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Problem 1. Evaluate -
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being careful to justify your answer.

Solution. We will use the contour around the top right quadrant avoiding the origin with

the principal branch for % being (—o0, 0].
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Now,
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and similarly,
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Finally, we note that there is one residue in the first quadrant since

1+t =(i—ad)(i+2%) = (Vi—2)(Vi+2)(iVi+z)(iVi—2) Vi= e/t = ?4—@' 5

v2

Alternatively, the zeros are e/ for k = 1,3,5,7 for which only the first is in the first

quadrant.
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Therefore, by the Residue Theorem, we get
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Problem 2. Assume that f is an entire function such that

for all z € C.

F(2) =

1+ |z2|

Prove that f is a constant function.

1
TH]

Solution. First, we note that f(z) # 0 for all |z| < oo since > 0.

1

Thus, because f is entire and non-zero, g = + is entire and non-zero.

Thus,

~

9(2)] < 1+ |2].
Therefore, by Cauchy Estimate, on {|z| < R},

l9(2)| <142/ <1+R

and so
1+ R)

2!
9@ (2)] < (R2 —0 R — o0.

Thus, g(z) = az + b, however, then g(z) has a zero at =2 which is a contradiction unless
a=0.

Namely, ¢ is constant and so f is constant. ¥
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Problem 3. Let f,, n > 1, be a sequence of holomorphic functions on an open connected
set D such that |f,(z)| < 1forall z€ D, n>1. Let A C D be the set of all z € D for
which the limit lim,, f,(2) exists.

Show that if A has an accumulation point in D, then there exists a holomoprhic
function f on D such that f, — f uniformly on every compact subset of D as n — oc.

Solution. Assume A has an accumulation point in z5 € D.

By Montel’s theorem, since the f,, are all uniformly bounded on D, {f,} form a normal
family on D.

Thus, on every compact subset of D, there exists a holomorphic function f such that
there is a subsequence { f,,, } which converges uniformly to f.

We would like to show that the entire sequence f, — f on each compact subset.

Let f,, — f on a compact subset K C D containing 2, which is the accumulation point

of Ain D. Let g, = f, — [.

Then g, — 0 uniformly on K. Therefore, g, — 0 on K N A since the limit exists and
a subsequence converges to 0.

Now, since AN K contains an accumulation point, there is a sequence {z} C AN K
such that z, — 2o and lim,, o g,(2) = 0 for all (.

Now, since {f,} is uniformly bounded and holomorphic, by Arzela-Ascoli it is equicon-
tinuous and so {g,} is equicontinuous. Let ¢ > 0 be given and § > 0 be such that
lgn(2) — gn(w)| < € whenever |z —w| < 6.

Therefore, if {Bs/3(2)} is an open covering of some compact subset of K, then there
exists a finite subcovering B /3(zlj). Now, since g, — 0 pointwise on K, for each z;, take N;
such that [g,(2;,)| < e for all n > Nj.

Let N be the maximimum of the ;. Then for z in this finite subcovering, there is a 2,
such that [z — 2| < ¢ and so

|9 (2)] < |gn(2) — 9n<zlj)| + ‘gn(zlj)’ <e+e

for alln > N.

Thus, g, — 0 uniformly on some compact subset of K. However, this can clearly be
extended to all of K and therefore to any compact subset of D using similar open coverings.

and so g,(z) — 0 uniformly on compact subsets of D. Thus, f, — f uniofmrly on
compact subsets of D. )
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Problem 4. Let f(z) be meromorphic on C, holomoprhic for Rez > 0 and such that
f(z+1) = zf(z) in its domain with f(1) = 1. Show that f has the first order poles at
0,—1,—-2,..., and find the residues of f at these points.

Solution. f(1) = f(0+ 1) =1 implies that

limzf(z) = 1.

z—0

Namely, that f has a first order pole (else the limit would be 0 or infinity) at 0 of residue 1.

Now,
Zl_i)IEll(z +1)f(2) = Zl_i}rr_ll(z + 1)JC<ZZ+ D = lluig%) lfufiwl) = _11 = -1

and so f has a first order pole at —1 of residue —1.

Similarly, since

f<>_f(z+1)_f(z—i—2)_ f(z+n)
AU Cz2(z+1) z(z+1)-(z4n—1)
we get that
. o (z4+n)f(z+n) L wf(w) B 1

dm ) ) = i e D) S ot D=1 Cant )

Since all these poles are first order (as evidenced by the limit), these limits correspond
exactly to the residues and so f has first order poles at —n for all n € N with residue

(—n)(—n—l‘rl)-n(—l) and a first order pole at 0 with residue 1. )




