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Problem 1. Compute ∫ ∞
0

log2 x

1 + x2dx

Solution. We will use “Ol’ Faithful” the contour around the upper half plane avoiding the
origin since every branch cut of log x intersects 0.

Then we take any branch which does not intersect the upper half plane (including the
real line).

ΓR

Γε
Γ2Γ1

Re

Im

Let

I1 =
∫

Γ1

log2 z

z2 + 1dz

I2 =
∫

Γ2

log2 z

z2 + 1dz

Iε =
∫

Γε

log2 z

z2 + 1dz

IR =
∫

ΓR

log2 z

z2 + 1dz
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Note that

I1 =
∫ −ε
−R

log2 x

1 + x2dx

=
∫ ε

R

−(log x+ πi)2

1 + x2 dx

=
∫ R

ε

log2 x+ 2πi log x− π2

1 + x2 dx

= I2 + 2πi
∫ R

ε

log x
1 + x2dx− π

2
∫ R

ε

1
1 + x2dx

= I2 − π2(tan−1(R)− tan−1(ε)) + 2πi
∫ R

ε

log x
1 + x2dx

Now,

|IR| =
∣∣∣∣∣
∫

ΓR

log2 z

1 + z2dz

∣∣∣∣∣
≤
∫ π

0

R| logR + iθ|2

R2 − 1 dθ

≤ π
R log2R + 2Rπ logR +Rπ2

R2 − 1 → 0 R→∞

since
lim
R→∞

log2R

R
= lim

R→∞

2 logR
R

= lim
R→∞

2
R

= 0

by L’Hopital’s Rule and similarly, logR
R
→ 0.

Similarly,

|Iε| ≤
∫ 0

π

ε| log ε+ iθ|2

ε2 − 1 dθ

≤ π
ε log2 ε+ 2επ log ε+ επ2

ε2 − 1 → 0 ε→ 0

since
lim
ε→0

ε log2 ε = lim
ε→0

2 log ε
−1
ε

= lim
ε→0

2
1
ε

= 0

by L’Hopital’s Rule.
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Thus, by the Residue Theorem,

2πiResz=i
log2 z

z2 + 1 = 2πi log2(i)
i+ i

= π
(
i
π

2

)2

= −π
3

4
= lim

R→∞
lim
ε→0

(I1 + I2 + Iε + IR

= 2
∫ ∞

0

log2 x

1 + x2dx−
π3

2

=⇒
∫ ∞

0

log2 x

1 + x2dx = π3

8

Note that since the residue is real this forces
∫ ∞

0

log x
1 + x2dx = 0. �
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Problem 2. Find the number of distinct zeros of f(z) = z6 + (10 − i)z4 + 1 inside
(−1, 1)× (−1, 1).

Solution. Let g(z) = −z6. We will inscribe a circle in the unit square and inscribe the
square in a circle.

|z| =
√

2
|z| = 1

Re

Im

Then on {|z| =
√

2}

|f(z)| ≥ |10− i||z|4 − |z|6 − 1
=
√

101(
√

2)4 − (
√

2)6 − 1
= 4
√

101− 8− 1
≥ 40− 9
= 31
> 8
= | − z|6

= |g(z)|

and so |f(z)| > |g(z)| so f(z) and f(z)+g(z) have the same number of zeros inside {|z| ≤
√

2}.
Since f(z) + g(z) = (10 − i)z4 + 1, we need only count the number of zeros of this

function. Since if

(10− i)z4 + 1 = 0 =⇒ z4 = 1
i− 10 =⇒ |z|4 = 1

|i− 10| = 1√
101

< 4

and so |z| <
√

2. Namely, the zeros of f + g all lie in {|z| ≤
√

2} and so f + g and f have
four zeros in {|z| ≤

√
2}.
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Now, on {|z| = 1}

|f(z)| ≥ |10− i||z|4 − |z|6 − 1
=
√

101− 1− 1
=
√

101− 2
> 10− 2
= 8
> 8
= | − z|6

= |g(z)|

And so again, f(z) and f(z) + g(z) have the same number of zeros on |z| = 1.
Namely, since we already saw f has 4 zeros in {|z| ≤

