MATH 505a Fall 2018 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

Let X be exponentially distributed random variable with $\mathbb{P}(X>t)=e^{-r t}$ for $t>0$. Write X as the sum of its integer and fractional parts: $X=Y+Z$ with $Y=\lfloor X\rfloor \in \mathbb{Z}$ and $Z \in[0,1)$.
(a)

Find $\mathbb{E}(X)$
Solution. Since X only takes non-negative value,

$$
\mathbb{E}(X)=\int_{0}^{\infty} e^{r t} d t=\frac{1}{r}
$$

(b)

Find $\mathbb{P}(Y=n), n=0,1,2, \ldots$
Solution.

$$
\mathbb{P}(Y=n)=\mathbb{P}(n \leq X<n+1)=e^{-r n}-e^{-r(n+1)}
$$

(c)

Find $\mathbb{E}(Y)$ and $\mathbb{E}(Z)$.
Solution.

$$
\begin{aligned}
\mathbb{E}(Y) & =\sum_{n=1}^{\infty} \mathbb{P}(Y \geq n) \\
& =\sum_{n=1}^{\infty} e^{r n} \\
& =\frac{e^{-r}}{1-e^{-r}}
\end{aligned}
$$

$$
\mathbb{E}(Z)=\mathbb{E}(X-Y)=\mathbb{E}(X)-\mathbb{E}(Y)=\frac{1}{r}-\frac{e^{-r}}{1-e^{-r}}
$$

(d)

Show that Y and Z are independent.
Proof. It suffices to show that $\mathbb{P}(Y=n \mid Z=a)=\mathbb{P}(Y=n), \forall n$.

$$
\begin{aligned}
\mathbb{P}(Y=n \mid Z=a) & =\frac{\mathbb{P}(X=n+a)}{\sum_{i=0}^{\infty} \mathbb{P}(X=i+a)} \\
& =\frac{r e^{-r(n+a)}}{\sum_{i=0}^{\infty} r e^{-r(n+i)}} \\
& =e^{-r n} \cdot\left(1-e^{-r}\right) \\
& =e^{-r n}-e^{-r(n+1)} \\
& =\mathbb{P}(Y=n)
\end{aligned}
$$

Problem 2

Let f and g be bounded nondecreasing functions on \mathbb{R}, and let X, Y be independent and identically distributed random variables.
(a)

Show that

$$
\mathbb{E}[(f(X)-f(Y))(g(X)-g(Y))] \geq 0
$$

Proof. By the nondecreasing monotonicity,

$$
\begin{aligned}
& \mathbb{P}(f(X)-f(Y) \geq 0 \mid X>Y)=\mathbb{P}(g(X)-g(Y) \geq 0 \mid X>Y)=1 \\
& \mathbb{P}(f(X)-f(Y) \leq 0 \mid X \leq Y)=\mathbb{P}(g(X)-g(Y) \leq 0 \mid X \leq Y)=1
\end{aligned}
$$

So we can argue that,

$$
\begin{aligned}
\mathbb{P}((f(X)-f(Y))(g(X)-g(Y)) \geq 0)= & \mathbb{P}((f(X)-f(Y))(g(X)-g(Y)) \geq 0 \mid X>Y) \mathbb{P}(X>Y) \\
& +\mathbb{P}((f(X)-f(Y))(g(X)-g(Y)) \geq 0 \mid X \leq Y) \mathbb{P}(X \leq Y) \\
= & 1
\end{aligned}
$$

Therefore, it follows that

$$
\mathbb{E}[(f(X)-f(Y))(g(X)-g(Y))] \geq 0
$$

(b)

Show that $f(X)$ and $g(X)$ are positively correlated, that is,

$$
\mathbb{E}[f(X) g(X)] \geq \mathbb{E}[f(X)] \cdot \mathbb{E}[g(X)]
$$

Proof.

$$
\begin{aligned}
\mathbb{E}[(f(X)-f(Y))(g(X)-g(Y))] & =\mathbb{E}(f(X) g(X)-f(X) g(Y)-f(Y) g(X)+g(Y) f(Y)) \\
& \stackrel{(*)}{=} \mathbb{E}(f(X) g(X))-\mathbb{E}(f(X)) \mathbb{E}(g(Y))-\mathbb{E}(f(Y)) \mathbb{E}(g(X))+\mathbb{E}(g(Y) f(Y)) \\
& \stackrel{(* *)}{=} 2 \mathbb{E}(f(X) g(X))-2 \mathbb{E}(f(X)) \mathbb{E}(g(X)) \\
& =2 \operatorname{Cov}(f(X), g(X)) \\
& \stackrel{(* * *)}{\geq} 0
\end{aligned}
$$

(*) X, Y independent.
$(* *) X, Y$ identically distributed.
$(* * *)$ by the result from (a)

Problem 3

Suppose that X and Y have joint density $f(x, y)$ given by $f(x, y)=c e^{-x}$ for $x>0$ and $-x<y<x$ and $f(x, y)=0$ otherwise.
(a)

Show that $c=1 / 2$.

Solution.

$$
\begin{aligned}
\int_{0}^{\infty} \int_{-x}^{x} f(x, y) d y d x & =1 \\
\int_{0}^{\infty} \int_{-x}^{x} c e^{-x} d y d x & =1 \\
2 c \int_{0}^{\infty} x e^{-x} d x & =1 \\
2 c & =1 \\
c & =\frac{1}{2}
\end{aligned}
$$

(b)

Find the marginal densities of X and Y, and the conditional density of Y given X.
Solution.

$$
\begin{aligned}
f_{X}(x) & =\int_{-x}^{x} \frac{1}{2} e^{-x} d y \\
& =x e^{-x}, x>0 \\
f_{Y}(y) & =\int \frac{1}{2} e^{-x} \mathbf{1}_{(-x, x)}(y) d x \\
& =\int_{|y|}^{\infty} \frac{1}{2} e^{-x} d x \\
& =\frac{1}{2} e^{-|y|} \\
f_{Y \mid X}(y \mid x) & =\frac{f_{X, Y}(x, y)}{f_{X}(x)} \\
& =\frac{1}{2 x}, x>0,-x<y<x .
\end{aligned}
$$

(c)

Find $\mathbb{P}(X>2 Y)$
Solution.

$$
\begin{aligned}
\mathbb{P}(X \geq 2 Y) & =\int_{0}^{\infty} \mathbb{P}\left(\left.Y \leq \frac{X}{2} \right\rvert\, X=x\right) f_{X}(x) d x \\
& =\int_{0}^{\infty} \int_{-\infty}^{x / 2} \frac{1}{2 x} \mathbf{1}_{(-x, x)}(y) \cdot x e^{-x} d y d x \\
& =\frac{3}{4} \int_{0}^{\infty} x e^{-x} d x \\
& =\frac{3}{4}
\end{aligned}
$$

