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Problem 1

Three points are chosen independently and uniformly inside the unit square in the plane. Find the
expected area of the smallest closed rectangle that has sides parallel to the coordinate axes and that
contains the three points. HINT: Consider what happens with just one coordinate.

Solution. Let (X1, Y1), (X2, Y2), (X3, Y3) be the coordinate of the three points, A be the area of
the rectangle. Also let X(i) be the ith smallest among X1, X2, X3. Since Xi’s and Yi’s are iid,

E(A) = E((X(3) −X(1))(Y(3) − Y(1)))

= (E(X(3) −X(1)))
2

P(X(3) ≤ x) =

3∏
i=1

P(Xi ≤ x) = x3, fX(3)
(x) = 3x2, 0 < x < 1

P(X(1) ≤ x) = 1−
3∏

i=1

P(Xi > x) = 1− (1− x)3, fX(1)
(x) = 3(1− x)2, 0 < x < 1

E(A) =

(∫ 1

0

3x3dx−
∫ 1

0

3(1− x)2 · xdx
)2

=

(
1

2

)2

=
1

4

Problem 2

Suppose (X,Y ) has joint density of the form f(x, y) = g(
√
x2 + y2) for (x, y) ∈ R2, for some

function g. Show that Z = Y/X has the Cauchy density h(t) = 1/(π(1 + t2)), t ∈ R. HINT: Polar
coordinates.
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Proof. Use polar coordinate (draw the graph to help visualizing), denoting θ = arctan(t),

P
(
Y

X
≤ t

)
= P(X > 0, Y ≤ tX) + P(X < 0, Y ≥ tX)

=

∫
(−π/2,θ)∪(π/2,θ+π)

∫ ∞

0

g(r)rdrdθ

=

(∫ ∞

0

g(r)rdr

)(∫
(−π/2,θ)∪(π/2,θ+π)

dθ

)

=

(∫ ∞

0

g(r)rdr

)
· 2
(
θ − π

2

)
(∗)
=

2θ − π

2π

(∗) Notice that P(Y/X ≤ ∞) = 1 =
(∫∞

0
g(r)rdr

)
· 2π

By differentiating,

fY/X(t) =
d

dt

2 · arctan(t)− π

2π
=

1

π

1

t2 + 1

Problem 3

Assume
√
3 < C < 2. Consider a sequence X1, X2, X3,... of random variables where X1 is uniform

on [0,1], and where the conditional distribution of Xm+1 given Xn is uniform on [0, CXn].

(a)

Find the conditional expectation of (Xn+1)
r given Xn, for r ≥ 1.

Solution. Given Xn,

fXn+1|Xn
(x) =

1

CXn
, 0 < x < CXn

E(Xr
n+1|Xn) =

∫ CXn

0

xr

CXn
dx

=
(CXn)

r

r + 1

(b)

Show that Xn converges to 0 in mean but not in mean square.
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Proof. By the result from part(a),

E(Xn) = E(E(Xn|Xn−1))

=
C

2
E(Xn−1)

=

(
C

2

)2

E(Xn−2)

· · ·

=

(
C

2

)n−1

E(X1)

=

(
C

2

)n−1

· 1
2

√
3 < C < 2 =⇒ C

2
< 1 =⇒ E(Xn) → 0

E(X2
n) =

C2

3
E(X2

n−1)

=

(
C2

3

)n−1

· 1
3

C2

3
> 1 =⇒ E(X2

n) → ∞

(c)

Show that Xn converges to 0 almost surely.

Proof. Given ϵ > 0,

∞∑
n=1

P(Xn > ϵ) ≤
∞∑

n=1

E(Xn)

ϵ

=
1

ϵ

∞∑
n=1

1

2

(
C

2

)n−1

< ∞

since C
2 < 1. Then by Borel-Cantelli lemma,

P(limsupn{Xn > ϵ}) = 0

Note that for any m, P(∪n≥m{Xm > ϵ}) ≥ P(limn Xn > ϵ). Therefore,

P(lim
n

Xn > ϵ) ≤ lim
m

P(∪n≥m{Xm > ϵ})

= P(limsupn{Xn > ϵ})
= 0
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Problem 4

Suppose that n boys and m girls are arranged in a row, and assume that all possible orderings of
the n+m children are equally likely.

(a)

Find the probability that all n boys appear in a single block.

Solution. The total number of combinations is
(
n+m
n

)
, since we can index the positions from 1

to n+m, and for each combination we assign different choice of positions to boys/girls. So when all
the boys are in a single block, we only need to choose different positions for the left most boy from
1 to m+ 1.

P(boys in a single block) =
m+ 1(
m+n
n

) =
n!(m+ 1)!

(n+m)!

(b)

Find the probability that no two boys are next to each other.

Solution. We are essentially assigning boys to the m + 1 “gaps” between girls including the left
and right ends. Therefore, we are choosing n positions from m+1 positions.

P(no two boys are next to each other) =

(
m+1
n

)(
n+m
n

)
=

(m+ 1)!m!

(m− n+ 1)!(n+m)!

And obviously the probability is 0 when n > m+ 1.

(c)

Find the expected number of boys who have a girl next to them on both sides.

Solution. Let Xi be the indicator function of ith boy having two girls next to him on both sides.

E(N) =

n∑
i=1

E(Xi)

=

n∑
i=1

P(Xi = 1)

= n · P(not at position 1 or position n+m) · P(left is a girl) · P(right is a girl|left is a girl)

= n · m+ n− 2

m+ n
· m

n+m− 1
· m− 1

n+m− 2

=
nm(m− 1)

(n+m− 1)(n+m)
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