MATH 505a Spring 2021 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

A permutation π on n symbols is said to have i as a fixed point if $\pi(i) = i$.

(a)

Find the probability p_n that a random permutation of n symbols has no fixed points. HINT: Principle of inclusion and exclusion. (Your answer may involve a finite sum, which you don't need to simplify.)

Solution. Use inclusion-exclusion: let A_i be the set of permutations that $\pi(i) = i$.

$$p_{n} = 1 - \mathbb{P}(\bigcup_{i=1}^{n} A_{i})$$

= $1 - (\sum_{i} \mathbb{P}(A_{i}) - \sum_{i,j} \mathbb{P}(A_{i} \cap A_{j}) + \dots + (-1)^{n+1} \mathbb{P}(\bigcap_{i=1}^{n} A_{i}))$
= $1 - n \cdot \frac{(n-1)!}{n!} + \binom{n}{2} \cdot \frac{(n-2)!}{n!} + \dots + (-1)^{n} \binom{n}{n} \cdot \frac{1}{n!}$
= $\sum_{p=0}^{n} (-1)^{p} \frac{1}{p!}$

(b)

Let S be a subset of $\{1, 2, \dots, n\}$ of size k. Find the probability that the set of fixed points of a random permutation on n symbols is equal to S, and find the probability that a permutation has exactly k fixed points. HINT: If you didn't find the values p_j in part(a), you can still give answers for (b) expressed in terms of one or more p_j 's.

Solution.

$$\mathbb{P}\{\{\text{fixed points}\} = S\} = \mathbb{P}(\pi(i) = i, \forall i \in S) \cdot \mathbb{P}(\pi(j) \neq j, \forall j \in S^c | \pi(i) = i, \forall i \in S) \\ = \frac{(n-k)!}{n!} p_{n-k} \\ \mathbb{P}(\text{k fixed points}) = \binom{n}{k} \cdot \mathbb{P}(\{\text{fixed points}\} = S) \\ = \frac{p_{n-k}}{k!}$$

We get the second probability knowing that there are $\binom{n}{k}$ many sets with k fixed points.

(c)

Show that as n tends to infinity, the distribution of the number of fixed points converges to a Poisson(1) distribution.

Proof.

$$\lim_{n \to \infty} \mathbb{P}(k \text{ fixed points}) = \frac{1}{k!} \lim_{n \to \infty} \sum_{p=0}^{n-k} \frac{(-1)^p}{p!}$$
$$= \frac{1}{k!} \sum_{p=0}^{\infty} \frac{(-1)^p}{p!}$$
$$= \frac{e^{-1}}{k!}$$
$$\sim Poisson(1)$$

Problem 2

Let $\{S_n, n \ge 0\}$ be symmetric simple random walk, that is, $S_n = \sum_{i=1}^n \xi_i$ with ξ_1, ξ_2, \cdots i.i.d. satisfying $\mathbb{P}(\xi_1 = 1) = \mathbb{P}(\xi_1 = -1) = \frac{1}{2}$. Let $T = \min\{n : S_n = 0\}$, and write \mathbb{P}_a for probabilities when the walk starts at $S_0 = a$. By *basic probabilities* for $\{S_n\}$ we mean probabilities of the form $\mathbb{P}_0(S_n = k), \mathbb{P}_0(S_n \ge k)$, or $\mathbb{P}_0(S_n \le k)$, all of which corresponding to starting at $S_0 = 0$.

(a)

For $a \ge 1$, $i \ge 1$, $n \ge 1$, express $\mathbb{P}_a(S_n = i, T \le n)$ and $\mathbb{P}_a(S_n = i, T > n)$ in terms of finitely many basic probabilities. HINT: Reflection principle.

Solution. Use reflection (reflect the part of path after the first approach at 0, with respect to 0), we have: $\mathbb{D}\left(\mathcal{C}_{n-1} \in \mathbb{T}_{n} \in \mathcal{C}_{n-1}\right) = \mathbb{D}\left(\mathcal{C}_{n-1} \in \mathcal{C}_{n-1}\right)$

$$\mathbb{P}_a(S_n = i, \ T \le n) = \mathbb{P}_a(S_n = -i) = \mathbb{P}_0(S_n = i + a)$$

Use conditional probability, we have:

$$\mathbb{P}_{a}(S_{n} = i, T > n) = \mathbb{P}_{a}(S_{n} = i) \cdot \mathbb{P}_{a}(T > n|S_{n} = i)$$
$$= \mathbb{P}_{a}(S_{n} = i) \cdot (1 - \mathbb{P}_{a}(T \le n|S_{n} = i))$$
$$= \mathbb{P}_{a}(S_{n} = i) \cdot (1 - \frac{\mathbb{P}_{a}(T \le n, S_{n} = i)}{\mathbb{P}_{a}(S_{n} = i)})$$
$$= \mathbb{P}_{a}(S_{n} = i) - \mathbb{P}_{a}(S_{n} = i, T \le n)$$
$$= \mathbb{P}_{0}(S_{n} = i - a) - \mathbb{P}_{0}(S_{n} = i + a)$$

