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Problem 1. Evaluate ∫ ∞
0

log x
(x2 + 1)2dx

Solution. We will use “Ol’ Faithful” the contour around the upper half plane avoiding the
origin since every branch cut of log x intersects 0.

Then we take any branch which does not intersect the upper half plane (including the
real line).

ΓR

Γε
Γ2Γ1

Re

Im

Let

I1 =
∫

Γ1

log z
(z2 + 1)2dz

I2 =
∫

Γ2

log z
(z2 + 1)2dz

Iε =
∫

Γε

log z
(z2 + 1)2dz

IR =
∫

ΓR

log z
(z2 + 1)2dz

For the next computation we refer to the following triangle:
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θ

1

x

1 + x2

I1 =
∫

Γ1

log z
(z2 + 1)2dz

=
∫ −ε
−R

log x
(x2 + 1)2dx

=
∫ ε

R

− log(−x)
(x2 + 1)2 dx

=
∫ R

ε

log x+ iπ

(x2 + 1)2 dx log(−x) = log x+ iπ

= I2 +
∫ R

ε

iπ

(x2 + 1)2dx

= I2 + iπ
∫ R

ε

sec2 θ

(tan2 θ + 1)2dθ x = tan θ

= I2 + iπ
∫ R

ε

sec2 θ

sec4 θ
dθ

= I2 + iπ
∫ R

ε

1
sec2 θ

dθ

= I2 + iπ
∫ R

ε
cos2 θdθ

= I2 + iπ
1
2

∫ R

ε
1 + cos(2θ)dθ

= I2 + iπ

2

[
θ + 1

2 sin(2θ)
] ∣∣∣∣R
x=ε

= I2 + iπ

2
[
tan−1(x) + sin(θ) cos(θ)

] ∣∣∣∣R
x=ε

= I2 + iπ

2

[
tan−1(x) + x

(x2 + 1)2

] ∣∣∣∣R
x=ε

→ I2 + iπ

2

[
π

2

]
as ε→ 0, R→∞

= I2 + i
π2

4
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Now,

|IR| =
∣∣∣∣∣
∫

ΓR

log z
(z2 + 1)2dz

∣∣∣∣∣
≤
∫

ΓR

| log z|
|z2 + 1|2 |dz|

≤
∫

ΓR

|z|+ C

|z2 + 1|2dz (1)

≤
∫

ΓR

R + C

|z|2
dz (2)

=
∫

ΓR

R + C

R2 dz → 0 as R→∞

Note that (1) comes from

| log z| =
√

(log |z|)2 + (arg(z))2 ≤
√

(log |z|)2 + C = log |z|+ C ≤ |z|+ C

for C sufficiently large with respect to the maximal possible argument of z, which is 3π
2 .

And (2) comes from |z2 + 1|2 ≥ |z2 + 1| ≥ |z2| for |z| sufficiently large.
Finally,

|Iε| =
∣∣∣∣∣
∫

Γε

log z
(z2 + 1)2dz

∣∣∣∣∣
≤
∫ 0

π

| log(εeiθ)||iεeiθ|
|ε2e2iθ + 1|2 dθ

≤
∫ 0

π

ε(| log ε|+ |θ|)
|ε2e2iθ + 1|2 dθ → 0 ε→ 0

Note that

lim
ε→0

ε(| log ε|+ |θ|)
|ε2e2iθ + 1| =

(
lim
ε→0

| log ε|
1
ε

)(
lim
ε→0

1
|ε2e2iθ + 1|2

)
+ lim

ε→0

ε|θ|
|ε2e2iθ + 1|2

= lim
ε→0

1
ε
−1
ε2
· 1 + 0

= lim
ε→0
−ε = 0

by L’Hopital’s rule.
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Therefore, by the residue theorem,

lim
ε→0

lim
R→∞

I1 + I2 + Iε + IR = 2πiResz=i
log z

(z2 + 1)2

= 2πi d
dz

log z
(z + i)2

∣∣∣∣
z=i

= 2πi
(z+i)2

z
− 2(z + i) log z
(z + i)4

∣∣∣∣
z=i

= 2πi
(2i)2

i
− 2(2i) log i

(2i)4

= 2πi
4i− 4iπ2 i

16
= −π2

(
1− π

2 i
)

= π2

4 i−
π

2

lim
ε→0

lim
R→∞

I1 + I2 + Iε + IR = 2I1 + π2

4 i

=⇒ I1 = 1
2

(
π2

4 i−
π

2 −
π2

4 i
)

= −π4

�
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Problem 2.

