Kayla Orlinsky Complex Analysis Exam Fall 2012

Problem 1. Evaluate the integral

$$
\int_0^\infty \frac{dx}{1+x^n}, \qquad n\geq 2
$$

being careful to justify your methods.

Solution. Then we get that there is a pole at $e^{i\frac{\pi}{n}}$ which can be isolated in a pizza slice of angle $\frac{2\pi}{n}$.

Thus, we integrate around the following contour:

Immeidately, we get that

$$
|I_R| = \left| \int_{\Gamma_R} \frac{dz}{1+z^n} \right| \le \int_0^{\frac{2\pi}{n}} \frac{R}{R^n - 1} d\theta = \frac{2\pi R}{n(R^n - 1)} \to 0 \qquad R \to \infty.
$$

Since

$$
I_2=\int_{\Gamma_2}\frac{dz}{1+z^n}=\int_R^0\frac{e^{i\frac{2\pi}{n}}dr}{1+r^ne^{2\pi i}}=-e^{i\frac{2\pi}{n}}\int_0^R\frac{dr}{1+r^n}=-e^{i\frac{2\pi}{n}}I_1.
$$

Thus, using the residue theorem, we get that

$$
\operatorname{Res}_{z=e^{i\frac{\pi}{n}}}\frac{1}{1+x^n} = \lim_{z \to e^{i\frac{\pi}{n}}} \frac{x - e^{i\frac{\pi}{n}}}{x^n + 1} = \lim_{z \to e^{i\frac{\pi}{n}}} \frac{1}{nx^{n-1}} = \frac{1}{n}e^{-(n-1)i\frac{\pi}{n}}
$$

and that

$$
2\pi i \frac{1}{n} e^{-(n-1)i\frac{\pi}{n}} = \lim_{R \to \infty} (I_1 + I_2 + I_R) = (1 - e^{i\frac{2\pi}{n}})I_1
$$

and so

$$
\int_0^\infty \frac{dx}{1+x^n} = \frac{\pi}{n} e^{-(n-1)i\frac{\pi}{n}} \frac{2i}{1-e^{i\frac{2\pi}{n}}} = \frac{\pi}{n} \frac{-2i}{e^{-i\frac{\pi}{n}} - e^{i\frac{\pi}{n}}} = \frac{\pi/n}{\sin(\pi/n)}
$$

¥

Problem 2. Find the Laurent series expansion for

$$
\frac{1}{z(z+1)}
$$

valid in $\{1 < |z - 1| < 2\}$.

Solution. Since on $1 < |z - 1| < 2$ we have that $1 > \frac{1}{|z - 1|} > \frac{1}{2}$ $\frac{1}{2}$ and $\frac{|z-1|}{2} < 1$ so

$$
\frac{1}{z(z+1)} = \frac{1}{z} - \frac{1}{z+1}
$$

=
$$
\frac{1}{(z-1)+1} - \frac{1}{(z-1)+2}
$$

=
$$
\frac{\frac{1}{z-1}}{1+\frac{1}{z-1}} - \frac{\frac{1}{2}}{1+\frac{z-1}{2}}
$$

=
$$
\frac{1}{z-1} \frac{1}{1-\frac{1}{1-z}} - \frac{1}{2} \frac{1}{1-\frac{1-z}{2}}
$$

=
$$
\frac{1}{z-1} \sum_{l=0}^{\infty} \left(\frac{1}{1-z}\right)^l - \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{1-z}{2}\right)^k
$$

=
$$
\sum_{l=0}^{\infty} \frac{1}{(1-z)^{l+1}} - \sum_{k=0}^{\infty} \frac{(1-z)^k}{2^{k+1}}
$$

Problem 3. Suppose that f is an entire function and that there is a bounded sequence of distinct real numbers a_1, a_2, a_3, \ldots such that $f(a_k)$ is real for each k. Show that $f(x)$ is real for all real *x.*

Solution. It suffices to show that $f(z)$ has a Taylor Expansion with only real coefficeints.

First, note that since a_k are bounded, they have a real limit point a . Therefore, because *f* is entire (namely continuous),

$$
\lim_{k \to \infty} f(a_k) = f\left(\lim_{k \to \infty} a_k\right) = f(a)
$$

and $f(a) \in \mathbb{R}$ since $f(a_k) \in \mathbb{R}$ for all k.

Therefore,

$$
\frac{f(a_k) - f(a)}{a_k - a} \in \mathbb{R} \qquad \text{for all } k
$$

and so $f'(a) \in \mathbb{R}$.

Inductively, we get that $f^{(n)}(a) \in \mathbb{R}$ for all *n* and so, because *f* is entire, we can write its Taylor expansion around *a* and get that

$$
f(z) = \sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (z - a)^k
$$

and since $f^{(k)}(a)/k! \in \mathbb{R}$ for all *k* and $a \in \mathbb{R}$, we get that $f(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$.

Problem 4. Suppose

$$
f_n(z) = \sum_{k=0}^n \frac{1}{k!z^k}, \qquad z \neq 0
$$

and let $\varepsilon > 0$. Show that for large enough *n*, all the zeros of f_n are in the disk $D(0, \varepsilon)$ with center 0 and radius ε .

Solution. First,

$$
\lim_{n \to \infty} f_n(z) = \sum_{k=0}^{\infty} \frac{\left(\frac{1}{z}\right)^k}{k!} = e^{\frac{1}{z}}.
$$

Furthermore, this convergence is uniform. Namely, for $\varepsilon > 0$, there exists *N* such that $|f_n(z) - e^{1/z}| < \varepsilon$ for all $n \ge N$ and all $z \ne 0$.

Now, if $|z| < \frac{1}{\varepsilon}$ *ε* then

$$
|e^z| \ge e^{-\frac{1}{\varepsilon}}
$$

and so if $|z| > \varepsilon$ n then

$$
|e^{\frac{1}{z}}| \ge e^{-\frac{1}{\varepsilon}} > 0.
$$

Namely, because $e^{1/z}$ has a lower bound on $|z| > \varepsilon$, so too must $f_n(z)$. Thus, the zeros of $f_n(z)$ are contained in $D(0, \varepsilon)$.