Ideas for solutions.

1. (a) There are $n=100$ balls, labeled 1 to n, and these are thrown into n boxes, also labeled 1 to n; all n^{n} outcomes are equally likely. Whenever ball i lands in box j, and $|i-j| \leq 1$, a point is scored, so the total score, call it X, can take on any value from 0 to n. Note: ball 1 in box n scores nothing, and ball n in box 1 scores nothing. Compute exactly, and simplify, as either an expression in n, or a decimal: $E(X)$ and $\operatorname{Var}(X)$.
(b) Pick the closest approximation: in part $(a), P(X=0)$ is close to $1,1 / 3,1 / 20,1 / 100$. You may reason informally, but you must describe your reasoning, which should involve the approximate distribution of X.
(c) Change the story in (a) to: there are $n=100$ cards, numbered 1 to n, and they are placed in slots 1 to n around a circle at random, so that all n ! outcomes are equally likely. Whenever card i is placed in position i or $i+1$, a point is scored, so the total score, call it Y, can take on any value from 0 to n. Here for card n, since the cards are in a circle, "position $n+1$ " should be interpreted as position 1. Compute exactly, and simplify, as either an expression in n, or a decimal: $E(Y)$ and $\operatorname{Var}(Y)$.

In part (a), each ball has probability $1 / n$ to land in a given box, and balls land independently of one another; in particular, several balls can land in the same box. There are two ways to score in boxes 1 and n, and three ways to score in all other boxes. Thus, we have the sum of two Bernoulli $2 / n$ and $(n-2)$ Bernoulli $3 / n$, all independent. The mean is then $2(2 / n)+(n-2)(3 / n)=3-(2 / n)$. The variance is $2(2 / n)(1-(2 / n))+(n-2)(3 / n)(1-(3 / n))=$ $\left(3 n^{2}-11 n+10\right) / n^{2}$. With mean approximately equal to three, the Poisson approximation gives the answer in (b) as $e^{-3} \approx 1 / 20$.

In part (c), each card has exactly two ways to score, and the same probability $1 / n$ to land in any particular slot, so the mean score is exactly two. To compute the variance, write X_{i} for the indicator that ball i scores, with $p:=E X_{i}=2 / n$

For the variance covariance expansion, $\sum \operatorname{cov}\left(X_{i}, X_{j}\right)$ has
a) n terms where $i=j$, each term contributes $\operatorname{cov}=p-p^{2}$.
b) $2 n$ terms where i, j are adjacent. There are 3 ways for both to score, so each term contributes $\operatorname{cov}=3 /(n(n-1))-p^{2}$.
c) $n(n-3)$ terms where i, j are distinct and not adjacent. There are 4 ways for both to score, so each term contributes $\operatorname{cov}=4 /(n(n-1))-p^{2}$.

Adding up and simplifying leads to the final answer $2-\frac{2}{n-1}$.
2. (a) A coin comes up heads with probability $p \in[0,1]$; it is tossed independently n times, and X is the total number of heads. Simplify the generating function

$$
G(s)=E\left(s^{X}\right)
$$

and show how derivatives of G can be used to calculate $E(X)$ and $E\left(X^{2}\right)$.
(b) Random variables $U, U_{1}, U_{2}, \ldots, U_{n}$ are independent, and uniformly distributed in [0,1]. Let

$$
Y=\sum_{1}^{n} 1_{\left\{U_{i}<U\right\}}
$$

be the sum of indicators, counting how many of the U_{i} are less than U. Simplify the generating function

$$
H(s)=E\left(s^{Y}\right),
$$

and then simplify the ratio, $P(Y=2) / P(Y=1)$. HINT: conditionally on $U=p$, this Y is distributed as the X in part (a).

For (a), the answer is straightforward:

$$
G(s)=G(s ; p)=\sum_{k=0}^{n}\binom{n}{k}(s p)^{k}(1-p)^{n-k}=(1+(s-1) p)^{n} .
$$

The general definition of the (probability) generating function G_{X} of an integer-valued random variable X implies

$$
E(X)=G_{X}^{\prime}(1), E\left(X^{2}-X\right)=G_{X}^{\prime \prime}(1) .
$$

After conditioning on $U=p$ and integrating, we get the answer to part (b):

$$
H(s)=\int_{0}^{1} G(s ; p) d p=\frac{s^{n+1}-1}{(n+1)(s-1)}=\frac{1+s+\ldots+s^{n}}{n+1}
$$

The answer shows that Y is uniform on $\{0,1, \ldots, n\}$, and, in particular,

$$
\frac{P(Y=2)}{P(Y=1)}=1
$$

3. Let $X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{m}$ be iid uniform on $(0,1)$.
(a) Compute the probability density function of $\max \left(Y_{1}, \ldots, Y_{m}\right)$.
(b) Compute the probability density function of

$$
\frac{\max \left(X_{1}, \ldots, X_{n}\right)}{\max \left(Y_{1}, \ldots, Y_{m}\right)}
$$

The distribution function of the max of m iid uniforms is $x^{m}, x \in(0,1)$ (all m of them must be less than x), and the density is $m x^{m-1}$.

The answer for (b) is $c u^{n-1}, 0<u<1$ and $c / u^{m+1}, u>1$, where $c=m n /(m+n)$.
The solution for (b) is straightforward from the formula for the density of the ratio of two independent random variables; a complete solution should include a picture, such as the image of the unit square under the corresponding transformation.

