MATH 505a Spring 2019 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

Suppose that each of 5 jobs is assigned at random to one of three servers A,B and C. [For example, one possible outcome would be that job 1 goes to server B , job 2 goes to server C , job 3 goes to server C, job 4 goes to server B and job 5 goes to server A. "At random" here means that there are 3^{5} equally likely outcomes]
(a)

Find the probability that server C gets all 5 jobs.

$$
\mathbb{P}(\mathrm{C} \text { gets } 5 \text { jobs })=\left(\frac{1}{3}\right)^{5}
$$

(b)

Let S be the number of servers that get exactly one job. Find $\mathbb{E} S$.
Solution. Let I_{A}, I_{B}, I_{C} denote the indicator functions of A, B, C get exactly one job, respectively. Then,

$$
\begin{aligned}
\mathbb{E}(S) & =\mathbb{E}\left(I_{A}+I_{B}+I_{C}\right) \\
& =\mathbb{P}\left(I_{A}=1\right)+\mathbb{P}\left(I_{B}=1\right)+\mathbb{P}\left(I_{C}=1\right) \\
& =3\binom{5}{1}\left(\frac{1}{3}\right)\left(\frac{2}{3}\right)^{4} \\
& =\frac{80}{81}
\end{aligned}
$$

(c)

Find the probability that no server gets more than 2 jobs.
$\mathbb{P}($ no server gets more than 2 jobs $)=\mathbb{P}(2$ servers get 2 jobs each, 1 server get 1 job $)$

$$
\begin{aligned}
& =\binom{3}{1}\left(\frac{1}{3}\right)^{2}\left(\frac{1}{3}\right)^{2}\left(\frac{1}{3}\right) \\
& =3\left(\frac{1}{3}\right)^{5} \\
& =\frac{1}{81}
\end{aligned}
$$

(d)

Take the same story, but with m in pace of 5 for the number of jobs, and n in place of 3 for the number of servers. Find the variance of S, in terms of m and n.

Solution. Let I_{i} denotes the indicator function that the i-th server gets exactly 1 job.

$$
\begin{aligned}
\operatorname{Var}(S) & =\mathbb{E}\left(S^{2}\right)-(\mathbb{E} S)^{2} \\
& =\mathbb{E}\left(\sum_{i=1}^{n} I_{i}^{2}+2 \sum_{i \neq j}^{n} I_{i} \cdot I_{j}\right)-\left(\sum_{i=1}^{n} \mathbb{E}\left(I_{i}\right)\right)^{2} \\
& =\sum_{i=1}^{n} \mathbb{P}\left(I_{i}=1\right)+2 \sum_{i \neq j}^{n} \mathbb{P}\left(I_{i}=1, I_{j}=1\right)-\left(\sum_{i=1}^{n} \mathbb{P}\left(I_{i}=1\right)\right)^{2} \\
& =m\left(\frac{n-1}{n}\right)^{m-1}-\left(m\left(\frac{n-1}{n}\right)^{m-1}\right)^{2}+2 \cdot n(n-1) \cdot m(m-1) \cdot\left(\frac{1}{n}\right)^{2}\left(\frac{n-2}{n}\right)^{m-2}
\end{aligned}
$$

Problem 2

(a)

Suppose that X is Poisson with parameter λ. Find the characteristic function of X.

$$
\begin{aligned}
\mathbb{E}\left(e^{i t X}\right) & =\sum_{k=0}^{\infty} e^{i t k} e^{-\lambda} \frac{\lambda^{k}}{k!} \\
& =e^{-\lambda\left(1-e^{i t}\right)} \sum_{k=0}^{\infty} e^{-e^{i t} \lambda} \frac{\left(e^{i t} \lambda\right)^{k}}{k!} \\
& =e^{-\lambda\left(1-e^{i t}\right)}
\end{aligned}
$$

(b)

Suppose that X_{n} is Poisson with parameter λ_{n} and that $\lambda_{n} \rightarrow \infty$. Show using characteristic functions that $\left(X_{n}-\lambda_{n}\right) / \sqrt{\lambda}$ converges in distribution, and describe the limiting distribution.

