MATH 505a Spring 2021 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

A permutation π on n symbols is said to have i as a fixed point if $\pi(i)=i$.

(a)

Find the probability p_{n} that a random permutation of n symbols has no fixed points. HINT: Principle of inclusion and exclusion. (Your answer may involve a finite sum, which you don't need to simplify.)

Solution. Use inclusion-exclusion: let A_{i} be the set of permutations that $\pi(i)=i$.

$$
\begin{aligned}
p_{n} & =1-\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \\
& =1-\left(\sum_{i} \mathbb{P}\left(A_{i}\right)-\sum_{i, j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\cdots+(-1)^{n+1} \mathbb{P}\left(\cap_{i=1}^{n} A_{i}\right)\right. \\
& =1-n \cdot \frac{(n-1)!}{n!}+\binom{n}{2} \cdot \frac{(n-2)!}{n!}+\cdots+(-1)^{n}\binom{n}{n} \cdot \frac{1}{n!} \\
& =\sum_{p=0}^{n}(-1)^{p} \frac{1}{p!}
\end{aligned}
$$

(b)

Let S be a subset of $\{1,2, \cdots, n\}$ of size k. Find the probability that the set of fixed points of a random permutation on n symbols is equal to S, and find the probability that a permutation has exactly k fixed points. HINT: If you didn't find the values p_{j} in part(a), you can still give answers for (b) expressed in terms of one or more p_{j} 's.

Solution.

$$
\begin{aligned}
\mathbb{P}(\{\text { fixed points }\}=S) & =\mathbb{P}(\pi(i)=i, \forall i \in S) \cdot \mathbb{P}\left(\pi(j) \neq j, \forall j \in S^{c} \mid \pi(i)=i, \forall i \in S\right) \\
& =\frac{(n-k)!}{n!} p_{n-k} \\
\mathbb{P}(\mathrm{k} \text { fixed points }) & =\binom{n}{k} \cdot \mathbb{P}(\{\text { fixed points }\}=S) \\
& =\frac{p_{n-k}}{k!}
\end{aligned}
$$

We get the second probability knowing that there are $\binom{n}{k}$ many sets with k fixed points.
(c)

Show that as n tends to infinity, the distribution of the number of fixed points converges to a Poisson(1) distribution.

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}(\mathrm{k} \text { fixed points }) & =\frac{1}{k!} \lim _{n \rightarrow \infty} \sum_{p=0}^{n-k} \frac{(-1)^{p}}{p!} \\
& =\frac{1}{k!} \sum_{p=0}^{\infty} \frac{(-1)^{p}}{p!} \\
& =\frac{e^{-1}}{k!} \\
& \sim \operatorname{Poisson}(1)
\end{aligned}
$$

Problem 2

Let $\left\{S_{n}, n \geq 0\right\}$ be symmetric simple random walk, that is, $S_{n}=\sum_{i=1}^{n} \xi_{i}$ with ξ_{1}, ξ_{2}, \cdots i.i.d. satisfying $\mathbb{P}\left(\xi_{1}=1\right)=\mathbb{P}\left(\xi_{1}=-1\right)=\frac{1}{2}$. Let $T=\min \left\{n: S_{n}=0\right\}$, and write \mathbb{P}_{a} for probabilities when the walk starts at $S_{0}=a$. By basic probabilities for $\left\{S_{n}\right\}$ we mean probabilities of the form $\mathbb{P}_{0}\left(S_{n}=k\right), \mathbb{P}_{0}\left(S_{n} \geq k\right)$, or $\mathbb{P}_{0}\left(S_{n} \leq k\right)$, all of which corresponding to starting at $S_{0}=0$.
(a)

For $a \geq 1, i \geq 1, n \geq 1$, express $\mathbb{P}_{a}\left(S_{n}=i, T \leq n\right)$ and $\mathbb{P}_{a}\left(S_{n}=i, T>n\right)$ in terms of finitely many basic probabilities. HINT: Reflection principle.

Solution. Use reflection(reflect the part of path after the first approach at 0 , with respect to 0), we have:

$$
\mathbb{P}_{a}\left(S_{n}=i, T \leq n\right)=\mathbb{P}_{a}\left(S_{n}=-i\right)=\mathbb{P}_{0}\left(S_{n}=i+a\right)
$$

Use conditional probability, we have:

$$
\begin{aligned}
\mathbb{P}_{a}\left(S_{n}=i, T>n\right) & =\mathbb{P}_{a}\left(S_{n}=i\right) \cdot \mathbb{P}_{a}\left(T>n \mid S_{n}=i\right) \\
& =\mathbb{P}_{a}\left(S_{n}=i\right) \cdot\left(1-\mathbb{P}_{a}\left(T \leq n \mid S_{n}=i\right)\right) \\
& =\mathbb{P}_{a}\left(S_{n}=i\right) \cdot\left(1-\frac{\mathbb{P}_{a}\left(T \leq n, S_{n}=i\right)}{\mathbb{P}_{a}\left(S_{n}=i\right)}\right) \\
& =\mathbb{P}_{a}\left(S_{n}=i\right)-\mathbb{P}_{a}\left(S_{n}=i, T \leq n\right) \\
& =\mathbb{P}_{0}\left(S_{n}=i-a\right)-\mathbb{P}_{0}\left(S_{n}=i+a\right)
\end{aligned}
$$

