# MATH 505a Spring 2020 Qual Solution Attempts 

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

## Problem 1

Each pack of bubble gum contains one of $n$ types of coupon, equally likely to be each of the types, independently from one pack to another. Let $T_{j}$ be number of packs you must buy to obtain coupons of $j$ different types. Note that $T_{1}=1$ always.
(a)

Find the distribution and expected value of $T_{2}-T_{1}$ and of $T_{3}-T_{2}$.
Solution. Notice that these differences are geometric distributions:

$$
\begin{gathered}
\mathbb{P}\left(T_{2}-T_{1}=t\right)=\left(\frac{n-1}{n}\right)\left(\frac{1}{n}\right)^{t-1}, t \geq 1 . \\
\mathbb{P}\left(T_{3}-T_{2}=t\right)=\left(\frac{n-2}{n}\right)\left(\frac{2}{n}\right)^{t-1}, t \geq 1 . \\
\mathbb{E}\left(T_{2}-T_{1}\right)=\frac{n}{n-1} \\
\mathbb{E}\left(T_{3}-T_{2}\right)=\frac{n}{n-2}
\end{gathered}
$$

(b)

Compute $\mathbb{E} T_{n}$.
Solution

$$
\begin{aligned}
\mathbb{E}\left(T_{n}\right) & =\mathbb{E}\left[\left(T_{n}-T_{n-1}\right)+\left(T_{n-1}-T_{n-2}\right)+\cdots+\left(T_{2}-T_{1}\right)+T_{1}\right] \\
& =n+\frac{n}{2}+\cdots+\frac{n}{n-1}+1 \\
& =\sum_{k=1}^{n} \frac{n}{k}
\end{aligned}
$$

(c)

Fix $k$ and let $A_{i}$ be the event that none of the first $k$ packs you buy contain coupon $i$. Find $\mathbb{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right)$. Then fix $\alpha>0$, take $k=\lfloor\alpha n\rfloor$ and find the limit of this probability as $n \rightarrow \infty$. Here $\lfloor x\rfloor$ denotes the largest integer $\leq x$. HINT: Consider probabilities $\mathbb{P}\left(A_{i}\right), \mathbb{P}\left(A_{i} \cap A_{j}\right)$, etc.

Solution. By inclusion-exclusion theorem,

$$
\begin{aligned}
\mathbb{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right) & =\sum_{i=1}^{4} \mathbb{P}\left(A_{i}\right)-\sum_{i, j=4}^{4} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\sum_{i, j, k=1}^{4} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)-\mathbb{P}\left(A_{1} \cap A_{2} \cap A_{3} \cap A_{4}\right) \\
& =\binom{4}{1}\left(\frac{n-1}{n}\right)^{k}-\binom{4}{2}\left(\frac{n-2}{n}\right)^{k}+\binom{4}{3}\left(\frac{n-3}{n}\right)^{k}-\binom{4}{4}\left(\frac{n-4}{n}\right)^{k} \\
& =4\left(1-\frac{1}{n}\right)^{k}-6\left(1-\frac{2}{n}\right)^{k}+4\left(1-\frac{3}{n}\right)^{k}-\left(1-\frac{4}{n}\right)^{k}
\end{aligned}
$$

Now, take $k=\lfloor\alpha n\rfloor$ and $n \rightarrow \infty$, we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{1} \cup A_{2} \cup A_{3} \cup A_{4}\right) & =\lim _{n \rightarrow \infty}\left(4\left(1-\frac{1}{n}\right)^{\lfloor\alpha n\rfloor}-6\left(1-\frac{2}{n}\right)^{\lfloor\alpha n\rfloor}+4\left(1-\frac{3}{n}\right)^{\lfloor\alpha n\rfloor}-\left(1-\frac{4}{n}\right)^{\lfloor\alpha n\rfloor}\right) \\
& =\lim _{n \rightarrow \infty}\left(4\left(1-\frac{1}{n}\right)^{\alpha n}-6\left(1-\frac{2}{n}\right)^{\alpha n}+4\left(1-\frac{3}{n}\right)^{\alpha n}-\left(1-\frac{4}{n}\right)^{\alpha n}\right) \\
& =4 e^{-\alpha}-6 e^{-2 \alpha}+4 e^{-3 \alpha}-e^{-4 \alpha}
\end{aligned}
$$

## (d)

Assume there are $n=4$ coupon types; find $\mathbb{P}\left(T_{4}>k\right)$ for all $k \geq 4$. HINT: This is short if you use what you've already done.

