Kayla Orlinsky
 Algebra Exam Cheat Sheet

Theorem 1. Isomorphism Theorems

$$
G / \operatorname{ker}(\varphi) \cong \operatorname{Im}(\varphi) \quad H / N \cap H \cong N H / N \quad(G / K) /(H / K) \cong G / H
$$

Theorem 2. Sylow Theorems

$$
\text { If: }|G|<\infty
$$

Then:
(1) Sylow p-subgroups exist for all p
(2) For fixed p, Sylow p-subgroups are conjugates
(3) The number of Sylow p-subgroups n_{p} satisfies the following:

$$
\begin{aligned}
& \text { \&- } n_{p} \equiv 1 \bmod p \\
& \text { ㄴ. If } G=p^{n} m \text { where } \operatorname{gcd}(p, m)=1 \text {, then } n_{p} \text { divides } m \\
& \text { ㄴ. } n_{p}=\left[G: N_{G}(P)\right]
\end{aligned}
$$

Theorem 3. Recognizing Direct Products

$$
G \cong H \times K \quad \square \quad \begin{aligned}
& \text { \&. } \\
& \text { \&. } G \text { has two normal subgroups } H, K \\
& \text { \&. } H K=G \\
& \text { \&. } H \cap K=\{e\} \\
& \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Theorem 4. Recognizing Semi-Direct Products
If:
\& G has a subgroup H and a normal subgroups N
ㄴ. $H N=G$
f. $H \cap N=\{e\}$

Then: $G \cong N \rtimes_{\varphi} H$ assuming there exists a non-trivial homomorphism $\varphi: H \rightarrow$ $\operatorname{Aut}(N)$.
***Note that if a semi-direct product exists, then its multiplication is given by $n h n^{-1}=$ $\varphi(h)(n)$ for $h \in H, n \in N$.

Theorem 5. Isomoprhic Semi-Direct Products

Given $N \rtimes_{\varphi_{1}} H$ and $N \rtimes_{\varphi_{2}} H$ with $\varphi_{1}, \varphi_{2}: H \rightarrow \operatorname{Aut}(N)$
If:
\& there exists an automorphism $\sigma: H \rightarrow H$ such that $\varphi_{1} \circ \sigma=\varphi_{2}$
\&- $O R$ there exists an automorphism $\alpha: N \rightarrow N$ so

$$
\varphi_{1}(h)=\alpha \circ \varphi_{2}(h) \circ \alpha^{-1} \text { for all } h \in H
$$

\& $O R$ a there exists both σ and α so $\left(\varphi_{1} \circ \sigma\right)(h)=\alpha \circ \varphi_{2}(h) \circ \alpha^{-1}$ for all $h \in H$

Then:

$$
N \rtimes_{\varphi_{1}} H \cong N \rtimes_{\varphi_{2}} H
$$

Example 1.

Determine all semi-direct products up to isomorphism of $\mathbb{Z}_{15} \rtimes \mathbb{Z}_{67}$

First, let $\mathbb{Z}_{3} \cong\langle a\rangle, \mathbb{Z}_{5} \cong\langle b\rangle$, and $\mathbb{Z}_{67} \cong\langle c\rangle$.
Then since $\operatorname{Aut}\left(\mathbb{Z}_{67}\right) \cong \mathbb{Z}_{66}$ we have that $\varphi(b)=$ id since 5 does not divide the order of \mathbb{Z}_{66} and $\varphi(a)=\alpha$ where α has order 3 .

Since \mathbb{Z}_{66} is abelian, there are exactly two non-trivial options for α and one will be the square of the other. Namely, if $\varphi_{1}(a)=\alpha$ and $\varphi_{2}(a)=\alpha^{2}$, then $\varphi_{1}\left(a^{2}\right)=\varphi_{2}(a)$ and since $a \mapsto a^{2}$ is an automorphism of \mathbb{Z}_{3}, these will generate isomorphic semi-direct products.

One can check that $\alpha^{3}(c)=\alpha^{2}\left(c^{29}\right)=\alpha\left(c^{37}\right)=c$ has order 3 and defines multiplication for G given by $b c b^{-1}=\varphi(b)(c)=c$ and $a c a^{-1}=\varphi(a)(c)=c^{29}$.

Thus, $\mathbb{Z}_{15} \rtimes \mathbb{Z}_{67} \cong\left\langle a, b, c \mid a^{3}=b^{5}=c^{67}=1, a b=b a, b c=c b, a c=c^{29} a\right\rangle$.

