MATH 505a Fall 2020 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

Let X_{n} have binomial $B(n, p)$ distribution.
(a)

Find $\mathbb{E}\left(\frac{1}{X_{n}+1}\right)$. Simplify your answer so it does not involve a sum to $n, n+1$, etc.
Solution.

$$
\begin{aligned}
\mathbb{E}\left(\frac{1}{X_{n}+1}\right) & =\sum_{k=0}^{n} \frac{1}{k+1}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} \frac{n!}{(n-k)!(k+1)!} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n} \frac{(n+1)!}{(n-k)!(k+1)!} \frac{1}{n+1} p^{k+1}(1-p)^{n-k} \frac{1}{p} \\
& =\frac{1}{(n+1) p} \sum_{k=1}^{n+1}\binom{n+1}{k} p^{k}(1-p)^{n+1-k} \\
& =\frac{1}{(n+1) p}\left(1-(1-p)^{n+1}\right)
\end{aligned}
$$

(b)

Suppose $p=p_{n}$ and $n p_{n} \rightarrow \lambda$ as $n \rightarrow \infty$, with $\lambda \in(0, \infty)$. Find $\lim _{n} \mathbb{E}\left(\frac{1}{X_{n}+1}\right)$. Is it the same as $\lim _{n} \frac{1}{\mathbb{E}\left(X_{n}+1\right)}$?

Solution.

$$
\begin{aligned}
\lim _{n} \mathbb{E}\left(\frac{1}{X_{n}+1}\right) & =\lim _{n} \frac{1-(1-p)^{n+1}}{(n+1) p} \\
& =\frac{1}{\lambda}\left(1-\lim _{n}\left(1-\frac{n p}{n}\right)^{n+1}\right) \\
& =\frac{1-e^{-\lambda}}{\lambda}
\end{aligned}
$$

It is not same as $\lim _{n} \frac{1}{\mathbb{E}\left(X_{n}+1\right)}=\frac{1}{\lambda+1}$.

Problem 2

Let X, Y be independent with $X \sim \operatorname{Poisson}(\lambda)$ and $Y \sim \operatorname{Poisson}(\mu)$ distribution.
(a)

Find $\mathbb{P}(X=k \mid X+Y=n)$ for $0 \leq k \leq n$. Simplify your answer so it does not involve a sum. Do the actual calculation, don't just cite a theorem.

Solution.

$$
\begin{aligned}
\mathbb{P}(X=k \mid X+Y=n) & =\frac{\mathbb{P}(X=k, Y=n-k)}{\sum_{l=0}^{n} \mathbb{P}(X=l, Y=n-l)} \\
& =\frac{e^{-\lambda} \frac{\lambda^{k}}{k!} e^{-\mu} \frac{\mu^{n-k}}{(n-k)!}}{\sum_{l=0}^{n} e^{-\lambda} \frac{\lambda^{l}}{l!} e^{-\mu} \frac{\mu^{n-l}}{(n-l)!}} \\
& =\frac{\binom{n}{k}\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}}{\sum_{l=0}^{n}\binom{n}{l}\left(\frac{\lambda}{\lambda+\mu}\right)^{l}\left(\frac{\mu}{\lambda+\mu}\right)^{n-l}} \\
& =\binom{n}{k}\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k}
\end{aligned}
$$

(b)

Find $\mathbb{E}\left(X^{2}+Y^{2} \mid X+Y=n\right)$.
Solution

$$
\begin{aligned}
\mathbb{E}\left(X^{2}+Y^{2} \mid X+Y=n\right) & =\sum_{k=0}^{n}\left(k^{2}+(n-k)^{2}\right)\binom{n}{k}\left(\frac{\lambda}{\lambda+\mu}\right)^{k}\left(\frac{\mu}{\lambda+\mu}\right)^{n-k} \\
& =\mathbb{E}\left(M^{2}\right)+\mathbb{E}\left((n-M)^{2}\right)
\end{aligned}
$$

where $M \sim \operatorname{Binomial}\left(n, \frac{\lambda}{\lambda+\mu}\right)$. Given that $\mathbb{E}(M)=\frac{n \lambda}{\lambda+\mu}$ and $\operatorname{Var}(M)=\frac{n \lambda \mu}{(\lambda+\mu)^{2}}$, we have:

$$
\mathbb{E}\left(X^{2}+Y^{2} \mid X+Y=n\right)=2\left(\frac{n \lambda \mu}{(\lambda+\mu)^{2}}+\left(\frac{n \lambda}{\lambda+\mu}\right)^{2}\right)+n^{2}-\frac{2 \lambda n^{2}}{\lambda+\mu}
$$

