Kayla Orlinsky

Complex Analysis Exam Spring 2011

Problem 1. Evaluate

$$
\int_{0}^{\infty} \frac{\log x}{\left(x^{2}+1\right)^{2}} d x
$$

Solution. We will use "Ol' Faithful" the contour around the upper half plane avoiding the origin since every branch cut of $\log x$ intersects 0 .

Then we take any branch which does not intersect the upper half plane (including the real line).

Let

$$
\begin{aligned}
I_{1} & =\int_{\Gamma_{1}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z \\
I_{2} & =\int_{\Gamma_{2}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z \\
I_{\varepsilon} & =\int_{\Gamma_{\varepsilon}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z \\
I_{R} & =\int_{\Gamma_{R}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z
\end{aligned}
$$

For the next computation we refer to the following triangle:

$$
\begin{aligned}
I_{1} & =\int_{\Gamma_{1}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z \\
& =\int_{-R}^{-\varepsilon} \frac{\log x}{\left(x^{2}+1\right)^{2}} d x \\
& =\int_{R}^{\varepsilon} \frac{-\log (-x)}{\left(x^{2}+1\right)^{2}} d x \\
& =\int_{\varepsilon}^{R} \frac{\log x+i \pi}{\left(x^{2}+1\right)^{2}} d x \quad \log (-x)=\log x+i \pi \\
& =I_{2}+\int_{\varepsilon}^{R} \frac{i \pi}{\left(x^{2}+1\right)^{2}} d x \\
& =I_{2}+i \pi \int_{\varepsilon}^{R} \frac{\sec ^{2} \theta}{\left(\tan ^{2} \theta+1\right)^{2}} d \theta \quad x=\tan \theta \\
& =I_{2}+i \pi \int_{\varepsilon}^{R} \frac{\sec ^{2} \theta}{\sec ^{4} \theta} d \theta \\
& =I_{2}+i \pi \int_{\varepsilon}^{R} \frac{1}{\sec ^{2} \theta} d \theta \\
& =I_{2}+i \pi \int_{\varepsilon}^{R} \cos ^{2} \theta d \theta \\
& =I_{2}+i \pi \frac{1}{2} \int_{\varepsilon}^{R} 1+\cos (2 \theta) d \theta \\
& =I_{2}+\left.\frac{i \pi}{2}\left[\theta+\frac{1}{2} \sin (2 \theta)\right]\right|_{x=\varepsilon} ^{R} \\
& =I_{2}+\left.\frac{i \pi}{2}\left[\tan ^{-1}(x)+\sin (\theta) \cos (\theta)\right]\right|_{x=\varepsilon} ^{R} \\
& =I_{2}+\left.\frac{i \pi}{2}\left[\tan ^{-1}(x)+\frac{x}{\left(x^{2}+1\right)^{2}}\right]\right|_{x=\varepsilon} ^{R} \\
& \rightarrow I_{2}+\frac{i \pi}{2}\left[\frac{\pi}{2}\right] \quad \text { as } \varepsilon \rightarrow 0, R \rightarrow \infty \\
& =I_{2}+i \frac{\pi^{2}}{4}
\end{aligned}
$$

Now,

$$
\begin{align*}
\left|I_{R}\right| & =\left|\int_{\Gamma_{R}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z\right| \\
& \leq \int_{\Gamma_{R}} \frac{|\log z|}{\left|z^{2}+1\right|^{2}}|d z| \\
& \leq \int_{\Gamma_{R}} \frac{|z|+C}{\left|z^{2}+1\right|^{2}} d z \tag{1}\\
& \leq \int_{\Gamma_{R}} \frac{R+C}{|z|^{2}} d z \tag{2}\\
& =\int_{\Gamma_{R}} \frac{R+C}{R^{2}} d z \rightarrow 0 \quad \text { as } R \rightarrow \infty
\end{align*}
$$

