Kayla Orlinsky

Complex Analysis Exam Spring 2012

Problem 1. Suppose $a>0$. Evaluate the integral

$$
\int_{-\infty}^{\infty} \frac{\sin (a x)}{x\left(x^{2}+1\right)} d x
$$

be careful to justify your methods.

Solution. We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin.

Let

$$
\begin{aligned}
& I_{1}=\int_{\Gamma_{1}} \frac{e^{i a z}}{z\left(z^{2}+1\right)} d z \\
& I_{2}=\int_{\Gamma_{2}} \frac{e^{i a z}}{z\left(z^{2}+1\right)} d z \\
& I_{\varepsilon}=\int_{\Gamma_{\varepsilon}} \frac{e^{i a z}}{z\left(z^{2}+1\right)} d z \\
& I_{R}=\int_{\Gamma_{R}} \frac{e^{i a z}}{z\left(z^{2}+1\right)} d z
\end{aligned}
$$

Now,

$$
\begin{aligned}
I_{1}+I_{2} & =\int_{-R}^{-\varepsilon} \frac{e^{i a x}}{x\left(x^{2}+1\right)} d x+\int_{\varepsilon}^{R} \frac{e^{i a x}}{x\left(x^{2}+1\right)} d x \\
& =\int_{R}^{\varepsilon} \frac{-e^{-i a x}}{-x\left((-x)^{2}+1\right)} d x+\int_{\varepsilon}^{R} \frac{e^{i a x}}{x\left(x^{2}+1\right)} d x \\
& =\int_{\varepsilon}^{R} \frac{-e^{-i a x}}{x\left(x^{2}+1\right)} d x+\int_{\varepsilon}^{R} \frac{e^{i a x}}{x\left(x^{2}+1\right)} d x \\
& =\int_{\varepsilon}^{R} \frac{e^{i a x}-e^{-i a x}}{x\left(x^{2}+1\right)} d x \\
& =\int_{\varepsilon}^{R} \frac{2 i \sin (a x)}{x\left(x^{2}+1\right)} d x
\end{aligned}
$$

Since $\sin x$ is an odd function (on the real line), we have that

$$
\int_{-\infty}^{0} \frac{\sin (a x)}{x\left(x^{2}+1\right)} d x=\int_{\infty}^{0} \frac{-\sin (-a x)}{-x\left(x^{2}+1\right)} d x=\int_{0}^{\infty} \frac{-\sin (-a x)}{x\left(x^{2}+1\right)} d x=\int_{0}^{\infty} \frac{\sin (a x)}{x\left(x^{2}+1\right)}
$$

Now, we note that $\frac{e^{i a z}}{z\left(z^{2}+1\right)}$ has an isolated pole of order 1 at $z=0$ since

$$
\lim _{z \rightarrow 0} z \frac{e^{i a z}}{z\left(z^{2}+1\right)}=\lim _{z \rightarrow 0} \frac{e^{i a z}}{z^{2}+1}=\frac{1}{1}=1
$$

Therefore, we can write $\frac{e^{i a z}}{z\left(z^{2}+1\right)}=\frac{1}{z}+f(z)$ where $f(z)$ is analytic at 0 . Thus, taking ε small, we get

$$
\begin{aligned}
I_{\varepsilon} & =\int_{\Gamma_{\varepsilon}} \frac{e^{i a z}}{z\left(z^{2}+1\right)} d z \\
& =\int_{\Gamma_{\varepsilon}} \frac{1}{z}+f(z) d z \\
& =\int_{\pi}^{0} i d \theta+0 \\
& =-i \pi
\end{aligned}
$$

Now,

$$
\begin{align*}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{e^{i a z}}{z\left(z^{2}+1\right)} d z\right| \\
& =\left|\int_{0}^{\pi} \frac{i e^{i a R e^{i \theta}}}{R^{2} e^{2 i \theta}+1} d \theta\right| \\
& \leq \int_{0}^{\pi} \frac{\left|e^{i a R e^{i \theta}}\right|}{\left|R^{2} e^{2 i \theta}+1\right|} d \theta \\
& \leq \int_{0}^{\pi} \frac{e^{-a R \sin \theta}}{R^{2}-1} d \theta \\
& \leq \int_{0}^{\pi} \frac{1}{R^{2}-1} d \theta \tag{1}\\
& =\frac{\pi}{R^{2}-1} \rightarrow 0 \quad R \rightarrow \infty
\end{align*}
$$

