ξ)− f(ξ)|
|ξ − z|

d|ξ|

≤
∫ 2π

0

ε

ρ
dθ

= 2πε
ρ

for all n ≥ N and so f ′n → f for all z ∈ K.

(c) Let f(z) = 0 for some z. Let ρ > 0 be such that Bρ(z) contains only one zero of f ,
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namely z itself. Then from (b), f ′n → f ′, so

0 = Number of zeros of fn in Bρ(z)

= 1
2πi

∫
|ξ−z|=ρ

fn(ξ)
f ′n(ξ)dξ →

1
2πi

∫
|ξ−z|=ρ

f(ξ)
f ′(ξ)dξ

= Number of zeros of f in Bρ(z)
= 1

a contradiction unless f ≡ 0 in which case,

1
2πi

∫
|ξ−z|=ρ

fn(ξ)
f ′n(ξ)dξ → 0.

�
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Problem 4.

(a) Suppose that f is analytic on the open unit disk {z : |z| < 1} and that there exists
a constant M such that |fk(0)| ≤ k4Mk for all k ≥ 0. Show that f can be extended
to be analytic on C.

(b) Suppose that f is analytic on the open unit disk {z : |z| < 1} and that there exists a
cosntant M > 1 such that |f(1/k)| ≤M−k for all k ≥ 1. Show that f is identically
zero.

Solution.

(a) Note that this forces f(0) = 0 and so the statement as written, makes no sense since
fk(0) = 0 for all k.
Thus, |f (k)(0)| ≤ k4Mk for all k ≥ 0.
We can write a Taylor Series for f inside the disk.

f(z) =
∞∑
n=0

f (n)(0)
n! zn.

Now, for arbitrary z ∈ C,

|f(z)| ≤
∞∑
n=0

|f (n)(0)|
n! |z|n

≤
∞∑
n=0

n4Mn

n! |z|
n

=
∞∑
n=0

n4Rn

n! R = M |z|

This is a real sum, and we can check that it converges by ratio test. Namely, ∑∞n=0 an
converges absolutely if

lim
n→∞

|an+1|
|an|

< 1

lim
n→∞

an+1

an
= lim

n→∞

(n+1)4Rn+1

(n+1)!
n4Rn

n!

= lim
n→∞

(n+ 1)4Rn+1n!
(n+ 1)!n4Rn

= lim
n→∞

(n+ 1)4R

n4(n+ 1)

= lim
n→∞

(n+ 1)3R

n4 = 0
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Thus, the series absolutely converges. Furthermore, for all |z| < R
M
, convergence is

clearly uniform and since R is arbitrary, we get that f can be extended analytically to
all of C.

(b) Suppose that f is analytic on the open unit disk {z : |z| < 1} and that there exists a
constant M > 1 such that |f(1/k)| ≤M−k for all k ≥ 1.
This gives that f(0) = 0. Assume f is non-constant. Then we can write f(z) = zng(z)
where g is analytic and nonzero at 0.
Then

|f(1/k)| = |g(1/k)|
kn

≤ 1
Mk

.

Namely,
lim
k→∞
|g(1/k)| ≤ lim

k→∞

kn

Mk
= 0

by induction.
This contradicts that g is nonzero at 0 and so g cannot exist. Namely, f cannot exist
and must therefore be constant.
Since f(0) = 0, f ≡ 0.
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