Note that (1) comes from

$$
|\log z|=\sqrt{(\log |z|)^{2}+(\arg (z))^{2}} \leq \sqrt{(\log |z|)^{2}}+C=\log |z|+C \leq|z|+C
$$

for C sufficiently large with respect to the maximal possible argument of z, which is $\frac{3 \pi}{2}$.
And (2) comes from $\left|z^{2}+1\right|^{2} \geq\left|z^{2}+1\right| \geq\left|z^{2}\right|$ for $|z|$ sufficiently large.
Finally,

$$
\begin{aligned}
\left|I_{\varepsilon}\right| & =\left|\int_{\Gamma_{\varepsilon}} \frac{\log z}{\left(z^{2}+1\right)^{2}} d z\right| \\
& \leq \int_{\pi}^{0} \frac{\left|\log \left(\varepsilon e^{i \theta}\right)\right|\left|i \varepsilon e^{i \theta}\right|}{\left|\varepsilon^{2} e^{2 i \theta}+1\right|^{2}} d \theta \\
& \leq \int_{\pi}^{0} \frac{\varepsilon(|\log \varepsilon|+|\theta|)}{\left|\varepsilon^{2} e^{2 i \theta}+1\right|^{2}} d \theta \rightarrow 0 \quad \varepsilon \rightarrow 0
\end{aligned}
$$

Note that

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon(|\log \varepsilon|+|\theta|)}{\left|\varepsilon^{2} e^{2 i \theta}+1\right|} & =\left(\lim _{\varepsilon \rightarrow 0} \frac{|\log \varepsilon|}{\frac{1}{\varepsilon}}\right)\left(\lim _{\varepsilon \rightarrow 0} \frac{1}{\left|\varepsilon^{2} e^{2 i \theta}+1\right|^{2}}\right)+\lim _{\varepsilon \rightarrow 0} \frac{\varepsilon|\theta|}{\left|\varepsilon^{2} e^{2 i \theta}+1\right|^{2}} \\
& =\lim _{\varepsilon \rightarrow 0} \frac{\frac{1}{\varepsilon}}{\frac{-1}{\varepsilon^{2}}} \cdot 1+0 \\
& =\lim _{\varepsilon \rightarrow 0}-\varepsilon=0
\end{aligned}
$$

by L'Hopital's rule.

Therefore, by the residue theorem,

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty} I_{1}+I_{2}+I_{\varepsilon}+I_{R} & =2 \pi i \operatorname{Res}_{z=i} \frac{\log z}{\left(z^{2}+1\right)^{2}} \\
& =\left.2 \pi i \frac{d}{d z} \frac{\log z}{(z+i)^{2}}\right|_{z=i} \\
& =\left.2 \pi i \frac{\frac{(z+i)^{2}}{z}-2(z+i) \log z}{(z+i)^{4}}\right|_{z=i} \\
& =2 \pi i \frac{\frac{(2 i)^{2}}{i}-2(2 i) \log i}{(2 i)^{4}} \\
& =2 \pi i \frac{4 i-4 i \frac{\pi}{2} i}{16} \\
& =-\frac{\pi}{2}\left(1-\frac{\pi}{2} i\right) \\
& =\frac{\pi^{2}}{4} i-\frac{\pi}{2} \\
\lim _{\varepsilon \rightarrow 0} \lim _{R \rightarrow \infty} I_{1}+I_{2}+I_{\varepsilon}+I_{R} & =2 I_{1}+\frac{\pi^{2}}{4} i \\
\Longrightarrow I_{1} & =\frac{1}{2}\left(\frac{\pi^{2}}{4} i-\frac{\pi}{2}-\frac{\pi^{2}}{4} i\right) \\
& =-\frac{\pi}{4}
\end{aligned}
$$

Problem 2.

(a) Suppose that $u_{1}, u_{2}, \ldots, u_{n}$ and $u_{1}^{2}+\cdots+u_{n}^{2}$ are harmonic functions on a connected open set D. Show that each function $u_{r}(1 \leq r \leq n)$ is constant.
(b) A function $f: D \rightarrow \mathbb{C}$ with $f(x+i y)=u(x, y)+i v(x, y)$ is said to be complex harmonic if the real valued functions u and v are harmonic. Show that if $f(x+i y)$ and $(x+y) f(x+i y)$ are both complex harmonic then f is analytic.
TYPO :- This question does not make sense unless we assume that $(x+i y) f(x+i y)$ is complex harmonic.

