MATH 505a Spring 2022 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

(a)

Let X_{1}, X_{2}, X_{3} be independent exponential random variables with parameter $\lambda=1$. So $\mathbb{P}\left(X_{i}>\right.$ $x)=e^{-x}, x>0$. Find

$$
\mathbb{E}\left(\frac{X_{1}}{X_{1}+X_{2}+X_{3}}\right)
$$

Solution. Let $Y=X_{1}+X_{2}$, then compute the pdf of Y :

$$
\begin{aligned}
\mathbb{P}\left(X_{2}+X_{3} \leq y\right) & =\int_{0}^{y} \mathbb{P}\left(X_{2} \leq y-x\right) f_{X_{3}}(x) d x \\
& =\int_{0}^{y}\left(1-e^{-(y-x)}\right) e^{-x} d x \\
& =\left[-e^{-x}-x e^{-x}\right]_{0}^{y} \\
& =1-e^{-y}(y+1), y \geq 0
\end{aligned}
$$

So by differentiating the cdf, we have

$$
f_{Y}(y)=y e^{-y}, y \geq 0
$$

Now consider the probability:

$$
\begin{aligned}
\mathbb{P}\left(\frac{X_{1}}{X_{1}+Y} \leq z\right) & =\mathbb{P}\left(X_{1} \leq \frac{z Y}{1-z}\right) \\
& =\int_{0}^{\infty} \mathbb{P}\left(X_{1} \leq \frac{z y}{1-z}\right) f_{Y}(y) d y \\
& =\int_{0}^{\infty}\left[1-\exp \left(-\frac{z y}{1-z}\right)\right] \cdot y \cdot \exp (-y) d y \\
& =1-(1-z)^{2}, 0 \leq z \leq 1
\end{aligned}
$$

And from the fact that $\frac{X_{1}}{X_{1}+Y} \geq 0$ (only takes non-negative value), we can compute the expectation by the complementary cdf:

$$
\mathbb{E}\left(\frac{X_{1}}{X_{1}+X_{2}+X_{3}}\right)=\int_{0}^{1}(1-z)^{2} d z=\frac{1}{3}
$$

(b)

Let (X, Y) be independent uniforms on $[0,1]$. Find the joint density function of X and $V=X+Y$. Find $f(x \mid v)$, the density function of X conditional on $V=v$. Also, find $\mathbb{E}(X \mid V)$.

Proof. First we should compute the pdf of V. When $0<v<1$:

$$
\mathbb{P}(X+Y \leq v)=\int_{0}^{v}(v-y) d y=\frac{1}{2} v^{2}
$$

When $1 \leq v<2$:

$$
\mathbb{P}(X+Y \leq v)=\int_{v-1}^{1}(v-y) d y+(v-1)=-\frac{1}{2} v^{2}+2 v-1
$$

So we have the pdf:

$$
f_{V}(v)= \begin{cases}v & 0<v<1 \\ 2-v & 1 \leq v<2\end{cases}
$$

Note that the conditional pdf is

$$
f_{X \mid V}(x \mid v)=\frac{f_{X, V}(x, v)}{f_{V}(v)}=\frac{f_{X}(x) f_{Y}(y)}{f_{V}(v)}, y=v-x
$$

plug in the previous results,

$$
f_{X \mid V}(x \mid v)= \begin{cases}\frac{1}{v} & 0<x<v<1 \\ \frac{1}{2-v} & 1 \leq v<2, v-1<x<1\end{cases}
$$

So the expectation follows:

$$
\mathbb{E}(X \mid V)=\frac{1}{2} V \cdot \mathbb{1}_{(0,1)}(V)+\frac{2 V-V^{2}}{4-2 V} \cdot \mathbb{1}_{[1,2)}(V)
$$

Problem 2

In an election, candidates A receives n votes, and candidate B receives m votes, where $n>m$. Assuming that all $\binom{n+m}{m}$ orderings are equally likely, show that the probability that A is always ahead in the count of votes is $(n-m) /(n+m)$.