(a) Suppose that u1, u2, ..., un and u2
1 + · · ·+ u2

n are harmonic functions on a connected
open set D. Show that each function ur (1 ≤ r ≤ n) is constant.

(b) A function f : D → C with f(x + iy) = u(x, y) + iv(x, y) is said to be complex
harmonic if the real valued functions u and v are harmonic. Show that if f(x+ iy)
and (x+ y)f(x+ iy) are both complex harmonic then f is analytic.
TYPO : This question does not make sense unless we assume that (x+iy)f(x+iy)

is complex harmonic.

Solution.

(a) Note that
∂

∂x
u2 = 2u∂u

∂x
∂2

∂x2u
2 = ∂

∂x

(
2u∂u
∂x

)

= 2
(
∂u

∂x

)2

+ 2u∂
2u

∂x2

∂2

∂x2u
2 + ∂2

∂y2u
2 = 2

(
∂u

∂x

)2

+ 2u∂
2u

∂x2 + 2
(
∂u

∂y

)2

+ 2u∂
2u

∂y2

= 2
2
(
∂u

∂x

)2

+ 2
(
∂u

∂y

)2


which is 0 if and only if ∂u
∂x

= ∂u
∂y

= 0.
Therefore, since differentiation is a linear operation, u2

1 + · · ·+ u2
n is harmonic if and

only if
∂uk
∂x

= ∂uk
∂y

for all k.

Namely, uk = ck for some ck constant for all k.

(b) We will write ux = ∂
∂x
u.

Original Hypothesis Now, because (x+ y)f(x+ iy) is complex harmonic,

0 = ∂2

∂x2 (x+ y)u+ ∂2

∂y2 (x+ y)u

= ∂

∂x
[u+ (x+ y)ux] + ∂

∂y
[u+ (x+ y)uy]

= ux + ux + (x+ y)uxx + uy + uy + (x+ y)uyy
= 2ux + 2uy
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since f(x+ iy) is complex harmonic so uxx = −uyy.
Therefore, ux = −uy and similarly, vx = −vy.
However, to obtain the final solution, it is necessary to assume that (x+ iy)f(x+ iy) is
complex harmonic, instead of (x+ y)f(x+ iy).

Assuming (x+ iy)f(x+ iy) is complex harmonic Now,

(x+ iy)f(x+ iy) = (x+ iy)(u+ iv) = xu− yv + i(yu+ xv)

and so the real part being harmonic now implies that

0 = ∂2

∂x2 (xu− yv) + ∂2

∂y2 (xu− yv)

= ∂

∂x
[u+ xux − yvx] + ∂

∂y
[xuy − v − yvy]

= ux + ux + xuxx − yvxx + xuyy − vy − vy − yvyy
= 2ux − 2vy

since f(x+ iy) is complex harmonic so xuxx+xuyy = 0 and similarly, −yvxx−yvyy = 0.
Now finally, the complex part of f(x+ iy) is harmonic and so

0 = ∂2

∂x2 (yu+ xv) + ∂2

∂y2 (yu+ xv)

= ∂

∂x
[yux + v + xvx] + ∂

∂y
[u+ yuy + xvy]

= yuxx + vx + vx + xvxx + uy + uy + yuyy + xvyy

= 2vx + 2uy

and so ux = vy and uy = −vx. Therefore, by Cauchy-Riemann, f(x+ iy) is analytic.

�
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Problem 3. Let f : D → D be an analytic function on a bounded domain D with
0 ∈ D. Assume f(0) = 0 and |f ′(0)| < 1. Let Fn(z) = f ◦ · · · ◦ f(z) (n-times). Show
that Fn(z)→ 0 as n→∞ uniformly on compact subsets of D. Hint: consider first the
behavior of Fn on a small neighborhood of 0.

Solution. Since ∣∣∣∣∣limz→0

f(z)− f(0)
z − 0

∣∣∣∣∣ = lim
z→0

|f(z)|
|z|

= |f ′(0)|,

we have that for all ε > 0, there exists δ > 0 such that

ε >

∣∣∣∣∣f(z)
z
− f ′(0)

∣∣∣∣∣ ≥ |f(z)
|z|
− |f ′(0)| |z| < δ.

Therefore,
|f(z)|
|z|

< ε+ |f ′(0)|.

Since ε > 0 was arbitrary and |f ′(0)| < 1, there exists 0 < ρ < 1 such that

|f(z)|
|z|

≤ ρ < 1

for all |z| < δ.

