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Problem 1. Evaluate ∫ ∞
0

x1/3

1 + x4dx

being careful to justify your answer.

Solution. We will use the contour around the top right quadrant avoiding the origin with
the principal branch for x1/3

1+x4 being (−∞, 0].

ΓR

Γε
Γ1

Γ2

Re

Im

Let

I1 =
∫

Γ1

z1/3

1 + z4dz

I2 =
∫

Γ2

z1/3

1 + z4dz

Iε =
∫

Γε

z1/3

1 + z4dz

IR =
∫

ΓR

z1/3

1 + z4dz
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Now,

I2 =
∫ ε

R

(ix)1/3i

1 + x4 dx

=
∫ ε

R

ie
πi
6 x1/3

1 + x4 dx

= −ieπi6
∫ R

ε

x1/3

1 + x4dx

= −ieπi6 I1

Now,

|Iε| =
∣∣∣∣∣
∫

Γε

z1/3

1 + z4dz

∣∣∣∣∣
≤
∫
|z|=ε

ε1/3

|1 + z4|
|dz|

≤
∫
|z|=ε

ε1/3

1− ε4 |dz|

= −πε ε1/3

1− ε4 → 0 ε→ 0.

and similarly,

|IR| ≤ −πR
R1/3

1−R4

= −π R4/3

1−R4 → 0 R→∞

Finally, we note that there is one residue in the first quadrant since

1 + x4 = (i− x2)(i+ x2) = (
√
i− x)(

√
i+ x)(i

√
i+ x)(i

√
i− x)

√
i = eiπ/4 =

√
2

2 + i

√
2

2

Alternatively, the zeros are ekiπ/4 for k = 1, 3, 5, 7 for which only the first is in the first
quadrant.
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Therefore, by the Residue Theorem, we get

2πiResz=eiπ/4
z1/3

1 + z4 = 2πi lim
z→eiπ/4

z1/3(z − eiπ/4)
1 + z4

= 2πi lim
z→eiπ/4

z4/3 − eiπ/4z1/3

1 + z4

= 2πi lim
z→eiπ/4

4
3z

1/3 − 1
3e
iπ/4z−2/3

4z3 L’Hopital’s Rule

= 2πi
4
3e
iπ/12 − 1

3e
iπ/4e−2iπ/12

4e3iπ/4

= 2πi
4
3e
iπ/12 − 1

3e
iπ/12

4e3iπ/4

= 2πi e
iπ/12

4e3iπ/4

= i
π

2 e
−8iπ/12

= i
π

2 e
−2iπ/3

= i
π

2 e
4iπ/3

= lim
R→∞

lim
ε→0

(I1 + I2 + Iε + IR)

= (1− ieπi6 )
∫ ∞

0

x1/3

1 + x4dx

=⇒
∫ ∞

0

x1/3

1 + x4dx =
iπ2 e

4iπ/3

1− e4πi/6

= iπe4iπ/3

2(1− e2πi/3)

= iπ

2(e−4iπ/3 − e−2iπ/3)

= π

4
i2

e2iπ/3 − e−2iπ/3

= π/4
sin(2π/3)

= π/4√
3/2

= π

2
√

3

�
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Problem 2. Assume that f is an entire function such that

|f(z)| ≥ 1
1 + |z| for all z ∈ C.

Prove that f is a constant function.

Solution. First, we note that f(z) 6= 0 for all |z| <∞ since 1
1+|z| > 0.

Thus, because f is entire and non-zero, g = 1
f
is entire and non-zero.

Thus,
|g(z)| ≤ 1 + |z|.

Therefore, by Cauchy Estimate, on {|z| ≤ R},

|g(z)| ≤ 1 + |z| ≤ 1 +R

and so
|g(2)(z)| ≤ 2!(1 +R)

R2 → 0 R→∞.

Thus, g(z) = az + b, however, then g(z) has a zero at −b
a

which is a contradiction unless
a = 0.

Namely, g is constant and so f is constant. �
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Problem 3. Let fn, n ≥ 1, be a sequence of holomorphic functions on an open connected
set D such that |fn(z)| ≤ 1 for all z ∈ D, n ≥ 1. Let A ⊂ D be the set of all z ∈ D for
which the limit limn fn(z) exists.

Show that if A has an accumulation point in D, then there exists a holomoprhic
function f on D such that fn → f uniformly on every compact subset of D as n→∞.

Solution. Assume A has an accumulation point in z0 ∈ D.
By Montel’s theorem, since the fn are all uniformly bounded on D, {fn} form a normal

family on D.
Thus, on every compact subset of D, there exists a holomorphic function f such that

there is a subsequence {fnk} which converges uniformly to f.
We would like to show that the entire sequence fn → f on each compact subset.
Let fnk → f on a compact subset K ⊂ D containing z0 which is the accumulation point

of A in D. Let gn = fn − f .
Then gn−k → 0 uniformly on K. Therefore, gn → 0 on K ∩ A since the limit exists and

a subsequence converges to 0.
Now, since A ∩K contains an accumulation point, there is a sequence {zl} ⊂ A ∩K

such that zl → z0 and limn→∞ gn(zl) = 0 for all l.
Now, since {fn} is uniformly bounded and holomorphic, by Arzela-Ascoli it is equicon-

tinuous and so {gn} is equicontinuous. Let ε > 0 be given and δ > 0 be such that
|gn(z)− gn(w)| < ε whenever |z − w| < δ.

Therefore, if {Bδ/3(zl)} is an open covering of some compact subset of K, then there
exists a finite subcovering Bδ/3(zlj). Now, since gn → 0 pointwise on K, for each zlj take Nj

such that |gn(zlj)| < ε for all n ≥ Nj.
Let N be the maximimum of the Nj. Then for z in this finite subcovering, there is a zlj

such that |z − zlj | < δ and so

|gn(z)| ≤ |gn(z)− gn(zlj)|+ |gn(zlj)| < ε+ ε

for all n ≥ N .
Thus, gn → 0 uniformly on some compact subset of K. However, this can clearly be

extended to all of K and therefore to any compact subset of D using similar open coverings.
and so gn(z) → 0 uniformly on compact subsets of D. Thus, fn → f uniofmrly on

compact subsets of D. �
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Problem 4. Let f(z) be meromorphic on C, holomoprhic for Rez > 0 and such that
f(z + 1) = zf(z) in its domain with f(1) = 1. Show that f has the first order poles at
0,−1,−2, ..., and find the residues of f at these points.

Solution. f(1) = f(0 + 1) = 1 implies that

lim
z→0

zf(z) = 1.

Namely, that f has a first order pole (else the limit would be 0 or infinity) at 0 of residue 1.
Now,

lim
z→−1

(z + 1)f(z) = lim
z→−1

(z + 1)f(z + 1)
z

= lim
w→0

wf(w)
w − 1 = 1

−1 = −1

and so f has a first order pole at −1 of residue −1.
Similarly, since

f(z) = f(z + 1)
z

= f(z + 2)
z(z + 1) = f(z + n)

z(z + 1) · · · (z + n− 1)

we get that

lim
z→−n

(z+n)f(z) = lim
z→−n

(z + n)f(z + n)
z(z + 1) · · · (z + n− 1) = lim

w→0

wf(w)
(w − n)(w − n+ 1) · · · (w − 1) = 1

(−n)(−n+ 1) · · · (−1) .

Since all these poles are first order (as evidenced by the limit), these limits correspond
exactly to the residues and so f has first order poles at −n for all n ∈ N with residue

1
(−n)(−n+1)···(−1) and a first order pole at 0 with residue 1. �
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