Proof. Denote $P_{i, j}=\mathbb{P}(\mathrm{A}$ is always ahead \mid A received i votes, B received j votes $)$. By conditioning on the last vote, we have

$$
\begin{aligned}
P_{n, m} & =\mathbb{P}(\text { A received the last vote }) P_{n-1, m}+\mathbb{P}(\mathrm{B} \text { received the last vote }) P_{n, m-1} \\
& =\frac{n}{n+m} P_{n-1, m}+\frac{m}{n+m} P_{n, m-1}
\end{aligned}
$$

Then we construct an induction: $\forall k \in \mathbb{N}$, if $n+m=k$ and $n>m$, then $P_{n, m}=\frac{n-m}{n+m}$.

1. $k=1, n>m \Longrightarrow n=1, m=0$ and $P_{1,0}=1$
2. Given that the statement is true for $n+m=k$, let $n+m=k+1, n>m$. Then we have

$$
P_{n, m}=\frac{n}{n+m} P_{n-1, m}+\frac{m}{n+m} P_{n, m-1}
$$

Note that $n+m-1=k \Longrightarrow P_{n, m-1}=\frac{n-m+1}{n+m-1}$ and $P_{n-1, m}=\frac{n-m-1}{n+m-1}$. So

$$
\begin{aligned}
P_{n, m} & =\frac{n}{n+m} \frac{n-1-m}{n-1+m}+\frac{m}{n+m} \frac{n-m+1}{n+m-1} \\
& =\frac{(n-1+m)(n-m)}{(n-1+m)(n+m)} \\
& =\frac{n-m}{n+m}
\end{aligned}
$$

In the case that $n=m+1, P_{n-1, m}=0$ since B eventually will catch up A. Therefore, although it's not in our assumption, the equation $P_{n-1, m}=0=(n-1-m) /(n+m-1)$ is still true.

Problem 3

Let n be a positive integer with prime factorization $n=p_{1}^{m_{1}} \cdots p_{k}^{m_{k}}$ for distinct primes p_{1}, \cdots, p_{k} with $m_{1}, \cdots, m_{k}>0$. Choose an integer N uniformly at random from the set $\{1,2, \cdots, n\}$. Show that the probability that N shares no common prime factor with n is equal to

$$
\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right) .
$$

(Hint: use inclusion-exclusion)
Proof. Let $A_{i}=\left\{N=a p_{i}, a \in \mathbb{N}\right\}$ and for $I \subset\{1,2, \cdots, n\}$

$$
\begin{aligned}
\mathbb{P}\left(\cap_{i \in I} A_{i}\right) & =\mathbb{P}\left(N=a \prod_{i \in I} p_{i}, a \in \mathbb{N}\right) \\
& =\frac{\prod_{i \in I} p_{i}}{n} \\
& =\prod_{i \in I} \frac{1}{p_{i}}
\end{aligned}
$$

Now by inclusion-exclusion theorem,

$$
\begin{aligned}
\mathbb{P}(\mathrm{N} \text { is co-prime to } \mathrm{n}) & =1-\mathbb{P}\left(\cup_{i=1}^{k} A_{i}\right) \\
& =1-\left(\sum_{i=1}^{k} \frac{1}{p_{i}}-\sum_{i, j=1}^{k} \frac{1}{p_{i} p_{j}}+\cdots+(-1)^{k+1} \frac{1}{\prod_{i=1}^{k} p_{i}}\right) \\
& =1+\sum_{i=1}^{k}\left(-\frac{1}{p_{i}}\right)+\sum_{i, j=1}^{k}\left(-\frac{1}{p_{i}}\right)\left(-\frac{1}{p_{j}}\right)+\cdots+\prod_{i=1}^{k}\left(-\frac{1}{p_{i}}\right) \\
& =\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \cdots\left(1-\frac{1}{p_{k}}\right)
\end{aligned}
$$

