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Problem 1

A permutation π on n symbols is said to have i as a fixed point if π(i) = i.

(a)

Find the probability pn that a random permutation of n symbols has no fixed points. HINT: Prin-
ciple of inclusion and exclusion. (Your answer may involve a finite sum, which you don’t need to
simplify.)

Solution. Use inclusion-exclusion: let Ai be the set of permutations that π(i) = i.

pn = 1− P(∪n
i=1Ai)

= 1− (
∑
i

P(Ai)−
∑
i,j

P(Ai ∩Aj) + · · ·+ (−1)n+1P(∩n
i=1Ai)

= 1− n · (n− 1)!

n!
+

(
n

2

)
· (n− 2)!

n!
+ · · ·+ (−1)n

(
n

n

)
· 1

n!

=

n∑
p=0

(−1)p
1

p!

(b)

Let S be a subset of {1, 2, · · · , n} of size k. Find the probability that the set of fixed points of a
random permutation on n symbols is equal to S, and find the probability that a permutation has
exactly k fixed points. HINT: If you didn’t find the values pj in part(a), you can still give answers
for (b) expressed in terms of one or more pj ’s.
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Solution.

P({fixed points} = S) = P(π(i) = i, ∀i ∈ S) · P(π(j) ̸= j, ∀j ∈ Sc|π(i) = i, ∀i ∈ S)

=
(n− k)!

n!
pn−k

P(k fixed points) =

(
n

k

)
· P({fixed points} = S)

=
pn−k

k!

We get the second probability knowing that there are
(
n
k

)
many sets with k fixed points.

(c)

Show that as n tends to infinity, the distribution of the number of fixed points converges to a
Poisson(1) distribution.

Proof.

lim
n→∞

P(k fixed points) =
1

k!
lim

n→∞

n−k∑
p=0

(−1)p

p!

=
1

k!

∞∑
p=0

(−1)p

p!

=
e−1

k!
∼ Poisson(1)

Problem 2

Let {Sn, n ≥ 0} be symmetric simple random walk, that is, Sn =
∑n

i=1 ξi with ξ1, ξ2, · · · i.i.d.
satisfying P(ξ1 = 1) = P(ξ1 = −1) = 1

2 . Let T = min{n : Sn = 0}, and write Pa for probabilities
when the walk starts at S0 = a. By basic probabilities for {Sn} we mean probabilities of the form
P0(Sn = k), P0(Sn ≥ k), or P0(Sn ≤ k), all of which corresponding to starting at S0 = 0.

(a)

For a ≥ 1, i ≥ 1, n ≥ 1, express Pa(Sn = i, T ≤ n) and Pa(Sn = i, T > n) in terms of finitely many
basic probabilities. HINT: Reflection principle.

Solution. Use reflection(reflect the part of path after the first approach at 0, with respect to 0), we
have:

Pa(Sn = i, T ≤ n) = Pa(Sn = −i) = P0(Sn = i+ a)
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Use conditional probability, we have:

Pa(Sn = i, T > n) = Pa(Sn = i) · Pa(T > n|Sn = i)

= Pa(Sn = i) · (1− Pa(T ≤ n|Sn = i))

= Pa(Sn = i) · (1− Pa(T ≤ n, Sn = i)

Pa(Sn = i)
)

= Pa(Sn = i)− Pa(Sn = i, T ≤ n)

= P0(Sn = i− a)− P0(Sn = i+ a)

(b)

For a ≥ 1, i ≥ 1, n ≥ 1, show that

Pa(T > n) =

a∑
j=1−a

P0(Sn = j).

HINT: use (a) and look for cancellation

Proof.

Pa(T > n) =

a+n∑
i=1

Pa(Sn = i, T > n)

=

a+n∑
i=1

P0(Sn = i− a)− P0(Sn = i+ a)

=

n∑
i=1−a

P0(Sn = i)−
n∑

j=1+a

P0(Sn = j)

=

a∑
j=1−a

P0(Sn = j)

(c)

You may take as given that P0(S2m = 2j) ∼ 1/
√
πm as m → ∞ for each fixed j ∈ Z; here ∼ means

that ratio converges to 1. Use this to find c, α such that Pa(T > n) ∼ c/nα as n → ∞, where a > 0.
Does c or α depend on a? HINT: It’s enough to consider even n - why?
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Proof. Assume n is even where n = 2m. For very large n, we have:

Pa(T > 2m) =

a∑
j=1−a

P0(S2m = j)

=
∑
j∈A

P0(S2m = j), A = {even numbers in {1− a, 2− a, · · · , a}}

∼ a · 1√
πm

=
a
√

2
π

n1/2

So we get c = a
√

2
π and α = 1

2 , where c depends on a, α does not.

Now we assume n is odd, and we will prove the convergence by squeezing. First by inclusion,
we have the inequality:

Pa(T > n− 1) ≥ Pa(T > n) ≥ Pa(T > n+ 1)

divide the expected limit:

Pa(T > n− 1)

c/nα
≥ Pa(T > n)

c/nα
≥ Pa(T > n+ 1)

c/nα

normalize both sides:

Pa(T > n− 1)

c/(n− 1)α
·
(

n

n− 1

)α

≥ Pa(T > n)

c/nα
≥ Pa(T > n+ 1)

c/(n+ 1)α
·
(

n

n+ 1

)α

Now, notice n−1 and n+1 are even, so if we let n go to infinity, both upper and lower bound above
will converge to 1.

Problem 3

Let X, Y be independent standard normal (0, 1) random variables.

(a)

Find a for which U = X + 2Y , V = aX + Y are independent.

Solution. Note that U = (1, 2) · (X,Y )T , V = (a, 1) · (X,Y )T , and (X,Y )T ∼ N (0, I). (U, V )
are normal vector, so U, V are independent if and only if Cov(U, V ) = 0.

Cov(U, V ) = (1, 2) · I · (a, 1)T

= a+ 2

a = −2
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(b)

Find E(XY |X + 2Y = a) for all a ∈ R. HINT: Use(a).

Solution. Note that X = U−2V
5 and Y = 2U+V

5 . So the expectation turns into:

1

25
E(2U2 − 3UV − 2V 2|U = a) =

1

25
(2a2)− 3a · E(V )− 2 · E(V 2)) =

2a2 − 10

25
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