MATH 505a Fall 2017 Qual Solution Attempts

Troy Tao

August 4, 2022

Contact yntao@usc.edu if you think this document needs revision.

Problem 1

Let X be uniform on $[1,5]$, let Y be uniform on $[0,1]$, and assume that X and Y are independent.
(a)

Compute the probability density function of the product $X Y$.
Solution.

$$
\begin{aligned}
\mathbb{P}(X Y \leq t) & =\mathbb{P}\left(Y \leq \frac{t}{X}\right) \\
& =\int \mathbb{P}\left(Y \leq \frac{t}{x}\right) f_{X}(x) d x
\end{aligned}
$$

Case 1. $0<t \leq 1$,

$$
\begin{aligned}
\mathbb{P}\left(Y \leq \frac{t}{X}\right) & =\int_{1}^{5} \frac{t}{x} \frac{1}{4} d x \\
& =\frac{t}{4} \ln (5)
\end{aligned}
$$

Case 2. $1<t \leq 5$,

$$
\begin{aligned}
\mathbb{P}\left(Y \leq \frac{t}{X}\right) & =\int_{1}^{t} 1 \cdot \frac{1}{4} d x+\int_{t}^{5} \frac{t}{x} \cdot \frac{1}{4} d x \\
& =\frac{1}{4}(t-1)+\frac{t}{4} \ln \left(\frac{5}{t}\right)
\end{aligned}
$$

Therefore, by differentiating:

$$
f_{X Y}(t)= \begin{cases}\frac{\ln (5)}{4}, & t \in(0,1] \\ \frac{1}{4} \ln \left(\frac{5}{t}\right), & t \in(1,5] \\ 0, & \text { otherwise }\end{cases}
$$

(b)

Compute the cumulative distribution function of the ratio X / Y.
Solution

$$
\begin{aligned}
\mathbb{P}(X / Y \leq t) & =\mathbb{P}(Y \geq X / t) \\
& =\int \mathbb{P}(Y \geq x / t) f_{X}(x) d x
\end{aligned}
$$

Case 1. $1<t \leq 5$,

$$
\begin{aligned}
\mathbb{P}(Y \geq X / t) & =\int_{1}^{t}\left(1-\frac{x}{t}\right) \cdot \frac{1}{4} d x \\
& =\frac{t}{8}+\frac{1}{8 t}-\frac{1}{4}
\end{aligned}
$$

Case 2. $t \geq 5$,

$$
\begin{aligned}
\mathbb{P}(Y \geq X / t) & =\int_{1}^{5}\left(1-\frac{x}{t}\right) \cdot \frac{1}{4} d x \\
& =1-\frac{3}{t}
\end{aligned}
$$

(c)

Compute the characteristic function of the sum $X+Y$.

Solution.

$$
\begin{aligned}
\mathbb{E}\left(e^{i t(X+Y)}\right) & =\mathbb{E}\left(e^{i t X}\right) \mathbb{E}\left(e^{i t Y}\right) \\
& =\int_{1}^{5} e^{i t x} \frac{1}{4} d x \int_{0}^{1} e^{i t y} d y \\
& =-\frac{1}{4 t^{2}}\left(e^{5 i t}-e^{i t}\right)\left(e^{i t}-1\right)
\end{aligned}
$$

(d)

Compute the moment generating function of the random variable $X-\ln (Y)$.

Solution.

$$
\begin{aligned}
\mathbb{E}\left(e^{t(X-\ln Y)}\right) & =\mathbb{E}\left(e^{t X} \cdot e^{-t \ln Y}\right) \\
& =\mathbb{E}\left(e^{t X}\right) \cdot \mathbb{E}\left(Y^{-t}\right) \\
& =\int_{1}^{5} e^{t x} \frac{1}{4} d x \int_{0}^{1} y^{-t} d y
\end{aligned}
$$

Notice that the right multiplicand's integrability depends on t, so

$$
\mathbb{E}\left(e^{t(X-\ln Y)}\right)= \begin{cases}\frac{e^{5 t}-e^{t}}{4 t(1-t)}, & t<1, \\ \infty, & t \geq 1\end{cases}
$$

Problem 2

An urn contains $2 n$ balls, coming in pairs: two balls are labeled " 1 ", two balls are labeled " 2 ", \ldots, two balls are labeled " n ". A sample of size n is taken without replacement. Denote by N the number of pairs in the sample. Compute the expected value and the variance of N. You do not need to simplify the expression for the variance.