(b)

For $a \geq 1, i \geq 1, n \geq 1$, show that

$$
\mathbb{P}_{a}(T>n)=\sum_{j=1-a}^{a} \mathbb{P}_{0}\left(S_{n}=j\right)
$$

HINT: use (a) and look for cancellation
Proof.

$$
\begin{aligned}
\mathbb{P}_{a}(T>n) & =\sum_{i=1}^{a+n} \mathbb{P}_{a}\left(S_{n}=i, T>n\right) \\
& =\sum_{i=1}^{a+n} \mathbb{P}_{0}\left(S_{n}=i-a\right)-\mathbb{P}_{0}\left(S_{n}=i+a\right) \\
& =\sum_{i=1-a}^{n} \mathbb{P}_{0}\left(S_{n}=i\right)-\sum_{j=1+a}^{n} \mathbb{P}_{0}\left(S_{n}=j\right) \\
& =\sum_{j=1-a}^{a} \mathbb{P}_{0}\left(S_{n}=j\right)
\end{aligned}
$$

(c)

You may take as given that $\mathbb{P}_{0}\left(S_{2 m}=2 j\right) \sim 1 / \sqrt{\pi m}$ as $m \rightarrow \infty$ for each fixed $j \in \mathbb{Z}$; here \sim means that ratio converges to 1 . Use this to find c, α such that $\mathbb{P}_{a}(T>n) \sim c / n^{\alpha}$ as $n \rightarrow \infty$, where $a>0$. Does c or α depend on a ? HINT: It's enough to consider even n - why?

Proof. Assume n is even where $n=2 m$. For very large n, we have:

$$
\begin{aligned}
\mathbb{P}_{a}(T>2 m) & =\sum_{j=1-a}^{a} \mathbb{P}_{0}\left(S_{2 m}=j\right) \\
& =\sum_{j \in A} \mathbb{P}_{0}\left(S_{2 m}=j\right), A=\{\text { even numbers in }\{1-a, 2-a, \cdots, a\}\} \\
& \sim a \cdot \frac{1}{\sqrt{\pi m}} \\
& =\frac{a \sqrt{\frac{2}{\pi}}}{n^{1 / 2}}
\end{aligned}
$$

So we get $c=a \sqrt{\frac{2}{\pi}}$ and $\alpha=\frac{1}{2}$, where c depends on a, α does not.
Now we assume n is odd, and we will prove the convergence by squeezing. First by inclusion, we have the inequality:

$$
\mathbb{P}_{a}(T>n-1) \geq \mathbb{P}_{a}(T>n) \geq \mathbb{P}_{a}(T>n+1)
$$

divide the expected limit:

$$
\frac{\mathbb{P}_{a}(T>n-1)}{c / n^{\alpha}} \geq \frac{\mathbb{P}_{a}(T>n)}{c / n^{\alpha}} \geq \frac{\mathbb{P}_{a}(T>n+1)}{c / n^{\alpha}}
$$

normalize both sides:

$$
\frac{\mathbb{P}_{a}(T>n-1)}{c /(n-1)^{\alpha}} \cdot\left(\frac{n}{n-1}\right)^{\alpha} \geq \frac{\mathbb{P}_{a}(T>n)}{c / n^{\alpha}} \geq \frac{\mathbb{P}_{a}(T>n+1)}{c /(n+1)^{\alpha}} \cdot\left(\frac{n}{n+1}\right)^{\alpha}
$$

Now, notice $n-1$ and $n+1$ are even, so if we let n go to infinity, both upper and lower bound above will converge to 1 .

Problem 3

Let X, Y be independent standard normal $(0,1)$ random variables.

(a)

Find a for which $U=X+2 Y, V=a X+Y$ are independent.
Solution. Note that $U=(1,2) \cdot(X, Y)^{T}, V=(a, 1) \cdot(X, Y)^{T}$, and $(X, Y)^{T} \sim \mathcal{N}(0, I) .(U, V)$ are normal vector, so U, V are independent if and only if $\operatorname{Cov}(U, V)=0$.

$$
\begin{aligned}
\operatorname{Cov}(U, V) & =(1,2) \cdot I \cdot(a, 1)^{T} \\
& =a+2 \\
a & =-2
\end{aligned}
$$

(b)

Find $\mathbb{E}(X Y \mid X+2 Y=a)$ for all $a \in \mathbb{R}$. HINT: Use(a).
Solution. Note that $X=\frac{U-2 V}{5}$ and $Y=\frac{2 U+V}{5}$. So the expectation turns into:

$$
\left.\frac{1}{25} \mathbb{E}\left(2 U^{2}-3 U V-2 V^{2} \mid U=a\right)=\frac{1}{25}\left(2 a^{2}\right)-3 a \cdot \mathbb{E}(V)-2 \cdot \mathbb{E}\left(V^{2}\right)\right)=\frac{2 a^{2}-10}{25}
$$

