Kayla Orlinsky
 Complex Analysis Exam Spring 2010

Problem 1. Map the region $\Omega=\{\operatorname{Jm}(z)>0\} \backslash\{i y \mid 0<y \leq 1\}$ conformally to the unit disk $D=\{|z|<1\}$.

Solution. The issue is that Ω is missing a line segment. To remove this, we must shrink and expand the region to fill in the missing line segment.

Let

$$
\begin{aligned}
T(z) & =\frac{z-i}{z+i} \\
w_{1}(z) & =z^{\frac{1}{2}} \quad \text { branch at }(-\infty, 0] \\
w_{2}(z) & =-i z \\
w_{3}(z) & =z^{2}
\end{aligned}
$$

Then,

Problem 2. How many zeros of $p(z)=z^{4}+z^{3}+4 z^{2}+2 z+7$ lie in the right half plane $\{\operatorname{Re}(z)>0\}$?

Solution. First, we check how many times p wraps the imaginary axis (the boundary of the region in question) around the origin.

$$
\begin{aligned}
p(i y) & =(i y)^{4}+(i y)^{3}+4(i y)^{2}+2(i y)+7 \\
& =y^{4}-i y^{3}-4 y^{2}+2 i y+7 \\
& =y^{4}-4 y^{2}+7+i\left(2 y-y^{3}\right)
\end{aligned}
$$

Since $\operatorname{Re}(p(i y))^{\prime}=4 y^{3}-8 y$, we can check that $\operatorname{Re}(p(i y))$ has minimums at $\pm \sqrt{2}$. Since $y \in \mathbb{R}$ and $\operatorname{Re}(p(i \sqrt{2}))=4-8+7>0$ we have that $p(i y)$ always has positive real part and so does not wrap around the origin.

Now, we check how many times p wraps a large circle around the origin. Let $z=R e^{i \theta}$ for $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

Then $\arg \left(p\left(R e^{i \theta}\right)\right)=\arg \left(\frac{1}{R^{4}} p\left(R e^{i \theta}\right)\right)$ since multiplying by positive real constants does not change the argument.

However,

$$
\lim _{R \rightarrow \infty} \frac{1}{R^{4}} p\left(R e^{i \theta}\right)=\lim _{R \rightarrow \infty} e^{4 i \theta}+\frac{e^{3 i \theta}}{R}+\frac{4 e^{2 i \theta}}{R^{2}}+\frac{2 e^{i \theta}}{R^{3}}+\frac{7}{R^{4}}=e^{4 i \theta}
$$

Since $\theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right], 4 \theta \in[-2 \pi, 2 \pi]$. Namely, the total change in argument of $p(z)$ is 4π which implies that $p\left(R e^{i \theta}\right)$ wraps very large circles around the origin twice.

Therefore, there are 2 zeros of p in the right-half plane.

Problem 3. Let f be analytic in the unit disk $D=\{|z|<1\}$ and continuous on its closure \bar{D}. Show that if f is real valued on the boundary $\partial D=\{|z|=1\}$ then f must be constant.

Solution. Write $f=u+i v$. Since v is harmonic, the maximum and minimum principle states that v must attain both its maximum and minimum on the boundary of any simply connected set.

Therefore, since $f(z) \in \mathbb{R}$ for all $|z|=1, v$ is identically 0 on the boundary of the \mathbb{D} the unit disk.

Thus, v is identically 0 .
Therefore, $f(z)=u(z) \in \mathbb{R}$.
Since f is analytic, Cauchy-Riemann states that

$$
u_{x}=v_{y}=0 \quad \text { and } \quad u_{y}=-v_{x}=0
$$

so $f(z)=u(z)=c$ for some real constant c.

Problem 4. By consideration of $\int e^{z+\frac{1}{z}} d z$, or otherwise, show that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 \cos \theta} \cos \theta d \theta=1+\frac{1}{2!}+\frac{1}{2!3!}+\frac{1}{3!4!}+\cdots
$$

Solution. Using the hint, we note that

$$
\int_{|z|=1} e^{z+\frac{1}{z}} d z=\int_{0}^{2 \pi} e^{e^{i \theta}+e^{-i \theta}} i e^{i \theta} d \theta=\int_{0}^{2 \pi} e^{2 \cos \theta} i(\cos \theta+i \sin \theta) d \theta
$$

Therefore,

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 \cos \theta} \cos \theta d \theta & =\frac{1}{2 \pi i} \int_{|z|=1} e^{z+1 / z} d z-\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{2 \cos \theta} \sin \theta d \theta \\
& =\frac{1}{2 \pi i} \int_{|z|=1} e^{z+1 / z} d z+\frac{1}{2 \pi} \int_{1}^{1} e^{2 u} d u \quad u=\cos \theta \\
& =\frac{1}{2 \pi i} \int_{|z|=1} e^{z+1 / z} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=1} \sum_{n=0}^{\infty} \frac{\left(z+\frac{1}{z}\right)^{n}}{n!} d z \\
& =\frac{1}{2 \pi i} \int_{|z|=1} \sum_{n=0}^{\infty} \frac{\left(z^{2}+1\right)^{n}}{z^{n} n!} d z \\
& =\sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{2 \pi i} \int_{|z|=1} \frac{\left(z^{2}+1\right)^{n}}{z^{n}} d z \\
& =\left.\sum_{n=1}^{\infty} \frac{1}{n!} \frac{1}{n-1)!} \frac{d^{n-1}}{d z^{n-1}}\left(z^{2}+1\right)^{n}\right|_{z=0}
\end{aligned}
$$

At this point, it is merely a matter of plugging in the first 8 values of n to obtain the final answer.

It is helpful to note that

$$
\left(z^{2}+1\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(z^{2}\right)^{k} 1^{n-k}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} z^{2} k .
$$

Thus,
$n=11+\left.z^{2}\right|_{z=0}=1$
$n=21+2 z^{2}+z^{4}$ so the first derivative is 0 at 0 .
and so forth...