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{E}\left(e^{i t\left(X_{n}-\lambda_{n}\right) / \sqrt{\lambda}}\right) & =\lim _{n \rightarrow \infty} \exp \left(-i t \sqrt{\lambda_{n}}-\lambda_{n}+\lambda_{n} e^{i \frac{t}{\sqrt{\lambda_{n}}}}\right) \\
& =\lim _{n \rightarrow \infty} \exp \left(-i t \sqrt{\lambda_{n}}-\lambda_{n}+\lambda_{n} \sum_{k=0}^{\infty} \frac{\left(i t / \sqrt{\lambda_{n}}\right)^{k}}{k!}\right) \\
& =\lim _{n \rightarrow \infty} \exp \left(-i t \sqrt{\lambda_{n}}+\lambda_{n}\left(i t / \sqrt{\lambda_{n}}\right)+\lambda_{n} \frac{\left(i t / \sqrt{\lambda_{n}}\right)^{2}}{2}+\lambda_{n} \frac{\left(i t / \sqrt{\lambda_{n}}\right)^{3}}{6}+\cdots\right) \\
& =\lim _{n \rightarrow \infty} \exp \left(-\frac{t^{2}}{2}-\frac{i t^{3}}{6 \lambda^{1 / 2}}+\cdots\right) \\
& =\exp \left(-\frac{t^{2}}{2}\right)
\end{aligned}
$$

It converges to the standard normal distribution.

Problem 3

A stick of length 1 is broken into two pieces at a uniformly distributed random point.

(a)

Find the expected length of the smaller piece.
Solution. Let X_{1}, X_{2}, U_{1} denote the length of the smaller stick, the length of the larger stick, and the location of the first break point, respectively.

$$
\begin{aligned}
F_{X_{1}}(x)= & \mathbb{P}\left(X_{1} \leq x, U_{1} \leq 1 / 2\right)+\mathbb{P}\left(X_{1} \leq x, U_{1}>1 / 2\right) \\
= & x+(1-(1-x)) \\
= & 2 x \\
& \quad f_{X_{1}}(x)=2,0<x<1 / 2
\end{aligned}
$$

Similarly, we have

$$
\begin{gathered}
F_{X_{2}}(x)=1-\mathbb{P}\left(X_{1}<1-x\right)=2 x-1 \\
f_{X_{2}}(x)=2,1 / 2<x<1
\end{gathered}
$$

From the pdf of X_{1}, we have,

$$
\mathbb{E}\left(X_{1}\right)=\frac{1}{4}
$$

(b)

Find the expected value of the ratio of the smaller length over the larger.
Solution.

$$
\begin{aligned}
\mathbb{P}\left(\frac{X_{1}}{X_{2}} \leq t\right) & =\mathbb{P}\left(\frac{X_{1}}{1-X_{1}} \leq t\right) \\
& =\mathbb{P}\left(X_{1} \leq \frac{t}{t+1}\right) \\
& =\frac{2 t}{t+1}, 0<t<1
\end{aligned}
$$

Since the ratio only takes non-negative value, we can use complementary cdf to compute expectation:

$$
\begin{aligned}
\mathbb{E}\left(\frac{X_{1}}{X_{2}}\right) & =\int_{0}^{1} 1-\frac{2 t}{1+t} d t \\
& =1-2+2 \int_{0}^{1} \frac{1}{1+t} d t \\
& =-1+2 \ln (2)
\end{aligned}
$$

(c)

Suppose the larger piece is then broken at a random point, uniformly distributed over its length, independent of the first break point. There are then three pieces. Find the probability the longest of the three has length more than $1 / 2$.

Solution. Let X_{3}, U_{2} be the length of the larger piece of the previous larger piece and the second break point location (start from the left end of the X_{2}). First notice that the pdf of U_{2} :

$$
F_{U_{2} \mid X_{2}=x}(t)=\frac{t}{x}
$$

Since $\mathbb{P}\left(X_{1}>1 / 2\right)=0$, so the desired probability is

$$
\begin{aligned}
\mathbb{P}\left(X_{3}>1 / 2\right) & =\int_{1 / 2}^{1} \mathbb{P}\left(X_{3}>1 / 2, U_{2}>x / 2\right)+\mathbb{P}\left(X_{3}>1 / 2, U_{2} \leq x / 2\right) \cdot f_{X_{2}}(x) d x \\
& =\int_{1 / 2}^{1}\left[\mathbb{P}\left(U_{2}>1 / 2 \mid X_{2}=x\right)+\mathbb{P}\left(U_{2}<X_{2}-1 / 2 \mid X_{2}=x\right) \cdot 2 d x\right. \\
& =2 \int_{1 / 2}^{1} 1-\frac{1}{2 x}+\frac{1}{x}\left(x-\frac{1}{2}\right) d x \\
& =2+2 \ln (1 / 2)
\end{aligned}
$$

