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Problem 1. Let a > 1. Compute ∫ π

0

dθ

a+ cos θ

being careful to justify your methods.

Solution. Note that cos(θ) = cos(θ − 2π) and cos(−θ) = cos(θ) so
∫ 2π

π

dθ

a+ cos(θ) =
∫ 3π/2

π

dθ

a+ cos(θ) +
∫ 2π

3π/2

dθ

a+ cos(θ)

=
∫ −π/2

−π

dθ

a+ cos(θ) +
∫ 0

−π/2

dθ

a+ cos(θ)

=
∫ π/2

π

−dθ
a+ cos(θ) +

∫ 0

π/2

−dθ
a+ cos(θ)

=
∫ π

π/2

dθ

a+ cos(θ) +
∫ π/2

0

dθ

a+ cos(θ)

=
∫ π

0

dθ

a+ cos(θ)

and so ∫ 2π

0

dθ

a+ cos θ = 2
∫ π

0

dθ

a+ cos(θ) .
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Thus,∫ π

0

dθ

a+ cos θ = 1
2

∫ 2π

0

dθ

a+ cos(θ)

= 1
2

∫ 2π

0

dθ

a+ eiθ+e−iθ
2

= 1
2

∫ 2π

0

2dθ
2a+ eiθ + e−iθ

=
∫ 2π

0

eiθdθ

e2iθ + 2aeiθ + 1

=
∫
|z|=1

−idz
z2 + 2az + 1 z = eiθ

=
∫
|z|=1

−idz
(z + a+

√
a2 − 1)(z + a−

√
a2 − 1)

(1)

= 2πiResz=−a+
√
a2−1

−i
(z + a+

√
a2 − 1)(z + a−

√
a2 − 1)

Residue Theorem

(2)

= 2π 1
−a+

√
a2 − 1 + a+

√
a2 − 1

= 2π
2
√
a2 − 1

= π√
a2 − 1

with (1) since

z2 + 2az + 1 = 0

=⇒ z = −2a±
√

4a2 − 4
2

= −a±
√
a2 − 1

and (2) since a+
√
a2 − 1 > a > 1 this point is not in the circle {|z| < 1}. Furthermore,

0 = a− a < a−
√
a2 − 1 since a > 1 =⇒

√
a2 − 1 <

√
a2 = a

and so if h(a) = a−
√
a2 − 1 then h′(a) = 1− a√

a2−1 < 0 so h is strictly decreasing and since
h(1) = 1, we have that 0 < a−

√
a2 − 1 < 1 for all a > 1, so this is in the disk {|z| < 1}.

�
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Problem 2. Find the number of zeros, counting multiplicity, of z8 − z3 + 10 inside the
first quadrant {z ∈ C : Re(z) > 0, Im(z) > 0}.

Solution. Let f(z) = z8 − z3 + 10.
First, on Re(z) = x > 0, f(x) = x8 − x3 + 10 > 0.
This is because if 0 < x < 1 then x8 < x3 so x8 − x3 > −x3 > −1 and so f(x) > 9.
And if x > 1 then x8 > x3 so f(x) > 0. So f maps the positive real axis to the positive

real axis away from the origin.
Similarly,

f(iy) = (iy)8 − (iy)3 + 10 = y8 + 10 + iy3

and so Re(f(iy)) > 0 and Im(f(iy)) > 0 for all y > 0 so f sends the positive imaginary axis
to the first quadrant away from the origin.

Finally, for R large, we can define a quarter circle arc in the first quadrant {z = Reiθ :
0 ≤ θ ≤ π

2}. On this arc,

lim
R→∞

f(Reiθ)
R8 = lim

R→∞

(
e8iθ − e3iθ

R5 + 10
R8

)
= e8iθ.

Thus, f has a total change in argument of 8π/2 = 4π. Namely, f has 2 roots in the first
quadrant. �

3



Kayla Orlinsky
Fall 2014

Problem 3. Assume that f(z) and g(z) are holomorphic in a puctured neighborhood
of z0 ∈ C. Prove that if f has an essential singuliarty at z0 and g has a pole at z0, then
f(z)g(z) has an essential singulairty at z0.

Solution. Let h(z) = f(z)g(z). Then since g(z) has a pole at z0,

1
g

has a zero at z0. Thus, if h is analytic at z0 then h
g
has a zero at z0. However, since h

g
= f

which has an essential singularity at z0, this is not possible.
So h has a singularity at z0.

Now, if h has a removable singularity, then 1
g
having a zero at z0 implies

lim
z→z0

h

g
= 0 6= lim

z→z0
f(z)

so this is a contradiction.
If h has a pole at z0, then h = h′

(z−z0)k and since 1
g
has a zero at z0,

1
g

= (z − z0)lg′ for
some k, some l, some h′ which is non-zero at z0 and some g′ which is nonzero at z0.

However, then if l < k

lim
z→z0

(z − z0)k−l+1h

g
= lim

z→z0
(z − z0)k−l+1h

′(z − z0)lg′
(z − z0)k

= lim
z→z0

(z − z0)h′g′

= 0
6= lim

z→z0
(z − z0)k−l+1f(z)

since f has an essential singuliarty.
And if l ≥ k, then

lim
z→z0

h

g
= lim

z→z0
(z − z0)l−kh′g′ <∞

and again we get a contradiction since h
g

= f which has an essential singuliarty at z0 and so
cannot possess a finite limit at that point.

Therefore, h has a singularity which not removable and not a pole. Namely, h must have
an essential singularity. �
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Problem 4.

(a) Suppose that f is holormophic on C and assume that the imaginary part of f is
bounded. Prove that f is constant.

(b) Suppose that f and g are holomorphic on C and that |f(z)| ≤ |g(z)| for all z ∈ C.
Prove that there exists λ ∈ C such that f = λg.

Solution.

(a) Suppose that f is holormophic on C and assume that the imaginary part of f is
bounded.
Let f = u+ iv. Assume |v(z)| < M for all z ∈ C.
Thus, f(C) ⊂ Ω = {x + iy : |y| < M}. Since Ω is an open simply connected strict
subset of C, by the Riemann Mapping Theorem, there exists a g : Ω→ D = {|z| < 1}
which is analytic, bijective, and has an analytic inverse.
However, then

g ◦ f : C→ D

is an entire function which is bounded and so g ◦ f = c is constant. Namely, f = g−1(c)
and is constant.

(b) Suppose that f and g are holomorphic on C and that |f(z)| ≤ |g(z)| for all z ∈ C.
Assume g has a zero of order k at z0. Then g(z) = (z − z0)kg0(z) with g0 analytic and
nonzero in a neighborhood of z0.
However, then

0 = lim
z→z0

|g(z)|
(z − z0)k−1 ≥ lim

z→z0

|f(z)|
(z − z0)k−1

and so f must have a zero of order at least k at z0.
Namely, if h = f

g
then h has removable singularities at the zeros of g, and so has an

analytic continuation to the whole plane.
Namely, WLOG, h is entire, and since

|h| = |f |
|g|
≤ 1

by Louiville’s h is consant. So there is some λ ∈ C so f
g

= λ and namely, f = λg.
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