Kayla Orlinsky
 Complex Analysis Exam Fall 2013

Problem 1. Compute

$$
\int_{0}^{\infty} \frac{\log ^{2} x}{1+x^{2}} d x
$$

Solution. We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin since every branch cut of $\log x$ intersects 0 .

Then we take any branch which does not intersect the upper half plane (including the real line).

Let

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{\log ^{2} z}{z^{2}+1} d z \\
& I_{2}=\int_{\Gamma_{2}} \frac{\log ^{2} z}{z^{2}+1} d z \\
& I_{\varepsilon}=\int_{\Gamma_{\varepsilon}} \frac{\log ^{2} z}{z^{2}+1} d z \\
& I_{R}=\int_{\Gamma_{R}} \frac{\log ^{2} z}{z^{2}+1} d z
\end{aligned}
$$

Note that

$$
\begin{aligned}
I_{1} & =\int_{-R}^{-\varepsilon} \frac{\log ^{2} x}{1+x^{2}} d x \\
& =\int_{R}^{\varepsilon} \frac{-(\log x+\pi i)^{2}}{1+x^{2}} d x \\
& =\int_{\varepsilon}^{R} \frac{\log ^{2} x+2 \pi i \log x-\pi^{2}}{1+x^{2}} d x \\
& =I_{2}+2 \pi i \int_{\varepsilon}^{R} \frac{\log x}{1+x^{2}} d x-\pi^{2} \int_{\varepsilon}^{R} \frac{1}{1+x^{2}} d x \\
& =I_{2}-\pi^{2}\left(\tan ^{-1}(R)-\tan ^{-1}(\varepsilon)\right)+2 \pi i \int_{\varepsilon}^{R} \frac{\log x}{1+x^{2}} d x
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{\log ^{2} z}{1+z^{2}} d z\right| \\
& \leq \int_{0}^{\pi} \frac{R|\log R+i \theta|^{2}}{R^{2}-1} d \theta \\
& \leq \pi \frac{R \log ^{2} R+2 R \pi \log R+R \pi^{2}}{R^{2}-1} \rightarrow 0 \quad R \rightarrow \infty
\end{aligned}
$$

since

$$
\lim _{R \rightarrow \infty} \frac{\log ^{2} R}{R}=\lim _{R \rightarrow \infty} \frac{2 \log R}{R}=\lim _{R \rightarrow \infty} \frac{2}{R}=0
$$

by L'Hopital's Rule and similarly, $\frac{\log R}{R} \rightarrow 0$.
Similarly,

$$
\begin{aligned}
\left|I_{\varepsilon}\right| & \leq \int_{\pi}^{0} \frac{\varepsilon|\log \varepsilon+i \theta|^{2}}{\varepsilon^{2}-1} d \theta \\
& \leq \pi \frac{\varepsilon \log ^{2} \varepsilon+2 \varepsilon \pi \log \varepsilon+\varepsilon \pi^{2}}{\varepsilon^{2}-1} \rightarrow 0 \quad \varepsilon \rightarrow 0
\end{aligned}
$$

since

$$
\lim _{\varepsilon \rightarrow 0} \varepsilon \log ^{2} \varepsilon=\lim _{\varepsilon \rightarrow 0} \frac{2 \log \varepsilon}{\frac{-1}{\varepsilon}}=\lim _{\varepsilon \rightarrow 0} \frac{2}{\frac{1}{\varepsilon}}=0
$$

by L'Hopital's Rule.

Thus, by the Residue Theorem,

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=i} \frac{\log ^{2} z}{z^{2}+1} & =2 \pi i \frac{\log ^{2}(i)}{i+i} \\
& =\pi\left(i \frac{\pi}{2}\right)^{2} \\
& =-\frac{\pi^{3}}{4} \\
& =\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left(I_{1}+I_{2}+I_{\varepsilon}+I_{R}\right. \\
& =2 \int_{0}^{\infty} \frac{\log ^{2} x}{1+x^{2}} d x-\frac{\pi^{3}}{2} \\
\Longrightarrow \int_{0}^{\infty} \frac{\log ^{2} x}{1+x^{2}} d x & =\frac{\pi^{3}}{8}
\end{aligned}
$$

Note that since the residue is real this forces $\int_{0}^{\infty} \frac{\log x}{1+x^{2}} d x=0$.