Note, that since D is the domain of an analytic function we may take it to be connected
and open, so we can take δ such that Bδ(0) ⊂ D. Namely, we have that |f(z)| ≤ ρ|z| for all
z ∈ Bδ(0) ⊂ D.

Finally, since ρ < 1, ρz ∈ Bδ(0) for all z ∈ Bδ(0).
Thus,

|f◦· · ·◦f(z)| (n-times) ≤ |f◦· · ·◦f(ρz)| (n−1-times) = |f◦· · ·◦f(ρ2z) (n−2-times) ≤ · · · ≤ ρn|z|.

Therefore,
lim
n→∞

|f ◦ · · · ◦ f(z)| (n-times) ≤ lim
n→∞

ρn|z| = 0

for all z ∈ Bδ(0) since ρ < 1.
Next, assume thatK ⊂ D is compact. By Cauchy, becauseD is bounded, and f : D → D,

there exists M such that |f(z)| ≤M for all z ∈ D.
Namely, |Fn(z)| ≤ M for all z ∈ D. Therefore, by Montel’s Theorem, {Fn} define a

normal family on D.
Therefore, for every z ∈ D, there exists a subsequence {Fnk} of {Fn} such that Fnk → F

uniformly on compact subsets K ⊂ D, for some analytic function F : D → D.
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However, Fnk |Bδ(0) → 0 uniformly, which implies that F |Bδ(0) = 0. Since F is analytic,
its zeros must be isolated, so F = 0 for every z in a ball implies that F ≡ 0 is identically 0
on D.

Namely, for each K ⊂ D compact, there exists a subsequence {Fnk} which converges
uniformly to 0 on K.

Finally, to show that the whole sequence converges to 0 on K, we note that for all ε > 0,
there exists N such that

|Fnk | < ε for all nk ≥ N in the subsequence.

However, from the above, if |Fnk(z)| < ε, then

|f(Fnk(z))| ≤ ρ|Fnk(z)| < ρε < ε ρ < 1

and so, since f ◦ Fnk(z) = Fnk+1(z), we have that |Fn(z)| < ε for all n ≥ N .
Namely, Fn → 0 uniformly on K �
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Problem 4. Starting with the definition
“f is analytic on a set G if limz→z0

f(z)−f(z0)
z−z0

exists for all z0 ∈ G.”
describe the sequence of intermediate results required to obtain the following theorem:
“Suppose f and g are both analytic on a connected open set G and there is a

convergent sequence zn with limit z∞ ∈ G such that f(zn) = g(zn) for all n. Then f = g
on G.”

You do not need to prove any of the intermediate results, but you should give a brief
indication of how each result is used to obtain the next one.

Solution.

THIS QUESTION IS TERRIBLE. Proofs will be provided for the sake of learning...

1. Since f and g are analytic, f − g is analytic by Cauchy-Riemann.

2. The zeros of analytic functions are isolated. Although we used this freely in Problem
3, for the sake of understanding we prove this as a claim.

Claim 1. The zeros of an analytic function are isolated.

Proof. Let h be an analytic function and let z0 be a zero of h. Then,
because h is analytic, we can develop its Taylor series about z0 in BR(z0)
for some R > 0. Namely,

h(z) =
∞∑
n=0

an(z − z0)n.

Now, since z0 is a zero of h, a0 = 0, and so WLOG, we can take N to be
the largest integer such that an = 0 for all 0 ≤ n < N and aN 6= 0. Then,

h(z) =
∞∑
n=N

an(z−z0)n =
∞∑
n=0

an+N(z−z0)n+N = (z−z0)N
∞∑
n=0

an+N(z−z0)n

Therefore, h(z) = (z − z0)Nk(z) with k(z) = ∑∞
n=0 an+N(z − z0)n also an

analytic function on BR(z0). Furthermore, k(z0) = aN 6= 0 by assumption.
Thus, because k is analytic, it is continuous, and because k(z0) non-zero,
there exists a δ > 0 such that

|k(z)− aN | <
|aN |

2 |z − z0| < δ
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and so k(z) 6 0 on Bδ(z0).
Namely, z0 must be an isolated singularity of h. �

3. Because f − g is analytic (by 1.) and f − g = 0 on a sequence in G, the zeros of f − g
cannot be isolated. This is because limit points are not isolated by definition.
Therefore, assuming that f − g is not identically 0 contradicts 2. and so f − g ≡ 0 on
G. Thus, f = g on G.

�
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