Solution.

(a) Note that

$$
\begin{aligned}
\frac{\partial}{\partial x} u^{2} & =2 u \frac{\partial u}{\partial x} \\
\frac{\partial^{2}}{\partial x^{2}} u^{2} & =\frac{\partial}{\partial x}\left(2 u \frac{\partial u}{\partial x}\right) \\
& =2\left(\frac{\partial u}{\partial x}\right)^{2}+2 u \frac{\partial^{2} u}{\partial x^{2}} \\
\frac{\partial^{2}}{\partial x^{2}} u^{2}+\frac{\partial^{2}}{\partial y^{2}} u^{2} & =2\left(\frac{\partial u}{\partial x}\right)^{2}+2 u \frac{\partial^{2} u}{\partial x^{2}}+2\left(\frac{\partial u}{\partial y}\right)^{2}+2 u \frac{\partial^{2} u}{\partial y^{2}} \\
& =2\left[2\left(\frac{\partial u}{\partial x}\right)^{2}+2\left(\frac{\partial u}{\partial y}\right)^{2}\right]
\end{aligned}
$$

which is 0 if and only if $\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0$.
Therefore, since differentiation is a linear operation, $u_{1}^{2}+\cdots+u_{n}^{2}$ is harmonic if and only if

$$
\frac{\partial u_{k}}{\partial x}=\frac{\partial u_{k}}{\partial y} \quad \text { for all } k
$$

Namely, $u_{k}=c_{k}$ for some c_{k} constant for all k.
(b) We will write $u_{x}=\frac{\partial}{\partial x} u$.

Original Hypothesis Now, because $(x+y) f(x+i y)$ is complex harmonic,

$$
\begin{aligned}
0 & =\frac{\partial^{2}}{\partial x^{2}}(x+y) u+\frac{\partial^{2}}{\partial y^{2}}(x+y) u \\
& =\frac{\partial}{\partial x}\left[u+(x+y) u_{x}\right]+\frac{\partial}{\partial y}\left[u+(x+y) u_{y}\right] \\
& =u_{x}+u_{x}+(x+y) u_{x x}+u_{y}+u_{y}+(x+y) u_{y y} \\
& =2 u_{x}+2 u_{y}
\end{aligned}
$$

since $f(x+i y)$ is complex harmonic so $u_{x x}=-u_{y y}$.
Therefore, $u_{x}=-u_{y}$ and similarly, $v_{x}=-v_{y}$.
However, to obtain the final solution, it is necessary to assume that $(x+i y) f(x+i y)$ is complex harmonic, instead of $(x+y) f(x+i y)$.
Assuming $(x+i y) f(x+i y)$ is complex harmonic Now,

$$
(x+i y) f(x+i y)=(x+i y)(u+i v)=x u-y v+i(y u+x v)
$$

and so the real part being harmonic now implies that

$$
\begin{aligned}
0 & =\frac{\partial^{2}}{\partial x^{2}}(x u-y v)+\frac{\partial^{2}}{\partial y^{2}}(x u-y v) \\
& =\frac{\partial}{\partial x}\left[u+x u_{x}-y v_{x}\right]+\frac{\partial}{\partial y}\left[x u_{y}-v-y v_{y}\right] \\
& =u_{x}+u_{x}+x u_{x x}-y v_{x x}+x u_{y y}-v_{y}-v_{y}-y v_{y y} \\
& =2 u_{x}-2 v_{y}
\end{aligned}
$$

since $f(x+i y)$ is complex harmonic so $x u_{x x}+x u_{y y}=0$ and similarly, $-y v_{x x}-y v_{y y}=0$. Now finally, the complex part of $f(x+i y)$ is harmonic and so

