Kayla Orlinsky

Complex Analysis Exam Fall 2014

Problem 1. Let $a>1$. Compute

$$
\int_{0}^{\pi} \frac{d \theta}{a+\cos \theta}
$$

being careful to justify your methods.

Solution. Note that $\cos (\theta)=\cos (\theta-2 \pi)$ and $\cos (-\theta)=\cos (\theta)$ so

$$
\begin{aligned}
\int_{\pi}^{2 \pi} \frac{d \theta}{a+\cos (\theta)} & =\int_{\pi}^{3 \pi / 2} \frac{d \theta}{a+\cos (\theta)}+\int_{3 \pi / 2}^{2 \pi} \frac{d \theta}{a+\cos (\theta)} \\
& =\int_{-\pi}^{-\pi / 2} \frac{d \theta}{a+\cos (\theta)}+\int_{-\pi / 2}^{0} \frac{d \theta}{a+\cos (\theta)} \\
& =\int_{\pi}^{\pi / 2} \frac{-d \theta}{a+\cos (\theta)}+\int_{\pi / 2}^{0} \frac{-d \theta}{a+\cos (\theta)} \\
& =\int_{\pi / 2}^{\pi} \frac{d \theta}{a+\cos (\theta)}+\int_{0}^{\pi / 2} \frac{d \theta}{a+\cos (\theta)} \\
& =\int_{0}^{\pi} \frac{d \theta}{a+\cos (\theta)}
\end{aligned}
$$

and so

$$
\int_{0}^{2 \pi} \frac{d \theta}{a+\cos \theta}=2 \int_{0}^{\pi} \frac{d \theta}{a+\cos (\theta)}
$$

Thus,

$$
\begin{align*}
\int_{0}^{\pi} \frac{d \theta}{a+\cos \theta} & =\frac{1}{2} \int_{0}^{2 \pi} \frac{d \theta}{a+\cos (\theta)} \\
& =\frac{1}{2} \int_{0}^{2 \pi} \frac{d \theta}{a+\frac{e^{i \theta}+e^{-i \theta}}{2}} \\
& =\frac{1}{2} \int_{0}^{2 \pi} \frac{2 d \theta}{2 a+e^{i \theta}+e^{-i \theta}} \\
& =\int_{0}^{2 \pi} \frac{e^{i \theta} d \theta}{e^{2 i \theta}+2 a e^{i \theta}+1} \\
& =\int_{|z|=1} \frac{-i d z}{z^{2}+2 a z+1} \quad z=e^{i \theta} \\
& =\int_{|z|=1} \frac{-i d z}{\left(z+a+\sqrt{a^{2}-1}\right)\left(z+a-\sqrt{a^{2}-1}\right)} \quad \text { Residue Theorem } \tag{1}\\
& =2 \pi i \operatorname{Res}_{z=-a+\sqrt{a^{2}-1}}^{\left(z+a+\sqrt{a^{2}-1}\right)\left(z+a-\sqrt{a^{2}-1}\right)} \quad \text { (1) } \\
& =2 \pi \frac{1}{-a+\sqrt{a^{2}-1}+a+\sqrt{a^{2}-1}} \tag{2}\\
& =\frac{2 \pi}{2 \sqrt{a^{2}-1}} \\
& =\frac{\pi}{\sqrt{a^{2}-1}}
\end{align*}
$$

with (1) since

$$
\begin{aligned}
z^{2}+2 a z+1 & =0 \\
\Longrightarrow z & =\frac{-2 a \pm \sqrt{4 a^{2}-4}}{2} \\
& =-a \pm \sqrt{a^{2}-1}
\end{aligned}
$$

and (2) since $a+\sqrt{a^{2}-1}>a>1$ this point is not in the circle $\{|z|<1\}$. Furthermore,

$$
0=a-a<a-\sqrt{a^{2}-1} \quad \text { since } a>1 \Longrightarrow \sqrt{a^{2}-1}<\sqrt{a^{2}}=a
$$

and so if $h(a)=a-\sqrt{a^{2}-1}$ then $h^{\prime}(a)=1-\frac{a}{\sqrt{a^{2}-1}}<0$ so h is strictly decreasing and since $h(1)=1$, we have that $0<a-\sqrt{a^{2}-1}<1$ for all $a>1$, so this is in the disk $\{|z|<1\}$.

Problem 2. Find the number of zeros, counting multiplicity, of $z^{8}-z^{3}+10$ inside the first quadrant $\{z \in \mathbb{C}: \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$.

Solution. Let $f(z)=z^{8}-z^{3}+10$.
First, on $\operatorname{Re}(z)=x>0, f(x)=x^{8}-x^{3}+10>0$.
This is because if $0<x<1$ then $x^{8}<x^{3}$ so $x^{8}-x^{3}>-x^{3}>-1$ and so $f(x)>9$.
And if $x>1$ then $x^{8}>x^{3}$ so $f(x)>0$. So f maps the positive real axis to the positive real axis away from the origin.

Similarly,

$$
f(i y)=(i y)^{8}-(i y)^{3}+10=y^{8}+10+i y^{3}
$$

and so $\operatorname{Re}(f(i y))>0$ and $\operatorname{Im}(f(i y))>0$ for all $y>0$ so f sends the positive imaginary axis to the first quadrant away from the origin.