(b)

For $a \ge 1, i \ge 1, n \ge 1$, show that

$$\mathbb{P}_a(T > n) = \sum_{j=1-a}^{a} \mathbb{P}_0(S_n = j).$$

HINT: use (a) and look for cancellation

Proof.

$$\mathbb{P}_{a}(T > n) = \sum_{i=1}^{a+n} \mathbb{P}_{a}(S_{n} = i, T > n)$$

= $\sum_{i=1}^{a+n} \mathbb{P}_{0}(S_{n} = i - a) - \mathbb{P}_{0}(S_{n} = i + a)$
= $\sum_{i=1-a}^{n} \mathbb{P}_{0}(S_{n} = i) - \sum_{j=1+a}^{n} \mathbb{P}_{0}(S_{n} = j)$
= $\sum_{j=1-a}^{a} \mathbb{P}_{0}(S_{n} = j)$

(c)

You may take as given that $\mathbb{P}_0(S_{2m} = 2j) \sim 1/\sqrt{\pi m}$ as $m \to \infty$ for each fixed $j \in \mathbb{Z}$; here ~ means that ratio converges to 1. Use this to find c, α such that $\mathbb{P}_a(T > n) \sim c/n^{\alpha}$ as $n \to \infty$, where a > 0. Does c or α depend on a? HINT: It's enough to consider even n - why?

Proof. Assume n is even where n = 2m. For very large n, we have:

$$\mathbb{P}_{a}(T > 2m) = \sum_{j=1-a}^{a} \mathbb{P}_{0}(S_{2m} = j)$$

= $\sum_{j \in A} \mathbb{P}_{0}(S_{2m} = j), A = \{\text{even numbers in } \{1 - a, 2 - a, \cdots, a\}\}$
 $\sim a \cdot \frac{1}{\sqrt{\pi m}}$
= $\frac{a\sqrt{\frac{2}{\pi}}}{n^{1/2}}$

So we get $c = a\sqrt{\frac{2}{\pi}}$ and $\alpha = \frac{1}{2}$, where c depends on a, α does not.

Now we assume n is odd, and we will prove the convergence by squeezing. First by inclusion, we have the inequality:

$$\mathbb{P}_a(T > n-1) \ge \mathbb{P}_a(T > n) \ge \mathbb{P}_a(T > n+1)$$

divide the expected limit:

$$\frac{\mathbb{P}_a(T>n-1)}{c/n^\alpha} \geq \frac{\mathbb{P}_a(T>n)}{c/n^\alpha} \geq \frac{\mathbb{P}_a(T>n+1)}{c/n^\alpha}$$

normalize both sides:

$$\frac{\mathbb{P}_a(T>n-1)}{c/(n-1)^{\alpha}}\cdot \left(\frac{n}{n-1}\right)^{\alpha} \geq \frac{\mathbb{P}_a(T>n)}{c/n^{\alpha}} \geq \frac{\mathbb{P}_a(T>n+1)}{c/(n+1)^{\alpha}}\cdot \left(\frac{n}{n+1}\right)^{\alpha}$$

Now, notice n-1 and n+1 are even, so if we let n go to infinity, both upper and lower bound above will converge to 1.

Problem 3

Let X, Y be independent standard normal (0,1) random variables.

(a)

Find a for which U = X + 2Y, V = aX + Y are independent.

Solution. Note that $U = (1,2) \cdot (X,Y)^T$, $V = (a,1) \cdot (X,Y)^T$, and $(X,Y)^T \sim \mathcal{N}(0,I)$. (U,V) are normal vector, so U, V are independent if and only if Cov(U,V) = 0.

$$Cov(U, V) = (1, 2) \cdot I \cdot (a, 1)^T$$
$$= a + 2$$
$$a = -2$$

(b) Find $\mathbb{E}(XY|X + 2Y = a)$ for all $a \in \mathbb{R}$. HINT: Use(a).

Solution. Note that $X = \frac{U-2V}{5}$ and $Y = \frac{2U+V}{5}$. So the expectation turns into:

$$\frac{1}{25}\mathbb{E}(2U^2 - 3UV - 2V^2|U=a) = \frac{1}{25}(2a^2) - 3a \cdot \mathbb{E}(V) - 2 \cdot \mathbb{E}(V^2)) = \frac{2a^2 - 10}{25}$$