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Problem 1

Each pack of bubble gum contains one of n types of coupon, equally likely to be each of the types,
independently from one pack to another. Let T} be number of packs you must buy to obtain coupons
of j different types. Note that 77 = 1 always.

(a)

Find the distribution and expected value of T — T and of T3 — T5.

Solution. Notice that these differences are geometric distributions:

P(Ty — Ty = t) = <n;1> (i)tl, t>1.

P(Ts — Ty =t) = (”;2> <i>t_1, t>1.
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Compute ET,.

Solution.
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(c)
Fix k and let A; be the event that none of the first & packs you buy contain coupon i. Find
P(A; U Ay U A3 U Ay). Then fix o > 0, take k = |an] and find the limit of this probability as
n — oo. Here || denotes the largest integer < x. HINT: Consider probabilities P(4;), P(4; N 4;),
etc.

Solution. By inclusion-exclusion theorem,
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Now, take k = [an| and n — oo, we have:
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(d)
Assume there are n = 4 coupon types; find P(Ty > k) for all £ > 4. HINT: This is short if you use
what you’ve already done.

Solution. From (c), we have:
3\ 1\ F 1\ F
P(T. =4(-] - = 4| - >4
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Problem 2

Let X be exponential(\) (that is, density f(z) = Ae™**). The integer part of X is | X | = max{k €
N: k < X}. The fractional part of X is X — | X |. Show that | X | and X — [ X | are independent.
HINT: In general, two random variables U,V are independent if the distribution of V conditioned
on U = u doesn’t depend on u.



Proof. Tt suffices to show the conditional probability is same as the unconditioned one:
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Problem 3

Let X, X2, X3 be i.i.d. uniform in [0,1]. Let X(1) be the smallest of the 3 values, X5y the second
smallest, and X3y the largest.

(a)

Find the distribution function and expected value for X(y).
Solution. Let F;) denotes the cdf of X ;).

Fay(z) =P(X1) < 2)
3
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Since X (1) > 0, we can compute expectation using complementary cdf:

E(X(1)) :/0 (1—2)’dx



(b)

Find the distribution function and the density of Xy).

Solution.
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