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Problem 1

A stick of length 1 is broken at a point uniformly distributed over its length.

(a)

Find the mean and variance of the sum S of the squares of the lengths of the two pieces.

Solution. Let U be the location of the breaking point.

E(S) = E(U2 + (1− U)2)

= E(2U2 − 2U + 1)

= 2 · 1
3
− 2 · 1

2
+ 1

=
2

3

Var(S) = E(S2)− (E(S))2

= E((2U2 − 2U + 1)2)−
(
2

3

)2

= E(4U4 − 8U3 + 8U2 − 4U + 1)− 4

9

= 4 · 1
5
− 8 · 1

4
+ 8 · 1

3
− 4 · 1

2
+ 1− 4

9

=
1

45

(b)

Find the density function of the product M of the lengths of the two pieces. Note that M ∈ [0, 1
4 ].
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Solution.

P(M ≤ t) = P(U(1− U) ≤ t)

= P(U ≤ 1

2
(1−

√
1− 4t)) + P(U ≥ 1

2
(1 +

√
1− 4t))

= 1−
√
1− 4t, 0 ≤ t ≤ 1

4

fM (t) =
d

dt
(1−

√
1− 4t)

=
2√

1− 4t
, 0 ≤ t ≤ 1

4

Problem 2

There are two types of batteries in a bin. The life span of type i is an exponential random variable
with mean µi, i = 1, 2. The probability of type i battery to be chosen is pi, with p1 + p2 = 1.
Suppose a randomly chosen battery is still operating after t hours. What is the probability that it
will still be operating after an additional s hours?

Solution. Denote the life span for type 1 and 2 battery as B1, B2. Let B be the life span of
the chosen battery.

P(B > s+ t|B > t) = P(B1 > s+ t|B1 > t)p1 + P(B2 > s+ t|B2 > t)p2
(∗)
= P(B1 > s)p1 + P(B2 > s)p2

= p1e
−µ1s + p2e

−µ2s

(∗) Exponential random variables are memory-less. Proof is omitted.

Problem 3

Fix positive integers m ≤ n with n > 4. Suppose m people sit at a circular table with n seats, with
all

(
n
m

)
seating equally likely. A seat is called isolated if it is occupied and both adjacent seats are

vacant. Find the mean and variance of the number of isolated seats.

Solution. Let Xi be the indicator function of ith seat being isolated. Let N =
∑n

i=1 be the
total number of isolated seats. Clearly when n < m + 2, N = 0, E(N) = 0, Var(N) = 0. Assume
n ≥ m+ 2,

E(N) =

n∑
i=1

E(Xi)

=

n∑
i=1

(
n− 3

m− 1

)/(
n

m

)
= n ·

(
n− 3

m− 1

)/(
n

m

)
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E(X2
i ) = E(Xi) =

(
n− 3

m− 1

)/(
n

m

)
For i ̸= j, we want to compute the probability when both ith and jth seats are isolated.

Case 1. When |i − j| = 1 or |i − j| = n − 1(since the end is connect to the start), it’s impos-
sible since they are next to each other and both being occupied, so

E(XiXj) = 0

Case 2. When |i− j| = 2 or |i− j| = n− 2, we need at least 3 vacant seats otherwise it’s impossible,
so

E(XiXj) =

{(
n−5
m−2

)/(
n
m

)
n ≥ m+ 3

0 o.w.

Case 3. When 2 < |i− j| < n− 2, we need at least 4 vacant seats otherwise it’s impossible, so

E(XiXj) =

{(
n−6
m−2

)/(
n
m

)
n ≥ m+ 4

0 o.w.

Now, we compute the variance for different range of n−m:

When n−m ≥ 4,

Var(N) = E(N2)− (E(N))2

=

n∑
i=1

E(X2
i ) +

n∑
i ̸=j

E(XiXj)− (E(N))2

= E(N)− (E(N))2 +
∑

|i−j|=2
or n−2

(
n− 5

m− 2

)/(
n

m

)
+

∑
2<|i−j|

|i−j|<n−2

(
n− 6

m− 2

)/(
n

m

)

= E(N)− (E(N))2 + 2n ·
(
n− 5

m− 2

)/(
n

m

)
+ (n(n− 1)− 4n) ·

(
n− 6

m− 2

)/(
n

m

)
=

(
n− 3

m− 1

)/(
n

m

)
−
[(

n− 3

m− 1

)/(
n

m

)]2
+ 2n ·

(
n− 5

m− 2

)/(
n

m

)
+ (n(n− 1)− 4n) ·

(
n− 6

m− 2

)/(
n

m

)
When n−m = 3, Case 3 is impossible, so

Var(N) = E(N)− (E(N))2 +

n∑
i ̸=j

E(XiXj)

=

(
n− 3

m− 1

)/(
n

m

)
−
[(

n− 3

m− 1

)/(
n

m

)]2
+

∑
|i−j|=2
or n−2

(
n− 5

m− 2

)/(
n

m

)

When n−m = 2, it is impossible to have more than one isolated seats, which means we won’t have
any nonzero E(XiXj), i ̸= j

Var(N) = E(N)− (E(N))2

=

(
n− 3

m− 1

)/(
n

m

)
−

[(
n− 3

m− 1

)/(
n

m

)]2
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