√
2} and 4 zeros in {|z| ≤ 1}, we

have that f has 4 zeros in the unit square.
Now, we need only show that the zeros of f are all unique.
If f has any repeated roots in the unit square, then f and f ′ would have a root in

common.
Since f ′(z) = 6z5 + 4(10− i)z3 we get that f ′(z) = 0 implies that 2z3(3z2 + 2(10− i)) = 0

and since 0 is not a root of f ,
the only possibilities are when z2 = 2i−20

3 . However, clearly neither of these roots lie in
the unit square, since the largest magnitude inside the unit square is

√
2 (so |z|2 ≤ 2) and

|2i− 20
3 | =

√
2√
3
√

101 > 1
210 = 5 > 2.

Thus, f and f ′ share no zeros in the unit square and so f has 4 distinct zeros inside the
unit square. �
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Problem 3. Suppose that f is holomorphic in a neighborhood U of a ∈ C. Consider
the following two statements:

(i) There exist two sequences {zk}∞k=1 and {wk}∞k=1 in U\{a} converging to a such that
zk 6= wk and f(zk) = f(wk) for all k ∈ N.

(ii) f ′(a) = 0.

Determine whether either of the statements implies the other one. In each case jusifty
your answer with a proof or counterexample.

Solution. (i) =⇒ (ii) True. Assume f ′(z) 6= 0. Then because f is analytic, the inverse
function theorem states that f is invertible in a small neighborhood of a. Namely, f must be
injective on a small neighborhood of a and so the sequences {zk} and {wk} cannot exist.

Thus, f ′(a) = 0.

(i) ⇐= (ii) Since f ′(a) = 0 WLOG we may take f(a) = 0 (else we look at g(z) =
f(z)− f(a)).

Then we can write f(z) = (z − a)nh(z) where n ≥ 2 h(z) is analytic in U and nonzero
in a neighborhood of a.

Since h is analytic, after picking a branch, we can write f(z) = (g(z))n where g(z) =
(z − a)h1/n(z) and h1/n is also analytic and nonzero in a neighborhood of a.

Now, by the open mapping theorem, f(U) is open in C and 0 ∈ f(U). Thus, there exists
a neighborhood V of 0 such that V ⊂ f(U).

Namely, (g(U))1/n contains a neighborhood of 0 and so re2kπi/n ∈ (g(U))1/n for some
r > 0 and 1 ≤ k ≤ n.

Namely, g cannot be injective since it wraps some neighborhood of a around the origin
n-times. Thus, f is also not injective in a neighborhood of a and so (i) is true. �
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Problem 4. Let f be analytic in an open set U ⊂ C, and let K ⊂ U be compact. Show
that there exists a constant C depending on U and K such that

|f(z)| ≤ C
(∫

U
|f |2

)1/2

Solution. Let {Br(z)}z∈K be an open cover of K. Then by the Lebesgue number lemma,
there exists δ > 0 such that Bδ(z) ⊂ Br(z′) for some z′ ∈ K.

|f(z)| =
∣∣∣∣∣ 1
2πi

∫
|ξ−z|=δ

f(ξ)
ξ − z

dξ

∣∣∣∣∣
≤ 1

2π

∫
|ξ−z|=δ

|f(ξ)|
|ξ − z|

d|ξ|

≤ 1
2π

(∫
|ξ−z|=δ

|f(ξ)|2d|ξ|
)1/2 (∫

|ξ−z|=δ

1
|ξ − z|2

d|ξ|
)1/2

Holder’s Inequality

= 1
2π

(∫
|ξ−z|=δ

|f(ξ)|2d|ξ|
)1/2 (∫ 2π

0

1
δ
dθ
)1/2

= 1
2π

(∫
|ξ−z|=δ

|f(ξ)|2d|ξ|
)1/2 √2π√

δ

= 1√
2πδ

(∫
|ξ−z|=δ

|f(ξ)|2d|ξ|
)1/2

�

7


