Kayla Orlinsky Complex Analysis Exam Spring 2012

Problem 1. Suppose a > 0. Evaluate the integral

$$\int_{-\infty}^{\infty} \frac{\sin(ax)}{x(x^2+1)} dx$$

be careful to justify your methods.

Solution. We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin.

Let

$$I_{1} = \int_{\Gamma_{1}} \frac{e^{iaz}}{z(z^{2}+1)} dz$$
$$I_{2} = \int_{\Gamma_{2}} \frac{e^{iaz}}{z(z^{2}+1)} dz$$
$$I_{\varepsilon} = \int_{\Gamma_{\varepsilon}} \frac{e^{iaz}}{z(z^{2}+1)} dz$$
$$I_{R} = \int_{\Gamma_{R}} \frac{e^{iaz}}{z(z^{2}+1)} dz$$

Now,

$$I_1 + I_2 = \int_{-R}^{-\varepsilon} \frac{e^{iax}}{x(x^2 + 1)} dx + \int_{\varepsilon}^{R} \frac{e^{iax}}{x(x^2 + 1)} dx$$
$$= \int_{R}^{\varepsilon} \frac{-e^{-iax}}{-x((-x)^2 + 1)} dx + \int_{\varepsilon}^{R} \frac{e^{iax}}{x(x^2 + 1)} dx$$
$$= \int_{\varepsilon}^{R} \frac{-e^{-iax}}{x(x^2 + 1)} dx + \int_{\varepsilon}^{R} \frac{e^{iax}}{x(x^2 + 1)} dx$$
$$= \int_{\varepsilon}^{R} \frac{e^{iax} - e^{-iax}}{x(x^2 + 1)} dx$$
$$= \int_{\varepsilon}^{R} \frac{2i\sin(ax)}{x(x^2 + 1)} dx$$

Since $\sin x$ is an odd function (on the real line), we have that

$$\int_{-\infty}^{0} \frac{\sin(ax)}{x(x^2+1)} dx = \int_{\infty}^{0} \frac{-\sin(-ax)}{-x(x^2+1)} dx = \int_{0}^{\infty} \frac{-\sin(-ax)}{x(x^2+1)} dx = \int_{0}^{\infty} \frac{\sin(ax)}{x(x^2+1)}.$$

Now, we note that $\frac{e^{iaz}}{z(z^2+1)}$ has an isolated pole of order 1 at z = 0 since

$$\lim_{z \to 0} z \frac{e^{iaz}}{z(z^2 + 1)} = \lim_{z \to 0} \frac{e^{iaz}}{z^2 + 1} = \frac{1}{1} = 1.$$

Therefore, we can write $\frac{e^{iaz}}{z(z^2+1)} = \frac{1}{z} + f(z)$ where f(z) is analytic at 0. Thus, taking ε small, we get

$$I_{\varepsilon} = \int_{\Gamma_{\varepsilon}} \frac{e^{iaz}}{z(z^2 + 1)} dz$$
$$= \int_{\Gamma_{\varepsilon}} \frac{1}{z} + f(z) dz$$
$$= \int_{\pi}^{0} id\theta + 0$$
$$= -i\pi.$$

Now,

$$|I_R| = \left| \int_{\Gamma_R} \frac{e^{iaz}}{z(z^2 + 1)} dz \right|$$

$$= \left| \int_0^{\pi} \frac{ie^{iaRe^{i\theta}}}{R^2 e^{2i\theta} + 1} d\theta \right|$$

$$\leq \int_0^{\pi} \frac{|e^{iaRe^{i\theta}}|}{|R^2 e^{2i\theta} + 1|} d\theta$$

$$\leq \int_0^{\pi} \frac{e^{-aR\sin\theta}}{R^2 - 1} d\theta$$

$$\leq \int_0^{\pi} \frac{1}{R^2 - 1} d\theta$$

$$= \frac{\pi}{R^2 - 1} \to 0 \qquad R \to \infty$$
(1)