$$
\begin{aligned}
0 & =\frac{\partial^{2}}{\partial x^{2}}(y u+x v)+\frac{\partial^{2}}{\partial y^{2}}(y u+x v) \\
& =\frac{\partial}{\partial x}\left[y u_{x}+v+x v_{x}\right]+\frac{\partial}{\partial y}\left[u+y u_{y}+x v_{y}\right] \\
& =y u_{x x}+v_{x}+v_{x}+x v_{x x}+u_{y}+u_{y}+y u_{y y}+x v_{y y} \\
& =2 v_{x}+2 u_{y}
\end{aligned}
$$

and so $u_{x}=v_{y}$ and $u_{y}=-v_{x}$. Therefore, by Cauchy-Riemann, $f(x+i y)$ is analytic.

Problem 3. Let $f: D \rightarrow D$ be an analytic function on a bounded domain D with $0 \in D$. Assume $f(0)=0$ and $\left|f^{\prime}(0)\right|<1$. Let $F_{n}(z)=f \circ \cdots \circ f(z)$ (n-times). Show that $F_{n}(z) \rightarrow 0$ as $n \rightarrow \infty$ uniformly on compact subsets of D. Hint: consider first the behavior of F_{n} on a small neighborhood of 0 .

Solution. Since

$$
\left|\lim _{z \rightarrow 0} \frac{f(z)-f(0)}{z-0}\right|=\lim _{z \rightarrow 0} \frac{|f(z)|}{|z|}=\left|f^{\prime}(0)\right|
$$

we have that for all $\varepsilon>0$, there exists $\delta>0$ such that

$$
\varepsilon>\left|\frac{f(z)}{z}-f^{\prime}(0)\right| \geq \frac{\mid f(z)}{|z|}-\left|f^{\prime}(0)\right| \quad|z|<\delta
$$

Therefore,

$$
\frac{|f(z)|}{|z|}<\varepsilon+\left|f^{\prime}(0)\right|
$$

Since $\varepsilon>0$ was arbitrary and $\left|f^{\prime}(0)\right|<1$, there exists $0<\rho<1$ such that

$$
\frac{|f(z)|}{|z|} \leq \rho<1
$$

for all $|z|<\delta$.
Note, that since D is the domain of an analytic function we may take it to be connected and open, so we can take δ such that $B_{\delta}(0) \subset D$. Namely, we have that $|f(z)| \leq \rho|z|$ for all $z \in B_{\delta}(0) \subset D$.

Finally, since $\rho<1, \rho z \in B_{\delta}(0)$ for all $z \in B_{\delta}(0)$.
Thus,
$|f \circ \cdots \circ f(z)|(n$-times $) \leq|f \circ \cdots \circ f(\rho z)|(n-1$-times $)=\mid f \circ \cdots \circ f\left(\rho^{2} z\right)(n-2$-times $) \leq \cdots \leq \rho^{n}|z|$.
Therefore,

$$
\lim _{n \rightarrow \infty}|f \circ \cdots \circ f(z)|(n \text {-times }) \leq \lim _{n \rightarrow \infty} \rho^{n}|z|=0
$$

for all $z \in B_{\delta}(0)$ since $\rho<1$.
Next, assume that $K \subset D$ is compact. By Cauchy, because D is bounded, and $f: D \rightarrow D$, there exists M such that $|f(z)| \leq M$ for all $z \in D$.

Namely, $\left|F_{n}(z)\right| \leq M$ for all $z \in D$. Therefore, by Montel's Theorem, $\left\{F_{n}\right\}$ define a normal family on D.

Therefore, for every $z \in D$, there exists a subsequence $\left\{F_{n_{k}}\right\}$ of $\left\{F_{n}\right\}$ such that $F_{n_{k}} \rightarrow F$ uniformly on compact subsets $K \subset D$, for some analytic function $F: D \rightarrow D$.

However, $\left.F_{n_{k}}\right|_{B_{\delta}(0)} \rightarrow 0$ uniformly, which implies that $\left.F\right|_{B_{\delta}(0)}=0$. Since F is analytic, its zeros must be isolated, so $F=0$ for every z in a ball implies that $F \equiv 0$ is identically 0 on D.

