## Kayla Orlinsky Complex Analysis Exam Spring 2013

Problem 1. Evaluate

$$\int_0^\infty \frac{x^{1/3}}{1+x^4} dx$$

being careful to justify your answer.

**Solution.** We will use the contour around the top right quadrant avoiding the origin with the principal branch for  $\frac{x^{1/3}}{1+x^4}$  being  $(-\infty, 0]$ .



Let

$$\begin{split} I_1 &= \int_{\Gamma_1} \frac{z^{1/3}}{1+z^4} dz \\ I_2 &= \int_{\Gamma_2} \frac{z^{1/3}}{1+z^4} dz \\ I_\varepsilon &= \int_{\Gamma_\varepsilon} \frac{z^{1/3}}{1+z^4} dz \\ I_R &= \int_{\Gamma_R} \frac{z^{1/3}}{1+z^4} dz \end{split}$$

Now,

$$I_{2} = \int_{R}^{\varepsilon} \frac{(ix)^{1/3}i}{1+x^{4}} dx$$
  
=  $\int_{R}^{\varepsilon} \frac{ie^{\frac{\pi i}{6}}x^{1/3}}{1+x^{4}} dx$   
=  $-ie^{\frac{\pi i}{6}} \int_{\varepsilon}^{R} \frac{x^{1/3}}{1+x^{4}} dx$   
=  $-ie^{\frac{\pi i}{6}} I_{1}$ 

Now,

$$\begin{aligned} |I_{\varepsilon}| &= \left| \int_{\Gamma_{\varepsilon}} \frac{z^{1/3}}{1+z^4} dz \right| \\ &\leq \int_{|z|=\varepsilon} \frac{\varepsilon^{1/3}}{|1+z^4|} |dz| \\ &\leq \int_{|z|=\varepsilon} \frac{\varepsilon^{1/3}}{1-\varepsilon^4} |dz| \\ &= -\pi \varepsilon \frac{\varepsilon^{1/3}}{1-\varepsilon^4} \to 0 \qquad \varepsilon \to 0. \end{aligned}$$

and similarly,

$$|I_R| \le -\pi R \frac{R^{1/3}}{1 - R^4} = -\pi \frac{R^{4/3}}{1 - R^4} \to 0 \qquad R \to \infty$$

Finally, we note that there is one residue in the first quadrant since

$$1 + x^4 = (i - x^2)(i + x^2) = (\sqrt{i} - x)(\sqrt{i} + x)(i\sqrt{i} + x)(i\sqrt{i} - x) \qquad \sqrt{i} = e^{i\pi/4} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$$

Alternatively, the zeros are  $e^{ki\pi/4}$  for k = 1, 3, 5, 7 for which only the first is in the first quadrant.

Therefore, by the Residue Theorem, we get

$$\begin{aligned} 2\pi i \operatorname{Res}_{z=e^{i\pi/4}} \frac{z^{1/3}}{1+z^4} &= 2\pi i \lim_{z \to e^{i\pi/4}} \frac{z^{1/3}(z-e^{i\pi/4})}{1+z^4} \\ &= 2\pi i \lim_{z \to e^{i\pi/4}} \frac{z^{4/3} - e^{i\pi/4}z^{1/3}}{1+z^4} \\ &= 2\pi i \lim_{z \to e^{i\pi/4}} \frac{\frac{4}{3}z^{1/3} - \frac{1}{3}e^{i\pi/4}z^{-2/3}}{4z^3} \qquad \text{L'Hopital's Rule} \\ &= 2\pi i \frac{\frac{4}{3}e^{i\pi/12} - \frac{1}{3}e^{i\pi/4}z^{-2i\pi/12}}{4e^{3i\pi/4}} \\ &= 2\pi i \frac{\frac{4}{3}e^{i\pi/12} - \frac{1}{3}e^{i\pi/4}z^{-2i\pi/12}}{4e^{3i\pi/4}} \\ &= 2\pi i \frac{\frac{4}{3}e^{i\pi/12} - \frac{1}{3}e^{i\pi/4}z^{-2i\pi/12}}{4e^{3i\pi/4}} \\ &= 2\pi i \frac{e^{i\pi/12}}{4e^{3i\pi/4}} \\ &= 2\pi i \frac{e^{i\pi/12}}{1e^{i\pi/12}} \\ &= i\pi \frac{e^{i\pi/12}}{1e^{i\pi/3}} \\ &= \lim_{R \to \infty} e^{-3\pi/12} \\ &= \lim_{R \to \infty} e^{-3\pi/1} \int_{0}^{\infty} \frac{x^{1/3}}{1+x^4} dx \\ &= \frac{i\pi e^{4i\pi/3}}{2(1-e^{2\pi i/3})} \\ &= \frac{\pi}{2(e^{i\pi/3}-e^{-2i\pi/3})} \\ &= \frac{\pi/4}{\sqrt{3/2}} \\ &= \frac{\pi}{2\sqrt{3}} \end{aligned}$$

Å

**Problem 2.** Assume that f is an entire function such that

$$|f(z)| \ge \frac{1}{1+|z|}$$
 for all  $z \in \mathbb{C}$ .

Prove that f is a constant function.

