MATH 505a Spring 2018 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

Let X and Y be independent standard normal random variables and define $V=\min (X, Y)$. Compute the probability density function of V^{2}. The final answer should be an elementary function.

Solution. Let ϕ denote the cdf of standard normal, and by the symmetry of the standard normal distribution:

$$
\begin{aligned}
\mathbb{P}(V \leq t) & =1-\mathbb{P}(V>t) \\
& =1-\mathbb{P}(X>t) \mathbb{P}(Y>t) \\
& \stackrel{(*)}{=} 1-\phi(-t)^{2}
\end{aligned}
$$

For $V^{2}, t>0$:

$$
\begin{aligned}
\mathbb{P}\left(V^{2} \leq t^{2}\right) & =\mathbb{P}(-t \leq V \leq t) \\
& =\mathbb{P}(V \leq t)-\mathbb{P}(V \leq-t) \\
& =\phi(t)^{2}-\phi(-t)^{2}
\end{aligned}
$$

By differentiate, we have:

$$
\begin{aligned}
f_{V^{2}}(x) & =\frac{d}{d x}\left(\phi(\sqrt{x})^{2}-\phi(-\sqrt{x})^{2}\right) \\
& =2 \phi(\sqrt{x}) f_{X}(\sqrt{x}) \frac{1}{2 \sqrt{x}}-2 \phi(-\sqrt{x}) f_{X}(-\sqrt{x}) \frac{-1}{2 \sqrt{x}} \\
& =\frac{1}{\sqrt{2 \pi x}} e^{-x / 2}(\phi(\sqrt{x})+\phi(-\sqrt{x})) \\
& \stackrel{(*)}{=} \frac{1}{\sqrt{2 \pi x}} e^{-x / 2}
\end{aligned}
$$

(*) Symmetry of the standard normal.

Problem 2

Consider positions 1 to n arranged in a circle, so that 2 comes after 1,3 comes after $2, \ldots, n$ comes after $n-1$, and 1 comes after n. Similarly, take 1 to n as values, with cyclic order, and consider
all n ! ways to assign values to positions, bijectively, with all n ! possibilities equally likely. For $i=1$ to n, let X_{i} be the indicator that position i and the one following are filled in with two consecutive values in increasing order, and define

$$
S_{n}=\sum_{i=1}^{n} X_{i}, \quad T_{n}=\sum_{i=1}^{n} i X_{i}
$$

For example, with $n=6$ and the circular arrangement 314562 , we get $X-3=1$ since 45 are consecutive in increasing order, and similarly $X_{4}=X_{6}=1$, so that $S_{6}=3, T_{6}=13$.
(a)

Compute the mean and the variance of S_{n}.
Solution.

$$
\begin{aligned}
\mathbb{E}\left(S_{n}\right) & =\sum_{i=1}^{n} \mathbb{E}\left(X_{i}\right) \\
& =\sum_{i=1}^{n} \mathbb{P}\left(X_{i}=1\right) \\
& =n \cdot \frac{n-1}{n(n-1)} \\
& =1 \\
\mathbb{E}\left(X_{i}^{2}\right) & =\mathbb{E}\left(X_{i}\right)=1 \\
\mathbb{E}\left(X_{i} X_{j}\right) & = \begin{cases}\frac{n-2}{n(n-1)(n-2)}, & |i-j|=1 \\
\frac{n-2}{n(n-1)(n-2)}, & |i-j|>1\end{cases} \\
\operatorname{Var}\left(S_{n}\right)= & \mathbb{E}\left(S_{n}^{2}\right)-\mathbb{E}\left(S_{n}\right)^{2} \\
= & \sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)+\sum_{i \neq j}^{n} \mathbb{E}\left(X_{i} X_{j}\right)-\mathbb{E}\left(S_{n}\right)^{2} \\
= & 1+n(n-1) \frac{n-2}{n(n-1)(n-2)}-1 \\
= & 1
\end{aligned}
$$

(b)

Compute the mean and variance of T_{n}.

Solution.

$$
\begin{aligned}
\mathbb{E}\left(T_{n}\right) & =\sum_{i=1}^{n} i \mathbb{E}\left(X_{i}\right) \\
& =\sum_{i=1}^{n} i \cdot \frac{1}{n} \\
& =\frac{1}{n} \frac{n(n+1)}{2} \\
& =\frac{1+n}{2} \\
\mathbb{E}\left(T_{n}^{2}\right) & =\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right)^{2} \\
& =\mathbb{E}\left(\sum_{i, j}^{n} i j X_{i} X_{j}\right) \\
& =\sum_{i, j}^{n} i j \mathbb{E}\left(X_{i} X_{j}\right) \\
& =\frac{1}{n(n-1)} \sum_{i, j}^{n} i j \\
& =\frac{1}{n(n-1)}\left(\sum_{i=1}^{n} i\right)^{2} \\
& =\frac{1}{n(n-1)}\left(\frac{(n+1) n}{2}\right)^{2} \\
& =\frac{n(n+1)^{2}}{4(n-1)} \\
\operatorname{Var}\left(T_{n}\right) & =\mathbb{E}\left(T_{n}^{2}\right)-\mathbb{E}\left(T_{n}\right)^{2} \\
& =\frac{n(n+1)^{2}}{4(n-1)}-\frac{(1+n)^{2}}{4}
\end{aligned}
$$

Problem 3

A box is filled with coins, each giving heads with some probability p. The value of p varies from one coin to another, and it is uniform in $[0,1]$. A coin is selected at random; that one coin is tossed multiple times. HINT: $\int_{0}^{1} x^{m}(1-x)^{l} d x=\frac{m!l!}{(m+l+1)!}$ for nonnegative integers m, l.
(a)

Compute the probability that the first two tosses are both heads.

Solution.

$$
\begin{aligned}
\mathbb{P}(\text { head twice }) & =\int_{0}^{1} \mathbb{P}(\text { head twice } p=t) f_{p}(t) d t \\
& =\int_{0}^{1} t^{2} d t \\
& =\frac{1}{3}
\end{aligned}
$$

(b)

Let X_{n} be the number of heads in the first n tosses. Compute $\mathbb{P}\left(X_{n}=k\right)$ for all $0 \leq k \leq n$.
Solution. By the hint,

$$
\begin{aligned}
\mathbb{P}\left(X_{n}\right) & =\binom{n}{k} \int_{0}^{1} p^{k}(1-p)^{n-k} d p \\
& =\binom{n}{k} \frac{k!(n-k)!}{(n+1)!} \\
& =\frac{1}{n+1}
\end{aligned}
$$

(c)

Let N be the number of tosses needed to get heads for the first time. Compute $\mathbb{P}(N=n)$ for all $n \leq 1$.

Solution.

$$
\begin{aligned}
\mathbb{P}(N=n) & =\int_{0}^{1}(1-p)^{n-1} p d p \\
& =\frac{(n-1)!}{(n+1)!} \\
& =\frac{1}{n(n+1)}
\end{aligned}
$$

(d)

Compute the expected value of N.

Solution.

$$
\begin{aligned}
\mathbb{E}(N) & =\sum_{n=1}^{\infty} \frac{1}{n+1} \\
& =\infty
\end{aligned}
$$