Namely, for each $K \subset D$ compact, there exists a subsequence $\left\{F_{n_{k}}\right\}$ which converges uniformly to 0 on K.

Finally, to show that the whole sequence converges to 0 on K, we note that for all $\varepsilon>0$, there exists N such that

$$
\left|F_{n_{k}}\right|<\varepsilon \quad \text { for all } n_{k} \geq N \text { in the subsequence. }
$$

However, from the above, if $\left|F_{n_{k}}(z)\right|<\varepsilon$, then

$$
\left|f\left(F_{n_{k}}(z)\right)\right| \leq \rho\left|F_{n_{k}}(z)\right|<\rho \varepsilon<\varepsilon \quad \rho<1
$$

and so, since $f \circ F_{n_{k}}(z)=F_{n_{k}+1}(z)$, we have that $\left|F_{n}(z)\right|<\varepsilon$ for all $n \geq N$.
Namely, $F_{n} \rightarrow 0$ uniformly on K

Problem 4. Starting with the definition

" f is analytic on a set G if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}}$ exists for all $z_{0} \in G$."
describe the sequence of intermediate results required to obtain the following theorem:
"Suppose f and g are both analytic on a connected open set G and there is a convergent sequence z_{n} with limit $z_{\infty} \in G$ such that $f\left(z_{n}\right)=g\left(z_{n}\right)$ for all n. Then $f=g$ on G."

You do not need to prove any of the intermediate results, but you should give a brief indication of how each result is used to obtain the next one.

Solution.

THIS QUESTION IS TERRIBLE. Proofs will be provided for the sake of learning...

1. Since f and g are analytic, $f-g$ is analytic by Cauchy-Riemann.
2. The zeros of analytic functions are isolated. Although we used this freely in Problem 3, for the sake of understanding we prove this as a claim.

Claim 1. The zeros of an analytic function are isolated.
Proof. Let h be an analytic function and let z_{0} be a zero of h. Then, because h is analytic, we can develop its Taylor series about z_{0} in $B_{R}\left(z_{0}\right)$ for some $R>0$. Namely,

$$
h(z)=\sum_{n=0}^{\infty} a_{n}\left(z-z_{0}\right)^{n} .
$$

Now, since z_{0} is a zero of $h, a_{0}=0$, and so WLOG, we can take N to be the largest integer such that $a_{n}=0$ for all $0 \leq n<N$ and $a_{N} \neq 0$. Then,
$h(z)=\sum_{n=N}^{\infty} a_{n}\left(z-z_{0}\right)^{n}=\sum_{n=0}^{\infty} a_{n+N}\left(z-z_{0}\right)^{n+N}=\left(z-z_{0}\right)^{N} \sum_{n=0}^{\infty} a_{n+N}\left(z-z_{0}\right)^{n}$
Therefore, $h(z)=\left(z-z_{0}\right)^{N} k(z)$ with $k(z)=\sum_{n=0}^{\infty} a_{n+N}\left(z-z_{0}\right)^{n}$ also an analytic function on $B_{R}\left(z_{0}\right)$. Furthermore, $k\left(z_{0}\right)=a_{N} \neq 0$ by assumption.
Thus, because k is analytic, it is continuous, and because $k\left(z_{0}\right)$ non-zero, there exists a $\delta>0$ such that

$$
\left|k(z)-a_{N}\right|<\frac{\left|a_{N}\right|}{2} \quad\left|z-z_{0}\right|<\delta
$$

and so $k(z) \not \emptyset$ on $B_{\delta}\left(z_{0}\right)$.
Namely, z_{0} must be an isolated singularity of h.
3. Because $f-g$ is analytic (by 1.) and $f-g=0$ on a sequence in G, the zeros of $f-g$ cannot be isolated. This is because limit points are not isolated by definition.
Therefore, assuming that $f-g$ is not identically 0 contradicts 2 . and so $f-g \equiv 0$ on G. Thus, $f=g$ on G.