Solution. Let X_{i} be the indicator function of the pair of balls labeled "i" are selected. And the probability of any pair being selected is the ratio of the number of combinations to select $n-2$ balls from the rest of $2 n-2$ balls and the total number of combinations to select n balls from $2 n$ balls.

$$
\begin{aligned}
\mathbb{E}(N) & =\mathbb{E}\left(\sum_{i=1}^{n} X_{i}\right) \\
& =\sum_{i=1}^{n} \mathbb{P}\left(X_{i}=1\right) \\
& =n \cdot \frac{\binom{2 n-2}{n-2}}{\binom{2 n}{n}} \\
& =\frac{n(n-1)}{2(2 n-1)} \\
\mathbb{E}\left(X_{i}^{2}\right) & =\mathbb{E}\left(X_{i}\right) \\
& =\frac{n-1}{2(2 n-1)}
\end{aligned}
$$

Notice that the probability of two pairs being selected is the ratio of the number of combinations to select $n-4$ balls from the rest of $2 n-4$ balls and the total number of combinations to select n balls from $2 n$ balls. so for $i \neq j$,

$$
\begin{aligned}
\mathbb{E}\left(X_{i} X_{j}\right) & =\mathbb{P}\left(X_{i}=1, X_{j}=1\right) \\
& =\frac{\binom{n-4}{n-4}}{\binom{2 n}{n}} \\
& =\frac{n(n-1)(n-2)(n-3)}{2 n(2 n-1)(2 n-2)(2 n-3)}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(N) & =\mathbb{E}\left(N^{2}\right)-\mathbb{E}(N)^{2} \\
& =\sum_{i=1}^{n} \mathbb{E}\left(X_{i}^{2}\right)+\sum_{i \neq j}^{n} \mathbb{E}\left(X_{i} X_{j}\right)-\mathbb{E}(N)^{2} \\
& =n \cdot \frac{(n-1)}{2(2 n-1)}+n(n-1) \cdot \frac{n(n-1)(n-2)(n-3)}{2 n(2 n-1)(2 n-2)(2 n-3)}-\left(\frac{n(n-1)}{2(2 n-1)}\right)^{2}
\end{aligned}
$$

Problem 3

Let U_{1}, U_{2}, \ldots be iid random variables, uniformly distributed on $[0,1]$, and let N be a Poisson random variable with mean value equal to one. Assume that N is independent of U_{1}, U_{2}, \ldots and define

$$
Y= \begin{cases}0, & \text { if } N=0 \\ \max _{1 \leq i \leq N} U_{i}, & \text { if } N>0\end{cases}
$$

Compute the expected value of Y.
Solution. First we compute the expectation of $\max _{1 \leq i \leq k} U_{i}$ for some $k \geq 1$. For $0<t<1$,

$$
\begin{aligned}
\mathbb{P}\left(\max _{1 \leq i \leq k} U_{i} \leq t\right) & =\prod_{i=1}^{k} \mathbb{P}\left(U_{i} \leq t\right) \\
& =t^{k}
\end{aligned}
$$

Since U_{i} only takes nonnegative value,

$$
\begin{aligned}
\mathbb{E}\left(\max _{1 \leq i \leq k} U_{i}\right) & =\int_{0}^{1}\left(1-t^{k}\right) d t \\
& =\frac{k}{k+1}
\end{aligned}
$$

We compute the expectation of Y by conditioning on N,

$$
\begin{aligned}
\mathbb{E}(Y) & =\sum_{k=0}^{\infty} \mathbb{E}(Y \mid N=k) \mathbb{P}(N=k) \\
& =0+\sum_{k=1}^{\infty} \frac{k}{k+1} e^{-1} \frac{1}{k!} \\
& =e^{-1} \sum_{k=1}^{\infty}\left(\frac{1}{k!}-\frac{1}{(k+1)!}\right) \\
& =e^{-1}
\end{aligned}
$$