With (1) because $\sin \theta \geq 0$ on $[0, \pi]$ so $-a R \sin \theta \leq 0$ on this circle.
Therefore, by the Residue Theorem, we get

$$
\begin{aligned}
2 \pi i \operatorname{Res}_{z=i} \frac{e^{i a z}}{z\left(z^{2}+1\right)} & =2 \pi i \frac{e^{i a i}}{i(i+i)} \\
& =2 \pi i \frac{e^{-a}}{-2} \\
& =-\pi i e^{-a} \\
& =\lim _{R \rightarrow \infty} \lim _{\varepsilon \rightarrow 0}\left(I_{1}+I_{2}+I_{\varepsilon}+I_{R}\right) \\
& =-\pi i+\int_{\varepsilon}^{R} \frac{2 i \sin (a x)}{x\left(x^{2}+1\right)} d x \\
\Longrightarrow \pi-\pi e^{-a} & =\int_{\varepsilon}^{R} \frac{2 \sin (a x)}{x\left(x^{2}+1\right)} d x \\
& =\int_{-\infty}^{\infty} \frac{\sin (a x)}{x\left(x^{2}+1\right)} d x
\end{aligned}
$$

Problem 2. Let $f(z)$ be analytic for $0<|z|<1$. Assume there are $C>0$ and $m \geq 1$ such that

$$
\left|f^{(m)}(z)\right| \leq \frac{C}{|z|^{m}}, \quad 0<|z|<1
$$

show that f has a removable singularity at $z=0$.

Solution. $\quad f$ has a removable singularity if $\lim _{z \rightarrow 0} z f(z)=0$.
Since f is analytic in the open disk, we can write a Laurent expansion for f. Namely,

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n} z^{n}=\sum_{n=-\infty}^{-1} \frac{a_{n}}{z^{n}}+a_{0}+\sum_{n=1}^{\infty} a_{n} z^{n}
$$

Since

$$
f^{(m)}(z)=\sum_{-\infty}^{-1} \frac{(-1)^{m}\left((n+m)!a_{n}\right.}{n!z^{m+n}}+\sum_{n=m}^{\infty} \frac{n!}{(n-m-1)!} a_{n} z^{n-m-1} .
$$

Near 0 , the positive powers shrink to nothing. However, for $0<|z|<\varepsilon, z^{m} f^{(m)}$ is bounded by C and this is not possible for the sum on the left unless the sum on the left is zero.

Namely, $\left|z^{m}\right| \frac{1}{\left|z^{m+n}\right|}=\frac{1}{|z|^{n}}$ which grows arbitrarily large for z near 0 .
Therefore, $f(z)$ has no negative powers in its Laurent expansion and so

$$
\lim _{z \rightarrow 0} z f(z)=\lim _{z \rightarrow 0} z \sum_{n=0}^{\infty} a_{n} z^{n}=0
$$

Problem 3. Let $D \subset \mathbb{C}$ be a connected open set and let $\left(u_{n}\right)$ be a sequence of harmonic functions $u_{n}: D \rightarrow(0, \infty)$. Show that if $u_{n}\left(z_{0}\right) \rightarrow 0$ for some $z_{0} \in D$, then $u_{n} \rightarrow 0$ uniformly on compact subsets of D.

Solution. First, we note that u_{n} are positive. Let $D^{\prime} \subset D$ be a disk of radius r centered at z_{0}. Then, for all z with $\left|z-z_{0}\right|<\varepsilon<r$, we can apply Harnack's inequality to get

$$
\frac{r-\varepsilon}{r+\varepsilon} u_{n}\left(z_{0}\right) \leq u_{n}(z) \leq \frac{r+\varepsilon}{r-\varepsilon} u_{n}\left(z_{0}\right)
$$

By Harnock's inequality, since $u_{n}\left(z_{0}\right) \rightarrow 0$, we must get that $u_{n} \rightarrow 0$ on D^{\prime}.
Furthermore, the convergence is uniform since for all $\delta>0$, for N such that $u_{n}\left(z_{0}\right)<\frac{r-\varepsilon}{r+\varepsilon} \delta$ for all $n \geq N$, we get that

$$
u_{n}(z) \leq \frac{r+\varepsilon}{r-\varepsilon} u_{n}\left(z_{0}\right)<\frac{r+\varepsilon}{r-\varepsilon} \frac{r-\varepsilon}{r+\varepsilon} \delta=\delta \quad \text { for all } N \text { for all } z \in D^{\prime}
$$

Since we can cover any compact subset of D^{\prime} with disks, we get that $u_{n} \rightarrow 0$ uniformly on compact subsets.

Problem 4. Let D be the open unit disk $\{z \in \mathbb{C}:|z|<1\}$ in the complex plane, and define $\Omega=D \backslash[0,1]$. Find a conformal mapping of Ω onto D. You may give your answer as the composition of several mappings, so long as each mapping is precisely described.

Solution. Let

$$
\begin{aligned}
T(z) & =\frac{z-i}{z+i} \\
w_{1}(z) & =z^{\frac{1}{2}} \quad \text { branch at }(-\infty, 0] \\
w_{2}(z) & =-i z \\
w_{3}(z) & =z^{2}
\end{aligned}
$$

\&

