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Problem 1. Evaluate ∫ 2π

0

dθ

3 + cos θ + 2 sin θ .

Solution.∫ 2π

0

dθ

3 + cos θ + 2 sin θ =
∫ 2π

0

dθ

3 + eiθ+e−iθ

2 + eiθ−e−iθ

i

=
∫ 2π

0

2ieiθdθ
6ieiθ + ie2iθ + i+ 2e2iθ − 2

=
∫
|z|=1

2dz
6iz + iz2 + i+ 2z2 − 2 z = eiθ

=
∫
|z|=1

2dz
(i+ 2)z2 + 6iz + i− 2

=
∫
|z|=1

2dz
(i+ 2)

(
z + 1

5(1 + 2i)
)

(z + 1 + 2i)
(1)

=
2πiResz=− 1

5 (1+2i)
2

(i+ 2)
(
z + 1

5(1 + 2i)
)

(z + 1 + 2i)


= 2πi 2

(i+ 2)
(
−1

5(1 + 2i) + 1 + 2i
)

= 4πi 1
(i+ 2)4

5(1 + 2i)

= 5πi 1
(1 + 2i)(i+ 2)

= 5πi 1
i+ 2− 2 + 4i

= 5πi 1
5i

= π
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With (1) from the quadratic formula where

z =
−6i±

√
−36− 4(i+ 2)(i− 2)

2(i+ 2)

=
−6i±

√
−36− 4(−5)

2(i+ 2)

= −6i±
√
−16

2(i+ 2)

= −6i± 4i
2(i+ 2)

= −3i± 2i
i+ 2

= −i
i+ 2 ,

−5i
i+ 2

= −1
5(−i(i− 2)), i(i− 2)

= −1
5(1 + 2i),−1− 2i

and since | − 1− 2i| > 1 and 1
5 |1 + 2i| < 1, we have only one residue. �
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Problem 2. Suppose the series f(z) = ∑∞
n=0 cnz

n converges for |z| < R. Show that for
r < R, ∫

|z|=r
|f(z)|2dz = 2π

∞∑
n=0
|cn|2r2n.

TYPO: Should be ∫
|z|=r
|f(z)|2|dz| = 2πr

∞∑
n=0
|cn|2r2n.

Solution. We must interpret∫
|z|=r
|f(z)|2dz =

∫
|z|=r
|f(z)|2|dz|

else this problem does not make sense. Specifically, if f(z) = z, which certainly has a well
defined Taylor series (cn = 0 for all n 6= 1), then∫

|z|=r
|f(z)|2dz =

∫
|z|=r
|z|2dz = r2

∫
|z|=r

dz = 0 6= 2πr2.

Now, with this change in notation, we obtain that∫
|z|=r
|f(z)|2|dz| =

∫
|z|=r
|z|2|dz| = r2

∫
|z|=r
|dz| = 2πr3 = 2πr(r2) = 2πr

∞∑
n=0
|cn|2r2n.

∫
|z|=r
|f(z)|2|dz| =

∫
|z|=r

f(z)f(z)|dz|

=
∫
|z|=r

( ∞∑
n=0

cnz
n

)( ∞∑
n=0

cnzn
)
|dz|

=
∫
|z|=r

( ∞∑
n=0

cnz
n

)( ∞∑
n=0

cnz
n

)
|dz|

=
∫
|z|=r

∞∑
n=0

n∑
k=0

ckz
kcn−kz

n−k|dz| Cauchy Product

=
∞∑
n=0

∫
|z|=r

n∑
k=0

ckcn−kz
kzn−k|dz|

Now, we examine the inner sum.

Claim 1. ∫
|z|=r

zn|dz| = 0 for all n 6= 0, n ∈ N.

Proof. Assume n 6= 0. Then let z = reiθ. Then dz = ireiθdθ so |dz| = rdθ.
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Therefore, ∫
|z|=r

zn|dz| =
∫ 2π

0
(reiθ)nrdθ

=
∫ 2π

0
rn+1eniθdθ

= rn+1 e
niθ

ni

∣∣∣2π
0

= rn+1

ni
(e2niπ − 1)

= rn+1

ni
(1− 1)

= 0

since n is an integer, e2niπ = cos(2nπ) + i sin(2nπ) = 1.
Note that if n = 0, then∫

|z|=r
zn|dz| =

∫ 2π

0
rdθ = 2πr.

