MATH 505a Fall 2019 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

Suppose A, B, C are pairwise independent, $A \cap B \cap C=\emptyset$, and $\mathbb{P}(A)=\mathbb{P}(B)=\mathbb{P}(C)=p$.
(a)

What is the largest possible value of p ?
Solution. First, notice that $A \cap B \cap C=\emptyset \Longrightarrow(A \cap B) \cap(B \cap C)=\emptyset$. Then

$$
p=\mathbb{P}(B) \geq \mathbb{P}(A \cap B)+\mathbb{P}(B \cap C)=\mathbb{P}(A) \mathbb{P}(B)+\mathbb{P}(B) \mathbb{P}(C)=2 p^{2}
$$

We have

$$
p \leq \frac{1}{2}
$$

Then, we let $\mathbb{P}(A)=\mathbb{P}(B)=\frac{1}{2} .\left(\mathbb{P}(A \cap B)=\frac{1}{4}\right.$ and $\left.\mathbb{P}(A \cup B)=\mathbb{P}(A)+\mathbb{P}(B)-\mathbb{P}(A \cap B)=\frac{3}{4}\right)$. And let $C=(A \cup B) \backslash(A \cap B)$. Now we want to show that such A, B, C satisfies the assumptions.

$$
\begin{gathered}
\mathbb{P}(C)=\mathbb{P}(A \cup B)-\mathbb{P}(A \cap B)=\frac{1}{2} \\
\mathbb{P}(C \cap A)=\mathbb{P}(A)-\mathbb{P}(A \cap B)=\frac{1}{4} \\
\mathbb{P}(C \cap B)=\mathbb{P}(B)-\mathbb{P}(A \cap B)=\frac{1}{4} \\
A \cap B \cap C=(A \cap B) \cap((A \cup B) \backslash(A \cap B))=\emptyset
\end{gathered}
$$

Therefore $\frac{1}{2}$ is the largest possible value for p.
(b)

Is it possible that $\mathbb{P}(A \cup B \cup C)=1$? Prove or disprove.
Solution. Impossible.

Proof. By inclusion-exclusion theorem,

$$
\begin{aligned}
\mathbb{P}(A \cup B \cup C) & =\mathbb{P}(A)+\mathbb{P}(B)+\mathbb{P}(C)-(\mathbb{P}(A \cap B)+\mathbb{P}(A \cap C)+\mathbb{P}(B \cap C))+\mathbb{P}(A \cap B \cap C) \\
& =3 p-3 p^{2}
\end{aligned}
$$

which reaches maximum at $p=0.5$ and $\mathbb{P}(A \cup B \cup C)=0.75$.

Problem 2

Consider two coins: coin 1 shows heads with probability p_{1} and coin 2 shows heads with probability p_{2}. Each coin is tossed repeatedly. Let T_{i} be the time of first heads for coin i, and define the event $A=\left\{T_{1}<T_{2}\right\}$.

(a)

Find $\mathbb{P}(A)$. HINT: One possible method is to condition on one of the variables.
Solution. Notice that $T_{i} \sim \operatorname{Geometric}\left(p_{i}\right)$.

$$
\begin{aligned}
\mathbb{P}(A) & =\sum_{t=2}^{\infty} \mathbb{P}\left(T_{1} \leq t-1\right) \mathbb{P}\left(T_{2}=t\right) \\
& =\sum_{t=2}^{\infty}\left(1-\left(1-p_{1}\right)^{t-1}\right)\left(p_{2}\left(1-p_{2}\right)^{t-1}\right) \\
& =p_{2}\left(\sum_{t=1}^{\infty}\left(1-p_{2}\right)^{t}-\sum_{t=1}^{\infty}\left[\left(1-p_{2}\right)\left(1-p_{1}\right)\right]^{t}\right) \\
& =\frac{p_{1}\left(1-p_{2}\right)}{1-\left(1-p_{1}\right)\left(1-p_{2}\right)}
\end{aligned}
$$

(b)

Find $\mathbb{P}\left(T_{1}=k \mid A\right)$ for all $k \geq 1$.

Solution.

$$
\begin{aligned}
\mathbb{P}\left(T_{1}=k \mid A\right) & =\frac{\mathbb{P}\left(T_{1}=k\right) \mathbb{P}\left(T_{2}>k\right)}{\mathbb{P}(A)} \\
& =\frac{\left[1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right]\left(1-p_{1}\right)^{k-1} p_{1}\left(1-p_{2}\right)^{k}}{p_{1}\left(1-p_{2}\right)} \\
& =\left[1-\left(1-p_{1}\right)\left(1-p_{2}\right)\right]\left(1-p_{1}\right)^{k-1}\left(1-p_{2}\right)^{k-1}
\end{aligned}
$$

Problem 3

Player A and B are having a table tennis match; the first player to win 3 games wins the match. One of the players is better than the other; this better player wins each game with probability 0.7. Carl comes to watch the match. He does not know who is the better player so (based on Carl's information) A, B each initially have probability 0.5 to be the better player. Then Carl sees A win 2 of the first 3 games.
(a)

What is now the probability (after the 3 games, based on Carl's information) that A is the better player? Simplify your answer to a single fraction or decimal.