Problem 2. Find the number of distinct zeros of $f(z)=z^{6}+(10-i) z^{4}+1$ inside $(-1,1) \times(-1,1)$.

Solution. Let $g(z)=-z^{6}$. We will inscribe a circle in the unit square and inscribe the square in a circle.

Then on $\{|z|=\sqrt{2}\}$

$$
\begin{aligned}
|f(z)| & \geq|10-i||z|^{4}-|z|^{6}-1 \\
& =\sqrt{101}(\sqrt{2})^{4}-(\sqrt{2})^{6}-1 \\
& =4 \sqrt{101}-8-1 \\
& \geq 40-9 \\
& =31 \\
& >8 \\
& =|-z|^{6} \\
& =|g(z)|
\end{aligned}
$$

and so $|f(z)|>|g(z)|$ so $f(z)$ and $f(z)+g(z)$ have the same number of zeros inside $\{|z| \leq \sqrt{2}\}$.
Since $f(z)+g(z)=(10-i) z^{4}+1$, we need only count the number of zeros of this function. Since if

$$
(10-i) z^{4}+1=0 \Longrightarrow z^{4}=\frac{1}{i-10} \Longrightarrow|z|^{4}=\frac{1}{|i-10|}=\frac{1}{\sqrt{101}}<4
$$

and so $|z|<\sqrt{2}$. Namely, the zeros of $f+g$ all lie in $\{|z| \leq \sqrt{2}\}$ and so $f+g$ and f have four zeros in $\{|z| \leq \sqrt{2}\}$.

Now, on $\{|z|=1\}$

$$
\begin{aligned}
|f(z)| & \geq|10-i||z|^{4}-|z|^{6}-1 \\
& =\sqrt{101}-1-1 \\
& =\sqrt{101}-2 \\
& >10-2 \\
& =8 \\
& >8 \\
& =|-z|^{6} \\
& =|g(z)|
\end{aligned}
$$

And so again, $f(z)$ and $f(z)+g(z)$ have the same number of zeros on $|z|=1$.
Namely, since we already saw f has 4 zeros in $\{|z| \leq \sqrt{2}\}$ and 4 zeros in $\{|z| \leq 1\}$, we have that f has 4 zeros in the unit square.

Now, we need only show that the zeros of f are all unique.
If f has any repeated roots in the unit square, then f and f^{\prime} would have a root in common.

Since $f^{\prime}(z)=6 z^{5}+4(10-i) z^{3}$ we get that $f^{\prime}(z)=0$ implies that $2 z^{3}\left(3 z^{2}+2(10-i)\right)=0$ and since 0 is not a root of f,
the only possibilities are when $z^{2}=\frac{2 i-20}{3}$. However, clearly neither of these roots lie in the unit square, since the largest magnitude inside the unit square is $\sqrt{2}\left(\right.$ so $\left.|z|^{2} \leq 2\right)$ and

$$
\left|\frac{2 i-20}{3}\right|=\frac{\sqrt{2}}{\sqrt{3}} \sqrt{101}>\frac{1}{2} 10=5>2 .
$$

Thus, f and f^{\prime} share no zeros in the unit square and so f has 4 distinct zeros inside the unit square.

Problem 3. Suppose that f is holomorphic in a neighborhood U of $a \in \mathbb{C}$. Consider the following two statements:
(i) There exist two sequences $\left\{z_{k}\right\}_{k=1}^{\infty}$ and $\left\{w_{k}\right\}_{k=1}^{\infty}$ in $U \backslash\{a\}$ converging to a such that $z_{k} \neq w_{k}$ and $f\left(z_{k}\right)=f\left(w_{k}\right)$ for all $k \in \mathbb{N}$.
(ii) $f^{\prime}(a)=0$.

