MATH 505a Fall 2021 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you find errata.

Problem 1

(a)

Let X be a non-negative random variable with finite expectation. Show that

$$
\sum_{i=1}^{\infty} \mathbb{P}(X \geq i) \leq E[X]<1+\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
$$

Proof. Since X is non-negative,

$$
\begin{aligned}
\mathbb{E}[X] & =\int_{[0, \infty)} x f(x) d x \\
& =\sum_{i=0}^{\infty} \int_{[i, i+1)} x f(x) d x
\end{aligned}
$$

Then notice that,

$$
i \int_{[i, i+1)} f(x) d x \leq \int_{[i, i+1)} x f(x) d x \leq(i+1) \int_{[i, i+1)} f(x) d x
$$

That is,

$$
i \mathbb{P}(i \leq X \leq i+1) \leq \int_{[i, i+1)} x f(x) d x \leq(i+1) \mathbb{P}(i \leq X \leq i+1)
$$

Plugging into the sum, the lower bound becomes:

$$
\begin{aligned}
& \sum_{i=0}^{\infty} i \mathbb{P}(i \leq X \leq i+1) \\
= & \sum_{i=1}^{\infty} \mathbb{P}(X \geq i)
\end{aligned}
$$

Similarly, the upper bound:

$$
\begin{aligned}
& \sum_{i=0}^{\infty}(i+1) \mathbb{P}(i \leq X \leq i+1) \\
= & \sum_{i=0}^{\infty} i \mathbb{P}(i \leq X \leq i+1)+\sum_{i=0}^{\infty} \mathbb{P}(i \leq X \leq i+1) \\
= & \sum_{i=1}^{\infty} \mathbb{P}(X \geq i)+1
\end{aligned}
$$

(b)

Show that if X takes values only in $\{0,1, \cdots, n\}$ for some n, then the first inequality in (a) is an equality:

$$
\sum_{i=1}^{\infty} \mathbb{P}(X \geq i)=\mathbb{E}[X]
$$

Proof. Note that if X only take natural number values, we have $\mathbb{P}(X \geq i)=\sum_{k=i}^{\infty} \mathbb{P}(X=k)$. Plug this into the left hand side:

$$
\begin{aligned}
& \sum_{i=1}^{\infty} \mathbb{P}(X \geq i)=\sum_{i=1}^{\infty} \sum_{k=i}^{\infty} \mathbb{P}(X=k) \\
& =\mathbb{P}(X=1)+\mathbb{P}(X=2)+\mathbb{P}(X=3)+\cdots \\
& +\mathbb{P}(X=2)+\mathbb{P}(X=3)+\cdots \\
& +\mathbb{P}(X=3)+\cdots \\
& +\cdots \\
& =\sum_{i=1}^{\infty} i \mathbb{P}(X=i) \\
& =\mathbb{E}[X]
\end{aligned}
$$

(c)

Let M be the minimum value seen in 4 die rolls. Find $\mathbb{E}[M]$. You don't need to simplify to one number, just get an expression in terms of numbers only.

Proof. Note that M only takes values in $\{1,2,3,4,5,6\}$, let X_{i} denotes the value of i-th dice roll we can use the conclusion from (b) that:

$$
\begin{aligned}
\mathbb{E}[M] & =\sum_{i=1}^{6} \mathbb{P}(M \geq i) \\
& =\sum_{i=1}^{6} \prod_{j=1}^{4} \mathbb{P}\left(X_{j} \geq i\right) \\
& =\sum_{i=1}^{6}\left(1-\frac{i-1}{6}\right)^{4}
\end{aligned}
$$

Problem 2

Suppose X and Y are independent continuous random variables with uniform distribution on $[0,1]$.

(a)

Find the density function of $X+2 Y$.
Solution. By conditioning on X, we have:
Case 1. $z \in[0,1)$,

$$
\begin{aligned}
\mathbb{P}(X+2 Y \leq z) & =\int_{0}^{z} \frac{1}{2}(z-x) d x \\
& =\frac{z^{2}}{4}
\end{aligned}
$$

Case 2. $z \in[1,2)$,

$$
\begin{aligned}
\mathbb{P}(X+2 Y \leq z) & =\int_{0}^{1} \frac{1}{2}(z-x) d x \\
& =\frac{2 z-1}{4}
\end{aligned}
$$

Case 3. $z \in[2,3]$,

$$
\begin{aligned}
\mathbb{P}(X+2 Y \leq z) & =(z-2)+\int_{z-2}^{1} \frac{1}{2}(z-x) d x \\
& =z-2-\frac{z^{2}-2 z-3}{4}
\end{aligned}
$$

So compute the pdf by differentiating:

$$
f_{X+Y}(z)= \begin{cases}\frac{z}{2} & 0 \leq z<1 \\ \frac{1}{2} & 1 \leq z<2 \\ -\frac{z}{2}+\frac{3}{2} & 2 \leq z \leq 3\end{cases}
$$

(b)

Find the joint density function for $X-Y, X+Y$.
Solution. Let $U=X+Y, V=X-Y$. Then $X=\frac{U+V}{2}, Y=\frac{U-V}{2}$. We can compute the absolute value of Jacobian of the map $(u, v) \mapsto(x, y)$:

$$
J=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=\frac{1}{2}
$$

then We have the following:

$$
\begin{aligned}
f_{U, V}(u, v) & =f_{X, Y}\left(\frac{u+v}{2}, \frac{u-v}{2}\right) \cdot|J| \\
& =\frac{1}{2} \mathbb{1}_{0 \leq \frac{u+v}{2} \leq 1,0 \leq \frac{u-v}{2} \leq 1}(u, v) \\
& =\frac{1}{2} \mathbb{1}_{0 \leq u+v \leq 2,0 \leq u-v \leq 2}(u, v)
\end{aligned}
$$

Problem 3

Consider Bernoulli trials with success probability $p \in(0,1)$. Let p_{n} be the probability of an odd number of successes in n trials.
(a)

Express p_{n} in terms of p_{n-1}.

$$
p_{n}=p \cdot\left(1-p_{n-1}\right)+(1-p) \cdot p_{n-1}
$$

(b)

Based on (a), for what value λ does $p_{n-1}=\lambda$ imply $p_{n}=\lambda$?

$$
\begin{aligned}
\lambda & =p \cdot(1-\lambda)+(1-p) \cdot \lambda \\
\Longrightarrow \lambda & =\frac{1}{2}
\end{aligned}
$$

(c)

Show that $\lim _{n} p_{n}=\lambda$, the value you found in (b). HINT: Write p_{n} as $\lambda+\epsilon_{n}$, for the λ you found in (b).

$$
\begin{aligned}
\lambda+\epsilon_{n} & =p \cdot\left(1-\left(\lambda+\epsilon_{n-1}\right)\right)+(1-p) \cdot\left(\lambda+\epsilon_{n-1}\right) \\
\epsilon_{n} & =(1-2 p) \epsilon_{n-1} \\
\stackrel{(*)}{\Longrightarrow} \lim _{n \rightarrow \infty} \epsilon_{n} & =\lim _{n \rightarrow \infty}(1-2 p)^{n-1} \epsilon_{1}=0
\end{aligned}
$$

$(*):|1-2 p|<1$