Solution. Let $C=\{\mathrm{A}$ won 2 of the first 3 games $\}, A=\{\mathrm{A}$ is better $\}$, and $B=\{\mathrm{B}$ is better $\}$.

$$
\begin{aligned}
\mathbb{P}(A \mid C) & =\mathbb{P}(C \mid A) \frac{\mathbb{P}(A)}{\mathbb{P}(C)} \\
& =\binom{3}{2}(0.7)^{2}(0.3) \frac{0.5}{\mathbb{P}(C \cap A)+\mathbb{P}(C \cap B)} \\
& =\binom{3}{2}(0.7)^{2}(0.3) \frac{0.5}{\binom{3}{2}(0.7)^{2}(0.3) 0.5+\binom{3}{2}(0.3)^{2}(0.7) 0.5} \\
& =\frac{7}{10}
\end{aligned}
$$

(b)

What is now the probability (after 3 games, based on Carl's information) that A will go on to win the match? NOTE: Express your answer for (b) in terms of numbers; you do not need to simplify to a single number. Ananswer in a form like $\frac{5}{4}+7\left(2-\frac{9}{5}\right)$ is OK.

Solution. Let $W_{A}=\mathbb{P}(\mathrm{A}$ win a game $\mid C)=0.7 \cdot 0.7+0.3 \cdot 0.3=0.58$, so $W_{B}=\mathbb{P}(\mathrm{B}$ win a game $\mid C)=$ 0.42. So,

$$
\begin{aligned}
\mathbb{P}(\text { A win the match } \mid C) & =W_{A}+W_{B} W_{A} \\
& =0.58+0.42 \cdot 0.58 \\
& =0.8236
\end{aligned}
$$

Problem 4

Suppose X_{n} is binomial with parameters (n, p) with $0 \leq p \leq 1$, and X is $\operatorname{Poisson}(\lambda)$.

(a)

Find the moment generating function of X_{n}.

Solution.

$$
\begin{aligned}
\mathbb{E}\left(e^{X_{n} t}\right) & =\sum_{k=0}^{n} e^{t k}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} p\left(p e^{t}\right)^{k}(1-p)^{n-k} \\
& \stackrel{(*)}{=}\left(1-p+p e^{t}\right)^{n}
\end{aligned}
$$

(*) Binomial formula.
(b)

Suppose $n \rightarrow \infty$ and $p=p_{n} \rightarrow 0$ with $n p \rightarrow \lambda \in(0, \infty)$. Show that $\mathbb{P}\left(X_{n}=k\right) \rightarrow \mathbb{P}(X=k)$ as $n \rightarrow \infty$, for all $k \geq 0$. HINT: $\left(1-\frac{c_{n}}{n}\right)^{n} \rightarrow e^{-c}$ if $c_{n} \rightarrow c$.

Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=k\right) & =\lim _{n \rightarrow \infty}\binom{n}{k} p^{k}(1-p)^{n-k} \\
& =\lim _{n \rightarrow \infty} \frac{1}{k!} \frac{n!}{(n-k)!} p^{k}\left(1-\frac{n p}{n}\right)^{n}\left(1-\frac{n p}{n}\right)^{-k} \\
& =\frac{1}{k!} \lim _{n \rightarrow \infty} \frac{n-k+1}{n} \frac{n-k+2}{n} \cdots \frac{n-1}{n} \frac{n}{n}(n p)^{k}\left(1-\frac{n p}{n}\right)^{n}\left(1-\frac{n p}{n}\right)^{-k} \\
& =\frac{1}{k!} \cdot 1 \cdot 1 \cdots 1 \cdot 1 \cdot \lambda^{k} \cdot e^{-\lambda} \cdot 1 \\
& =e^{-\lambda} \frac{\lambda^{k}}{k!}
\end{aligned}
$$

(c)

For n, p as in part(b), show that $\mathbb{P}\left(X_{n}>k\right) \rightarrow \mathbb{P}(X>k)$ as $n \rightarrow \infty$, for all $k \geq 0$.
Proof.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}>k\right) & =\lim _{n \rightarrow \infty}\left(1-\mathbb{P}\left(X_{n} \leq k\right)\right. \\
& =1-\lim _{n \rightarrow \infty} \sum_{x=0}^{k} \mathbb{P}\left(X_{n}=x\right) \\
& =1-\sum_{x=0}^{k} \lim _{n \rightarrow \infty} \mathbb{P}\left(X_{n}=x\right) \\
& \stackrel{(* *)}{=} 1-\sum_{x=0}^{k} \mathbb{P}(X=x) \\
& =\mathbb{P}(X>k)
\end{aligned}
$$

(**) Conclusion of (b).

