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Problem 1. Compute

% log® x
d
/o 1 +a2

Solution. We will use “Ol’ Faithful” the contour around the upper half plane avoiding the
origin since every branch cut of log x intersects 0.

Then we take any branch which does not intersect the upper half plane (including the
real line).
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Note that
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Thus, by the Residue Theorem,
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Problem 2. Find the number of distinct zeros of f(z) = 2%+ (10 — 7)2* + 1 inside
<_17 1) X (_L ]-)

Solution. Let g(z) = —2% We will inscribe a circle in the unit square and inscribe the
square in a circle.
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Then on {|z| = v/2}

1f(2)] = 110 —il[2|* = [2]° = 1
=V101(V2)' — (vV2)° -1
= 44/101 — 8 — 1
> 40— 9

and so | f(2)| > |g(2)| so f(z) and f(z)+g(z) have the same number of zeros inside {|z| < v/2}.

Since f(z) + g(z) = (10 — 4)2* + 1, we need only count the number of zeros of this
function. Since if

1 1 1
10—t +1=0 = 2'=—— = |2|'= = <
(10 —4)2"+ ©TIo10 2 li—10] /101
and so |z| < v/2. Namely, the zeros of f + g all lie in {|z| < v/2} and so f + g and f have
four zeros in {|z| < v/2}.
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Now, on {|z| =1}

[f(2)] = [10 —df|z]* — ]2 — 1

=+v101-1-1
= /101 — 2
>10—-2

> 8

=] -2

= lg9(2)|

And so again, f(z) and f(z) + g(z) have the same number of zeros on |z| = 1.

Namely, since we already saw f has 4 zeros in {|z| < v/2} and 4 zeros in {|z| < 1}, we
have that f has 4 zeros in the unit square.

Now, we need only show that the zeros of f are all unique.

If f has any repeated roots in the unit square, then f and f’ would have a root in
common.

Since f'(z) = 62°+4(10 — )23 we get that f’(z) = 0 implies that 223(322+2(10—1)) = 0
and since 0 is not a root of f,
2i—20
3
the unit square, since the largest magnitude inside the unit square is v/2 (so |z|?> < 2) and

2% —20, 2 1
= —+v101 > =10 =5 > 2.
| 3 | V3 2

the only possibilities are when 2% = . However, clearly neither of these roots lie in

Thus, f and f’ share no zeros in the unit square and so f has 4 distinct zeros inside the
unit square. ¥
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Problem 3. Suppose that f is holomorphic in a neighborhood U of a € C. Consider
the following two statements:

(i) There exist two sequences {zx}72, and {wg}32, in U\{a} converging to a such that
2 # wy and f(z) = f(wyg) for all k € N,

(i) f'(a) = 0.

Determine whether either of the statements implies the other one. In each case jusifty
your answer with a proof or counterexample.

Solution. |(i) = (i7)| True. Assume f’(z) # 0. Then because f is analytic, the inverse
function theorem states that f is invertible in a small neighborhood of a. Namely, f must be
injective on a small neighborhood of a and so the sequences {z;} and {wy} cannot exist.
Thus, f'(a) = 0.
(1) <= (ii)| Since f'(a) = 0 WLOG we may take f(a) = 0 (else we look at g(z) =
f(z) = f(a)).

Then we can write f(z) = (z — a)"h(z) where n > 2 h(z) is analytic in U and nonzero
in a neighborhood of a.

Since h is analytic, after picking a branch, we can write f(z) = (g(2))" where g(z) =
(z — a)h*/™(2) and h'/™ is also analytic and nonzero in a neighborhood of a.

Now, by the open mapping theorem, f(U) is open in C and 0 € f(U). Thus, there exists
a neighborhood V' of 0 such that V' C f(U).

Namely, (¢(U))"™ contains a neighborhood of 0 and so re? /™ ¢ (g(U))Y/™ for some
r>0and 1 <k<n.

Namely, g cannot be injective since it wraps some neighborhood of a around the origin
n-times. Thus, f is also not injective in a neighborhood of a and so (i) is true. Y
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Problem 4. Let f be analytic in an open set U C C, and let K C U be compact. Show
that there exists a constant C' depending on U and K such that

sen<e ()"

Solution. Let {B,(2)}.cx be an open cover of K. Then by the Lebesgue number lemma,
there exists > 0 such that Bs(z) C B,(2') for some 2’ € K.
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