With (1) because $\sin \theta \ge 0$ on $[0, \pi]$ so $-aR \sin \theta \le 0$ on this circle. Therefore, by the Residue Theorem, we get

$$2\pi i \operatorname{Res}_{z=i} \frac{e^{iaz}}{z(z^2+1)} = 2\pi i \frac{e^{iai}}{i(i+i)}$$
$$= 2\pi i \frac{e^{-a}}{-2}$$
$$= -\pi i e^{-a}$$
$$= \lim_{R \to \infty} \lim_{\varepsilon \to 0} (I_1 + I_2 + I_\varepsilon + I_R)$$
$$= -\pi i + \int_{\varepsilon}^R \frac{2i\sin(ax)}{x(x^2+1)} dx$$
$$\Longrightarrow \pi - \pi e^{-a} = \int_{\varepsilon}^R \frac{2\sin(ax)}{x(x^2+1)} dx$$
$$= \int_{-\infty}^\infty \frac{\sin(ax)}{x(x^2+1)} dx$$

0.0
Ж
S

Problem 2. Let f(z) be analytic for 0 < |z| < 1. Assume there are C > 0 and $m \ge 1$ such that

$$|f^{(m)}(z)| \le \frac{C}{|z|^m}, \qquad 0 < |z| < 1.$$

show that f has a removable singularity at z = 0.

Solution. f has a removable singularity if $\lim_{z\to 0} zf(z) = 0$.

Since f is analytic in the open disk, we can write a Laurent expansion for f. Namely,

$$f(z) = \sum_{n = -\infty}^{\infty} a_n z^n = \sum_{n = -\infty}^{-1} \frac{a_n}{z^n} + a_0 + \sum_{n = 1}^{\infty} a_n z^n$$

Since

$$f^{(m)}(z) = \sum_{-\infty}^{-1} \frac{(-1)^m ((n+m)!a_n}{n! z^{m+n}} + \sum_{n=m}^{\infty} \frac{n!}{(n-m-1)!} a_n z^{n-m-1}$$

Near 0, the positive powers shrink to nothing. However, for $0 < |z| < \varepsilon$, $z^m f^{(m)}$ is bounded by C and this is not possible for the sum on the left unless the sum on the left is zero.

Namely, $|z^m| \frac{1}{|z^{m+n}|} = \frac{1}{|z|^n}$ which grows arbitrarily large for z near 0. Therefore, f(z) has no negative neuron in its Lement emerging on

Therefore, f(z) has no negative powers in its Laurent expansion and so

$$\lim_{z \to 0} zf(z) = \lim_{z \to 0} z \sum_{n=0}^{\infty} a_n z^n = 0.$$

~ ~	
W/	
20	
QU)	

Problem 3. Let $D \subset \mathbb{C}$ be a connected open set and let (u_n) be a sequence of harmonic functions $u_n : D \to (0, \infty)$. Show that if $u_n(z_0) \to 0$ for some $z_0 \in D$, then $u_n \to 0$ uniformly on compact subsets of D.

Solution. First, we note that u_n are positive. Let $D' \subset D$ be a disk of radius r centered at z_0 . Then, for all z with $|z - z_0| < \varepsilon < r$, we can apply Harnack's inequality to get

$$\frac{r-\varepsilon}{r+\varepsilon}u_n(z_0) \le u_n(z) \le \frac{r+\varepsilon}{r-\varepsilon}u_n(z_0).$$

By Harnock's inequality, since $u_n(z_0) \to 0$, we must get that $u_n \to 0$ on D'.

Furthermore, the convergence is uniform since for all $\delta > 0$, for N such that $u_n(z_0) < \frac{r-\varepsilon}{r+\varepsilon}\delta$ for all $n \ge N$, we get that

$$u_n(z) \le \frac{r+\varepsilon}{r-\varepsilon} u_n(z_0) < \frac{r+\varepsilon}{r-\varepsilon} \frac{r-\varepsilon}{r+\varepsilon} \delta = \delta$$
 for all N for all $z \in D'$.

Since we can cover any compact subset of D' with disks, we get that $u_n \to 0$ uniformly on compact subsets.

Problem 4. Let *D* be the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$ in the complex plane, and define $\Omega = D \setminus [0, 1]$. Find a conformal mapping of Ω onto *D*. You may give your answer as the composition of several mappings, so long as each mapping is precisely described.

Solution. Let

H