MATH 505a QUALIFYING EXAM Monday, February 9, 2015. One hour and 50 minutes, starting at 5 pm .

Ideas for solutions.

1. Let $X_{n}, n \geq 1$, be independent random variables such that each X_{n} has Poisson distribution with mean λ_{n}. Prove that if $\sum_{n \geq 1} \lambda_{n}=+\infty$, then

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=1}^{n} X_{k}}{\sum_{k=1}^{n} \lambda_{k}}=1
$$

in probability.
Solution. Direct by Chebyshev inequality

$$
\mathbb{P}(|Y-\mathbb{E} Y|>a) \leq \frac{\operatorname{Var}(Y)}{a^{2}}
$$

with $Y=\sum X_{k}, \mathbb{E} Y=\sum \lambda_{k}=\operatorname{Var}(Y), a=\varepsilon \mathbb{E} Y$.
2. A deck of cards is shuffled thoroughly. Someone goes through all 52 cards, scoring 1 each time 2 cards of the same value are consecutive. For example 9H, 8H, $7 \mathrm{~F}, 6 \mathrm{C}, 7 \mathrm{7}, 7 \mathrm{7H}, 7 \mathrm{7}$, scores 2, once due to 7 of spades next to 7 of hearts, and once more 7 of hearts next to 7 of clubs. Write X for the total score.

Writing $A_{i}, i=1, \ldots, 51$, for the event that there is a match of values for cards i and $i+1$, we have $\mathbb{P}\left(A_{i}\right)=3 / 51$: given a card, there are 51 cards left, of which 3 have the same value.
a) Compute $\mathbb{E} X=51(3 / 51)=3$
b) Compute $\operatorname{Var} X$. This is a long variance-covariance expansion.

The trivial part is 51 variance terms, each with value $p-p^{2}, p=3 / 51$.
The easy ingredient is

$$
q=\mathbb{E}\left(A_{1} A_{2}\right)=(3 / 51)(2 / 50)
$$

contributing a strictly negative value for $q-p^{2}=\operatorname{cov}\left(A_{i}, A_{j}\right)$ when $|i-j|=1$, with 100 such terms.

The harder part is

$$
r=\mathbb{E}\left(A_{1} A_{3}\right)
$$

to get a different nonzero value for $r-p^{2}=\operatorname{cov}\left(A_{i}, A_{j}\right)$ when $|i-j|>1$, with $51^{2}-51-100$ such terms.

A candidate value for r is $r=(3 / 51)(2 / 50)(1 / 49)+(3 / 51)(48 / 50)(3 / 49)$, corresponding to the first 4 cards having values of the form either aaaa, or else aabb with a different from b.
c) Compute $\mathbb{P}(X=39)=(13!)(4!)^{13} /(52!)$. For this to happen, the cards should be stacked with all the same values next to each other:
(13 groups of 4) Note that the the 4 values in each of the 13 groups can be permuted independently of one another, whence (4!) ${ }^{13}$ term.
d) In the line below, circle the number that you think is the closest to the value $\mathbb{P}(X=0)$ and briefly explain your choice.

$$
\frac{1}{1000}, \frac{1}{500}, \frac{1}{100}, \frac{1}{50}, \frac{\mathbf{1}}{\mathbf{2 0}}, \frac{1}{10}, \frac{1}{5}, \frac{1}{2} .
$$

By Poisson approximation, $\mathbb{P}(X=0) \approx e^{-3} \approx 1 / 20$.
3. Let $S_{0}, S_{1}, S_{2}, \ldots$ be a simple symmetric random walk, i.e. $\mathbb{P}\left(S_{i}-S_{i-1}=1\right)=$ $\mathbb{P}\left(S_{i}-S_{i-1}=-1\right)=1 / 2$, with independent increments. Let $T=\min \left\{n>0: S_{n}=0\right\}$ be the hitting time to zero. Write \mathbb{P}_{a} for probabilities for the walk starting with $S_{0}=a$.
a) What does the reflection principle say about $\mathbb{P}_{a}\left(S_{n}=i, T \leq n\right)$, for $a>0$, and $i, n \geq 0$? Answer: $\mathbb{P}_{a}\left(S_{n}=i, T \leq n\right)=\mathbb{P}_{0}\left(S_{n}=a+i\right)$.
b) What does the reflection principle say about $\mathbb{P}_{a}\left(S_{n} \geq i, T>n\right)$, for $a>0$, and $i, n \geq 0$? [Hint: telescoping series]

Answer:

$$
\mathbb{P}_{a}\left(S_{n}=j, T>n\right)=\mathbb{P}_{0}\left(S_{n}=j-a\right)-\mathbb{P}_{0}\left(S_{n}=j+a\right)
$$

then sum up over j.
c) For fixed $a>0$, give asymptotics for $\mathbb{P}_{a}(T>n)$ as $n \rightarrow \infty$. [HINT: Stirling's formula is that $n!\sim \sqrt{2 \pi n}(n / e)^{n}$.]

Answer: since

$$
\mathbb{P}_{0}\left(S_{n}=a+i\right)=2^{-n}\binom{n}{\frac{n+a+i}{2}}
$$

(the probability is zero if the fraction is not an integer), use part a) and Stirling to get

$$
\mathbb{P}_{a}(T>n) \sim a \sqrt{2 /(\pi n)}
$$

d) Simplify, for fixed $a>0$,

$$
\lim _{n \rightarrow \infty} \frac{\mathbb{P}_{a+1}(T>n)}{\mathbb{P}_{a}(T>n)}
$$

Answer: from part c), get $(a+1) / a$.