**Solution.** First, we note that  $f(z) \neq 0$  for all  $|z| < \infty$  since  $\frac{1}{1+|z|} > 0$ .

Thus, because f is entire and non-zero,  $g=\frac{1}{f}$  is entire and non-zero. Thus,

$$|g(z)| \le 1 + |z|$$

Therefore, by Cauchy Estimate, on  $\{|z| \leq R\}$ ,

$$|g(z)| \le 1 + |z| \le 1 + R$$

and so

$$|g^{(2)}(z)| \le \frac{2!(1+R)}{R^2} \to 0 \qquad R \to \infty.$$

Thus, g(z) = az + b, however, then g(z) has a zero at  $\frac{-b}{a}$  which is a contradiction unless a = 0.

Namely, g is constant and so f is constant.

H

**Problem 3.** Let  $f_n, n \ge 1$ , be a sequence of holomorphic functions on an open connected set D such that  $|f_n(z)| \le 1$  for all  $z \in D$ ,  $n \ge 1$ . Let  $A \subset D$  be the set of all  $z \in D$  for which the limit  $\lim_n f_n(z)$  exists.

Show that if A has an accumulation point in D, then there exists a holomoprhic function f on D such that  $f_n \to f$  uniformly on every compact subset of D as  $n \to \infty$ .

**Solution.** Assume A has an accumulation point in  $z_0 \in D$ .

By Montel's theorem, since the  $f_n$  are all uniformly bounded on D,  $\{f_n\}$  form a normal family on D.

Thus, on every compact subset of D, there exists a holomorphic function f such that there is a subsequence  $\{f_{n_k}\}$  which converges uniformly to f.

We would like to show that the entire sequence  $f_n \to f$  on each compact subset.

Let  $f_{n_k} \to f$  on a compact subset  $K \subset D$  containing  $z_0$  which is the accumulation point of A in D. Let  $g_n = f_n - f$ .

Then  $g_{n-k} \to 0$  uniformly on K. Therefore,  $g_n \to 0$  on  $K \cap A$  since the limit exists and a subsequence converges to 0.

Now, since  $A \cap K$  contains an accumulation point, there is a sequence  $\{z_l\} \subset A \cap K$  such that  $z_l \to z_0$  and  $\lim_{n\to\infty} g_n(z_l) = 0$  for all l.

Now, since  $\{f_n\}$  is uniformly bounded and holomorphic, by Arzela-Ascoli it is equicontinuous and so  $\{g_n\}$  is equicontinuous. Let  $\varepsilon > 0$  be given and  $\delta > 0$  be such that  $|g_n(z) - g_n(w)| < \varepsilon$  whenever  $|z - w| < \delta$ .

Therefore, if  $\{B_{\delta/3}(z_l)\}$  is an open covering of some compact subset of K, then there exists a finite subcovering  $B_{\delta/3}(z_{l_j})$ . Now, since  $g_n \to 0$  pointwise on K, for each  $z_{l_j}$  take  $N_j$  such that  $|g_n(z_{l_j})| < \varepsilon$  for all  $n \ge N_j$ .

Let N be the maximimum of the  $N_j$ . Then for z in this finite subcovering, there is a  $z_{l_j}$  such that  $|z - z_{l_j}| < \delta$  and so

$$|g_n(z)| \le |g_n(z) - g_n(z_{l_j})| + |g_n(z_{l_j})| < \varepsilon + \varepsilon$$

for all  $n \geq N$ .

Thus,  $g_n \to 0$  uniformly on some compact subset of K. However, this can clearly be extended to all of K and therefore to any compact subset of D using similar open coverings.

and so  $g_n(z) \to 0$  uniformly on compact subsets of D. Thus,  $f_n \to f$  uniofmrly on compact subsets of D.

**Problem 4.** Let f(z) be meromorphic on  $\mathbb{C}$ , holomoprhic for Rez > 0 and such that f(z+1) = zf(z) in its domain with f(1) = 1. Show that f has the first order poles at 0, -1, -2, ..., and find the residues of f at these points.

**Solution.** f(1) = f(0+1) = 1 implies that

$$\lim_{z \to 0} zf(z) = 1.$$

Namely, that f has a first order pole (else the limit would be 0 or infinity) at 0 of residue 1. Now,

$$\lim_{z \to -1} (z+1)f(z) = \lim_{z \to -1} (z+1)\frac{f(z+1)}{z} = \lim_{w \to 0} \frac{wf(w)}{w-1} = \frac{1}{-1} = -1$$

and so f has a first order pole at -1 of residue -1.

Similarly, since

$$f(z) = \frac{f(z+1)}{z} = \frac{f(z+2)}{z(z+1)} = \frac{f(z+n)}{z(z+1)\cdots(z+n-1)}$$

we get that

$$\lim_{z \to -n} (z+n)f(z) = \lim_{z \to -n} \frac{(z+n)f(z+n)}{z(z+1)\cdots(z+n-1)} = \lim_{w \to 0} \frac{wf(w)}{(w-n)(w-n+1)\cdots(w-1)} = \frac{1}{(-n)(-n+1)\cdots(w-1)}$$

Since all these poles are first order (as evidenced by the limit), these limits correspond exactly to the residues and so f has first order poles at -n for all  $n \in \mathbb{N}$  with residue  $\frac{1}{(-n)(-n+1)\cdots(-1)}$  and a first order pole at 0 with residue 1.