Solution. From (c), we have:

$$
\mathbb{P}\left(T_{4}>k\right)=4\left(\frac{3}{4}\right)^{k}-6\left(\frac{1}{2}\right)^{k}+4\left(\frac{1}{4}\right)^{k}, k \geq 4
$$

## Problem 2

Let $X$ be exponential $(\lambda)$ (that is, density $f(x)=\lambda e^{-\lambda x}$. The integer part of $X$ is $\lfloor X\rfloor=\max \{k \in$ $\mathbb{N}: k \leq X\}$. The fractional part of $X$ is $X-\lfloor X\rfloor$. Show that $\lfloor X\rfloor$ and $X-\lfloor X\rfloor$ are independent. HINT: In general, two random variables $U, V$ are independent if the distribution of V conditioned on $U=u$ doesn't depend on $u$.

Proof. It suffices to show the conditional probability is same as the unconditioned one:

$$
\begin{aligned}
\mathbb{P}(\lfloor X\rfloor=n \mid X-\lfloor X\rfloor=\alpha) & =\frac{f_{X}(n+\alpha)}{\sum_{k=0}^{\infty} f_{X}(k+\alpha)} \\
& =\frac{\lambda e^{-\lambda(n+\alpha)}}{\sum_{k=0}^{\infty} \lambda e^{-\lambda(k+\alpha)}} \\
& =\frac{e^{-\lambda n}}{\sum_{k=0}^{\infty} e^{-\lambda k}} \\
& =\frac{e^{-\lambda n}}{\frac{1}{1-e^{-\lambda}}} \\
& =e^{-\lambda n}-e^{-\lambda(n+1)} \\
& \stackrel{(*)}{=} \mathbb{P}(n \leq X<n+1) \\
& =\mathbb{P}(\lfloor X\rfloor=n)
\end{aligned}
$$

$(*) \mathrm{X}$ is continuous.

## Problem 3

Let $X_{1}, X_{2}, X_{3}$ be i.i.d. uniform in $[0,1]$. Let $X_{(1)}$ be the smallest of the 3 values, $X_{(2)}$ the second smallest, and $X_{(3)}$ the largest.
(a)

Find the distribution function and expected value for $X_{(1)}$.
Solution. Let $F_{(i)}$ denotes the cdf of $X_{(i)}$.

$$
\begin{aligned}
F_{(1)}(x) & =\mathbb{P}\left(X_{(1)} \leq x\right) \\
& =1-\mathbb{P}\left(X_{(1)}>x\right) \\
& =1-\prod_{i=1}^{3} \mathbb{P}\left(X_{i}>x\right) \\
& =1-(1-x)^{3}, 0<x<1
\end{aligned}
$$

Since $X_{(1)} \geq 0$, we can compute expectation using complementary cdf:

$$
\begin{aligned}
\mathbb{E}\left(X_{(1)}\right) & =\int_{0}^{1}(1-x)^{3} d x \\
& =\frac{1}{4}
\end{aligned}
$$

(b)

Find the distribution function and the density of $X_{(2)}$.
Solution.

$$
\begin{aligned}
\mathbb{P}\left(X_{(2)} \leq x\right) & \stackrel{(*)}{=}\left(\mathbb{P}\left(X_{1} \leq x\right)\right)^{3}+\binom{3}{2}\left(\mathbb{P}\left(X_{1} \leq x\right)\right)^{2}\left(\mathbb{P}\left(X_{1}>x\right)\right) \\
& =x^{3}+3 x^{2}(1-x), 0<x<1 \\
f_{(2)}(x) & =6 x-6 x^{2}, 0<x<1
\end{aligned}
$$