Determine whether either of the statements implies the other one. In each case jusifty your answer with a proof or counterexample.

Solution. $(i) \Longrightarrow(i i)$ True. Assume $f^{\prime}(z) \neq 0$. Then because f is analytic, the inverse function theorem states that f is invertible in a small neighborhood of a. Namely, f must be injective on a small neighborhood of a and so the sequences $\left\{z_{k}\right\}$ and $\left\{w_{k}\right\}$ cannot exist.

Thus, $f^{\prime}(a)=0$.
$(i) \Longleftarrow(i i)$ Since $f^{\prime}(a)=0$ WLOG we may take $f(a)=0$ (else we look at $g(z)=$ $f(z)-f(a))$.

Then we can write $f(z)=(z-a)^{n} h(z)$ where $n \geq 2 h(z)$ is analytic in U and nonzero in a neighborhood of a.

Since h is analytic, after picking a branch, we can write $f(z)=(g(z))^{n}$ where $g(z)=$ $(z-a) h^{1 / n}(z)$ and $h^{1 / n}$ is also analytic and nonzero in a neighborhood of a.

Now, by the open mapping theorem, $f(U)$ is open in \mathbb{C} and $0 \in f(U)$. Thus, there exists a neighborhood V of 0 such that $V \subset f(U)$.

Namely, $(g(U))^{1 / n}$ contains a neighborhood of 0 and so $r e^{2 k \pi i / n} \in(g(U))^{1 / n}$ for some $r>0$ and $1 \leq k \leq n$.

Namely, g cannot be injective since it wraps some neighborhood of a around the origin n-times. Thus, f is also not injective in a neighborhood of a and so (i) is true.

Problem 4. Let f be analytic in an open set $U \subset \mathbb{C}$, and let $K \subset U$ be compact. Show that there exists a constant C depending on U and K such that

$$
|f(z)| \leq C\left(\int_{U}|f|^{2}\right)^{1 / 2}
$$

Solution. Let $\left\{B_{r}(z)\right\}_{z \in K}$ be an open cover of K. Then by the Lebesgue number lemma, there exists $\delta>0$ such that $B_{\delta}(z) \subset B_{r}\left(z^{\prime}\right)$ for some $z^{\prime} \in K$.

$$
\begin{aligned}
|f(z)| & =\left|\frac{1}{2 \pi i} \int_{|\xi-z|=\delta} \frac{f(\xi)}{\xi-z} d \xi\right| \\
& \leq \frac{1}{2 \pi} \int_{|\xi-z|=\delta} \frac{|f(\xi)|}{|\xi-z|} d|\xi| \\
& \leq \frac{1}{2 \pi}\left(\int_{|\xi-z|=\delta}|f(\xi)|^{2} d|\xi|\right)^{1 / 2}\left(\int_{|\xi-z|=\delta} \frac{1}{|\xi-z|^{2}} d|\xi|\right)^{1 / 2} \quad \text { Holder's Inequality } \\
& =\frac{1}{2 \pi}\left(\int_{|\xi-z|=\delta}|f(\xi)|^{2} d|\xi|\right)^{1 / 2}\left(\int_{0}^{2 \pi} \frac{1}{\delta} d \theta\right)^{1 / 2} \\
& =\frac{1}{2 \pi}\left(\int_{|\xi-z|=\delta}|f(\xi)|^{2} d|\xi|\right)^{1 / 2} \frac{\sqrt{2 \pi}}{\sqrt{\delta}} \\
& =\frac{1}{\sqrt{2 \pi \delta}}\left(\int_{|\xi-z|=\delta}|f(\xi)|^{2} d|\xi|\right)^{1 / 2}
\end{aligned}
$$