�

n∑
k=0

ckcn−kz
kzn−k =


∑

0≤j<k≤n cjckz
jzk +∑

n≥j>k≥0 cjckz
jzk if n is odd∑

0≤j<k≤n cjckz
jzk +∑

n≥j>k≥0 cjckz
jzk + cn/2cn/2z

n/2zn/2 if n is even

Now, we simply cite the claim.
If j < k then

cjckz
jzk = C|z|k 1

zk−j
k − j > 0

and so these integrals will die since they contain a zl term with l 6= 0.
Similarly, if j > k then

cjckz
jzk = C|z|kzj−k j − k > 0

so these integrals will also die.
Therefore, if n is odd, all terms die.
If n is even, then the only term which will not contain a power of z is in fact

cn/2cn/2z
n/2zn/2 = |cn|2|zn|2 = |cn|2|z|2n after reindexing.

In this case, ∫
|z|=r
|cn|2|z|2ndz = |cn|2r2n

∫
|z|=r
|dz| = |cn|2r2n+12π.

4



Kayla Orlinsky
Fall 2011

Finally, we have that
∫
|z|=r
|f(z)|2|dz| =

∞∑
n=0

∫
|z|=r

n∑
k=0

ckcn−kz
kzn−k|dz| =

∞∑
n=0
|cn|2r2n

∫
|z|=r
|dz| = 2πr

∞∑
n=0
|cn|2r2n.

�
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Problem 3. Let f(z) be analytic on C and suppose that the line Γ = {t+ it | t ∈ R} is
mapped to itself, that is f(z) ∈ Γ for all z ∈ Γ. If f(

√
2) = 3, then what is f(

√
2i)

Solution. Let
g(z) = e−

π
4 iz =

√
2

2 (1− i)z.

Note that g is trivially a Mobius transform and so it is invertible.
Then

g(t+ it) = e−
π
4 i(t+ it) =

√
2

2 t(1− i)(1 + i) =
√

2
2 t2 =

√
2t.

Thus, g sends Γ to the real line.
Thus, g ◦ f ◦ g−1 fixes the real line. Since g and g−1 are analytic (clearly) and f is

analytic, their composition is analytic.
Therefore, by Schwarz’ Reflection Principle,

(g ◦ f ◦ g−1)(z) = (g ◦ f ◦ g−1)(z).

Now, g(
√

2) = 1− i and g(
√

2i) = 1 + i = 1− i so
(g ◦ f ◦ g−1)(1− i) = g(f(

√
2))

= g(3)

= 3
√

2
2 (1− i)

= (g ◦ f ◦ g−1)(1− i)
= g(f(g−1(1 + i)))

= g(f(
√

2i))

g(f(
√

2i)) = 3
√

2
2 (1− i)

= 3
√

2
2 (1 + i)

f(
√

2i) = g−1(3
√

2
2 (1 + i))

= g−1(
√

2
2 (1− i)(3i)) (1)

= 3i
with (1) since

3
√

2
2 (1 + i) =

√
2

2 (1− i)z =⇒ z = 31 + i

1− i = 3(1 + i)2

2 = 3
2(1− 1 + 2i) = 3i.

�
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Problem 4. Let Ω ⊂ C, with Ω 6= C, be simply connected, and let f : Ω → Ω be
a conformal bijection. If f has two distinct fixed points z1, z2, (that is, f(z1) = z1,
f(z2) = z2), show that f is the identity map.

Solution. Since ω 6= C and ω ⊂ C, we have that ω ⊂ C with at least two points in its
compliment (namely, some point in C and ∞).

Therefore, by the Riemann Mapping Theorem, since Ω is simply connected, there exists
an analytic bijection g : ω → D from ω to the unit disk such that g(z1) = 0 and g′(z1) ∈ R+.

Therefore,
g ◦ f ◦ g−1 : D→ D

is a map from the disk to the disk and

(g ◦ f ◦ g−1)(0) = g(f(z1)) = g(z1) = 0.

Furthermore, if g(z2) = z then

(g ◦ f ◦ g−1)(z) = g(f(z2)) = g(z2) = z

and so by Schwarz’ Lemma, g ◦ f ◦ g−1 = cz is a rotation for some |c| = 1.
However, clearly c = 1 since we have already shown that z 7→ z through g ◦ f ◦ g−1.
Therefore,

f(z) = g−1(g(z)) = z

and so f is the identity map. �
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