Problem 3

The county hospital is located at the center of a square whose sides are 2 miles wide. If an accident occurs within this square, then the hospital sends out an ambulance. The road network is rectangular, so the travel distance from the hospital, at $(0,0)$, to the point (x, y) is $|x|+|y|$. If an accident occurs at a point that is uniformly distributed in the square, find the mean and variance of the travel distance of the ambulance.

Solution.

$$
\begin{aligned}
\mathbb{E}(|X|+|Y|) & =\int_{-1}^{1} \int_{-1}^{1}(|x|+|y|) \cdot \frac{1}{4} d x d y \\
& \stackrel{(*)}{=} \int_{0}^{1} \int_{0}^{1}(x+y) d x d y \\
& =1
\end{aligned}
$$

(*) by symmetry.

$$
\begin{aligned}
\operatorname{Var}(|X|+|Y|) & =\mathbb{E}\left((|X|+|Y|)^{2}\right)-(\mathbb{E}(|X|+|Y|))^{2} \\
& =\int_{0}^{1} \int_{0}^{1}(x+y)^{2} d x d y-1 \\
& =\frac{7}{6}-1 \\
& =\frac{1}{6}
\end{aligned}
$$

Problem 4

Let X be a finite set X, and let P and Q be probabilities on X. Define the total variation distance between P and Q by

$$
\|P-Q\|_{T V}=\frac{1}{2} \sum_{x \in X}|P(x)-Q(x)| .
$$

Prove that

$$
\|P-Q\|_{T V}=\max _{A \subset X}|P(A)-Q(A)|
$$

where the maximum is over subsets A of X.
Proof. Let $S=\{x \in X: P(X) \geq Q(x)\}$, then,

$$
\begin{aligned}
\|P-Q\|_{T V} & =\frac{1}{2}\left(\sum_{x \in S}(P(x)-Q(x))+\sum_{x \in S^{c}}(Q(x)-P(x))\right) \\
& =\frac{1}{2}\left(P(S)-Q(S)+Q\left(S^{c}\right)-P\left(S^{c}\right)\right) \\
& \stackrel{(*)}{=} P(S)-Q(S)
\end{aligned}
$$

(*) for any $A \subset X$,

$$
P(A)+P\left(A^{c}\right)=Q(A)+Q\left(A^{c}\right)=1 \Longrightarrow P(A)-Q(A)=Q\left(A^{c}\right)-P\left(A^{c}\right)
$$

Now it suffices to show that $\max _{A \subset X}|P(A)-Q(A)|=P(S)-Q(S)$. Given $A \subset X$,

$$
\begin{aligned}
|P(A)-Q(A)| & =\left|\left(P(A \cap S)+P\left(A \cap S^{c}\right)\right)-\left(Q(A \cap S)+Q\left(A \cap S^{c}\right)\right)\right| \\
& =\left|(P(A \cap S)-Q(A \cap S))-\left(Q\left(A \cap S^{c}\right)-P\left(A \cap S^{c}\right)\right)\right| \\
& \stackrel{(* *)}{\leq} \max \left\{P(A \cap S)-Q(A \cap S), Q\left(A \cap S^{c}\right)-P\left(A \cap S^{c}\right)\right\} \\
& \stackrel{(* *)}{\leq} \max \left\{P(S)-Q(S), Q\left(S^{c}\right)-P\left(S^{c}\right)\right\} \\
& \stackrel{(*)}{=} P(S)-Q(S)
\end{aligned}
$$

(**) $P(A \cap S)-Q(A \cap S) \geq 0, Q\left(A \cap S^{c}\right)-P\left(A \cap S^{c}\right) \geq 0$ by the definition of S.
$(* * *)$ Any subset $B \subset S, 0 \leq P(B)-Q(B) \leq P(S)-Q(S)$, by the definition of S. Similarly, any $C \subset S^{c}, 0 \leq Q(C)-P(C) \leq Q\left(S^{c}\right)-P\left(S^{c}\right)$.