Finally, for R large, we can define a quarter circle arc in the first quadrant $\left\{z=R e^{i \theta}\right.$: $\left.0 \leq \theta \leq \frac{\pi}{2}\right\}$. On this arc,

$$
\lim _{R \rightarrow \infty} \frac{f\left(R e^{i \theta}\right)}{R^{8}}=\lim _{R \rightarrow \infty}\left(e^{8 i \theta}-\frac{e^{3 i \theta}}{R^{5}}+\frac{10}{R^{8}}\right)=e^{8 i \theta}
$$

Thus, f has a total change in argument of $8 \pi / 2=4 \pi$. Namely, f has 2 roots in the first quadrant.

Problem 3. Assume that $f(z)$ and $g(z)$ are holomorphic in a puctured neighborhood of $z_{0} \in \mathbb{C}$. Prove that if f has an essential singuliarty at z_{0} and g has a pole at z_{0}, then $f(z) g(z)$ has an essential singulairty at z_{0}.

Solution. Let $h(z)=f(z) g(z)$. Then since $g(z)$ has a pole at z_{0},

$$
\frac{1}{g}
$$

has a zero at z_{0}. Thus, if h is analytic at z_{0} then $\frac{h}{g}$ has a zero at z_{0}. However, since $\frac{h}{g}=f$ which has an essential singularity at z_{0}, this is not possible.

So h has a singularity at z_{0}.
Now, if h has a removable singularity, then $\frac{1}{g}$ having a zero at z_{0} implies

$$
\lim _{z \rightarrow z_{0}} \frac{h}{g}=0 \neq \lim _{z \rightarrow z_{0}} f(z)
$$

so this is a contradiction.
If h has a pole at z_{0}, then $h=\frac{h^{\prime}}{\left(z-z_{0}\right)^{k}}$ and since $\frac{1}{g}$ has a zero at $z_{0}, \frac{1}{g}=\left(z-z_{0}\right)^{l} g^{\prime}$ for some k, some l, some h^{\prime} which is non-zero at z_{0} and some g^{\prime} which is nonzero at z_{0}.

However, then if $l<k$

$$
\begin{aligned}
\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k-l+1} \frac{h}{g} & =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k-l+1} \frac{h^{\prime}\left(z-z_{0}\right)^{l} g^{\prime}}{\left(z-z_{0}\right)^{k}} \\
& =\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) h^{\prime} g^{\prime} \\
& =0 \\
& \neq \lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k-l+1} f(z)
\end{aligned}
$$

since f has an essential singuliarty.
And if $l \geq k$, then

$$
\lim _{z \rightarrow z_{0}} \frac{h}{g}=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{l-k} h^{\prime} g^{\prime}<\infty
$$

and again we get a contradiction since $\frac{h}{g}=f$ which has an essential singuliarty at z_{0} and so cannot possess a finite limit at that point.

Therefore, h has a singularity which not removable and not a pole. Namely, h must have an essential singularity.

Problem 4.

(a) Suppose that f is holormophic on \mathbb{C} and assume that the imaginary part of f is bounded. Prove that f is constant.
(b) Suppose that f and g are holomorphic on \mathbb{C} and that $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{C}$. Prove that there exists $\lambda \in \mathbb{C}$ such that $f=\lambda g$.

Solution.

(a) Suppose that f is holormophic on \mathbb{C} and assume that the imaginary part of f is bounded.

Let $f=u+i v$. Assume $|v(z)|<M$ for all $z \in \mathbb{C}$.
Thus, $f(\mathbb{C}) \subset \Omega=\{x+i y:|y|<M\}$. Since Ω is an open simply connected strict subset of \mathbb{C}, by the Riemann Mapping Theorem, there exists a $g: \Omega \rightarrow \mathbb{D}=\{|z|<1\}$ which is analytic, bijective, and has an analytic inverse.
However, then

$$
g \circ f: \mathbb{C} \rightarrow \mathbb{D}
$$

is an entire function which is bounded and so $g \circ f=c$ is constant. Namely, $f=g^{-1}(c)$ and is constant.
(b) Suppose that f and g are holomorphic on \mathbb{C} and that $|f(z)| \leq|g(z)|$ for all $z \in \mathbb{C}$.

Assume g has a zero of order k at z_{0}. Then $g(z)=\left(z-z_{0}\right)^{k} g_{0}(z)$ with g_{0} analytic and nonzero in a neighborhood of z_{0}.
However, then

$$
0=\lim _{z \rightarrow z_{0}} \frac{|g(z)|}{\left(z-z_{0}\right)^{k-1}} \geq \lim _{z \rightarrow z_{0}} \frac{|f(z)|}{\left(z-z_{0}\right)^{k-1}}
$$

and so f must have a zero of order at least k at z_{0}.
Namely, if $h=\frac{f}{g}$ then h has removable singularities at the zeros of g, and so has an analytic continuation to the whole plane.
Namely, WLOG, h is entire, and since

$$
|h|=\frac{|f|}{|g|} \leq 1
$$

by Louiville's h is consant. So there is some $\lambda \in \mathbb{C}$ so $\frac{f}{g}=\lambda$ and namely, $f=\lambda g$.

