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Problem 1. Suppose a > 0. Evaluate the integral

X

/00 sin(ax)

—oo (22 +1)

be careful to justify your methods.

Solution. We will use “Ol’ Faithful” the contour around the upper half plane avoiding the
origin.
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Now,
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Since sin x is an odd function (on the real line), we have that
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Now, we note that has an isolated pole of order 1 at z = 0 since
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Therefore, we can write 5 = - + f(z) where f(z) is analytic at 0. Thus, taking ¢ small,
we get
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Now,
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With (1) because sinf > 0 on [0, 7] so —aRsinf# < 0 on this circle.
Therefore, by the Residue Theorem, we get
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Problem 2. Let f(z) be analytic for 0 < |z| < 1. Assume there are C' > 0 and m > 1
such that o

(m)
@<

0<|z| <L

show that f has a removable singularity at z = 0.

Solution. f has a removable singularity if lim, ,o zf(2) = 0.

Since f is analytic in the open disk, we can write a Laurent expansion for f. Namely,

-1

f(z)= Y a.2"= > %—i—ao—FZanz”

n=-—00 n=-—00 n=1

Since )
(m) — N (_1)m((n + m)'a” o n! n—m—1
F(z) ;o nlzmtn + n;m (n—m— 1)!%2 )

Near 0, the positive powers shrink to nothing. However, for 0 < |z| < ¢, 2™ f(™) is bounded
by C' and this is not possible for the sum on the left unless the sum on the left is zero.
1 1

[emFn] = [z[m

Namely, |2™] which grows arbitrarily large for z near 0.

Therefore, f(z) has no negative powers in its Laurent expansion and so

£1_I>n0zf(z) zll_r}(l)z z::()anz = 0.
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Problem 3. Let D C C be a connected open set and let (u,) be a sequence of harmonic
functions u, : D — (0,00). Show that if u,(z9) — 0 for some 2y € D, then w, — 0
uniformly on compact subsets of D.

Solution. First, we note that w, are positive. Let D’ C D be a disk of radius r centered at
2o. Then, for all z with |z — zg| < & < r, we can apply Harnack’s inequality to get

un(20) < un(z) < L1°

r+e r—sun(zo)'

By Harnock’s inequality, since u,(z9) — 0, we must get that u, — 0 on D'.

Furthermore, the convergence is uniform since for all § > 0, for N such that u,(z) < —
for all n > N, we get that

r+e¢ r+er—e¢
un(z0) <
r—e€ r—er—+e¢

un(z) < d=19 for all N for all z € D',

Since we can cover any compact subset of D’ with disks, we get that u,, — 0 uniformly
on compact subsets. Y
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Problem 4. Let D be the open unit disk {z € C: |z| < 1} in the complex plane, and
define Q = D\[0, 1]. Find a conformal mapping of 2 onto D. You may give your answer
as the composition of several mappings, so long as each mapping is precisely described.

Solution. Let
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