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Problem 1

Let X be uniform on [1,5], let Y be uniform on [0,1], and assume that X and Y are independent.

(a)

Compute the probability density function of the product XY.

Solution.

Case 1. 0 <t <1,

Case 2. 1 <t <5,
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(b)

Compute the cumulative distribution function of the ratio X/Y.

Solution.

P(X/Y <t)=P(Y > X/t)
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Case 1. 1 <t <5,
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(c)
Compute the characteristic function of the sum X + Y.
Solution.
E(eit(XJrY)) _ ]E(eitX)E(eitY)
5001 1
= / e’t‘”fdx/ e”ydy
1 4 0
1 5it it it
_*@(e —e?)(e" = 1)
(d)

Compute the moment generating function of the random variable X — In(Y).

Solution.
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Notice that the right multiplicand’s integrability depends on ¢, so
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Problem 2

An urn contains 2n balls, coming in pairs: two balls are labeled “1”, two balls are labeled “2” ..., two
balls are labeled “n”. A sample of size n is taken without replacement. Denote by N the number
of pairs in the sample. Compute the expected value and the variance of N. You do not need to
simplify the expression for the variance.

Solution. Let X; be the indicator function of the pair of balls labeled “i” are selected. And the
probability of any pair being selected is the ratio of the number of combinations to select n — 2 balls
from the rest of 2n — 2 balls and the total number of combinations to select n balls from 2n balls.

E(X?) = E(X))
n—1
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Notice that the probability of two pairs being selected is the ratio of the number of combinations

to select n — 4 balls from the rest of 2n — 4 balls and the total number of combinations to select n

balls from 2n balls. so for i # j,
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Problem 3

Let Uy, U, ... be iid random variables, uniformly distributed on [0,1], and let N be a Poisson random
variable with mean value equal to one. Assume that N is independent of Uy, Us, ... and define

v Jo if N =0,
N maxi<;<nN U;, if N > 0.

Compute the expected value of Y.

Solution. First we compute the expectation of max1<i<,U; for some k > 1. For 0 <t < 1,

k
;<< = - <<
P(lrglagxk U, <t) 1_[1]P’(U1 <t)
i=
= ¢F

Since U; only takes nonnegative value,

E( max U;) = /01(1 — tF)dt
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We compute the expectation of Y by conditioning on IV,
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