Theorem 6. Classification of Finitely Generated Abelian Groups

If: G is a finitely generated abelian group
Then:

$$
G \cong \mathbb{Z}^{m} \oplus \mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \cdots \oplus \mathbb{Z}_{n_{m}} \quad n_{i} \mid n_{i+1} \forall i
$$

${ }^{* * *}$ Note that it is possible to break each of the $\mathbb{Z}_{n_{i}}$ into its prime power divisors and reorder, however, the primes may not be distinct.
For example, $\mathbb{Z}_{12} \times \mathbb{Z}_{2}=\mathbb{Z}_{2} \times \mathbb{Z}_{2^{2}} \times \mathbb{Z}_{3}$ which is of course different from $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3}$.

Definition 1. Solvable Groups

A group G is solvable if there exists a subnormal series

$$
\{e\} \unlhd G_{n} \unlhd G_{n-1} \unlhd \cdots \unlhd G_{0}=G \quad G_{i-1} / G_{i} \text { abelain } \forall i
$$

Lemma 1. Facts about Solvable Groups

E Subgroups and quotients of solvable groups are solvable
E If N is normal in G and solvable, and G / N is solvable, then G is solvable
E S_{n} is not solvable for $n \geq 5\left(S_{3}\right.$ and S_{4} are solvable)

Lemma 2. Useful Results that Should be Reproved
For $|G|<\infty$

E If P is a Sylow p-subgroup of a normal subgroup $N \unlhd G$ and $P \unlhd N$, then P is normal in G.

E If p is the smallest prime dividing $|G|$, then any subgroup of index p is normal in G.

Lemma 3. Crucial (and Citeable) Results
For $|G|<\infty$

E The product of a subgroup and a normal subgroup is again a subgroup
E If $|H K|=\frac{|H||K|}{|H \cap K|}=|G|$ then $H K=G$ even if neither H nor K is normal

E From the class equation：p－groups（groups of order p^{n} for p prime）have non－trivial centers．

Ⓔ Inductively on the previous result：p－groups are solvable
E Groups of order p^{2} are abelian
© Groups of order $p q$ where p does not divide $q-1$ are abelian
E If all of the Sylow subgroups of G are normal，then G is a direct product of its Sylow subgroups．

Lemma 4．Facts about the Symmetric Group

In S_{n} ：

ㅌ Any cycle σ can be written as a product of transpositions：an even number of transpo－ sitions means σ is even，an odd number of transpositions means σ is odd

E A k－cycle is even when k is odd，and odd when k is even
© A product of two even permutations is even
E A product of two odd permutations is odd
－A product of an even permutation and an odd permutation is odd
E Any cycle can be written as a product of disjoint cycles and the order of a cycle is the lcm of its disjoint cycle lengths．

E S_{n} is not solvable for all $n \geq 5, S_{4}$ is solvable and S_{3}

Formula 1．Automorphism Groups

产 $\operatorname{Aut}(H \times K) \cong \operatorname{Aut}(H) \times \operatorname{Aut}(K)$ if $|H|$ and $|K|$ are coprime．
） $\operatorname{Aut}\left(\mathbb{Z}_{m}\right) \cong \mathbb{Z}_{\varphi(m)}$ where φ is the Euler totient function，

$$
\varphi\left(p_{1}^{e_{1}} \cdots p_{n}^{e_{n}}\right)=\varphi\left(p_{1}^{e_{1}}\right) \cdots \varphi\left(p_{n}^{e_{n}}\right)=\left(p_{1}^{e_{1}}-p_{1}^{e_{1}-1}\right) \cdots\left(p_{n}^{e_{n}}-p_{n}^{e_{n}-1}\right)
$$

炸 $\operatorname{Aut}\left(\mathbb{Z}_{p}^{n}\right) \cong G L_{n}\left(\mathbb{F}_{p}\right)$
鮻 for $q=p^{k}\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|=\left(q^{n}-1\right)\left(q^{n}-q\right)\left(q^{n}-q^{2}\right) \cdots\left(q^{n}-q^{n-1}\right)$（because each matrix is invertible so the columns must be linearly independnet，namely，q^{n} choices for first column，minus 0 vector；q^{n} choices for second column minus a linear combination of the first，so minus $q ; q^{n}$ choices for third minus q^{2} for all the linear combinations of the previous two；etc．
) $\left|S L_{n}\left(\mathbb{F}_{q}\right)\right|=\frac{1}{q-1}\left|G L_{n}\left(\mathbb{F}_{q}\right)\right|$ because we quotient by the determinant.

Definition 2. Group Action

A group action of a group G on a set X defines a homomorphism $\varphi: G \rightarrow S_{|X|}$ defined by $\varphi(g)=\sigma_{g}$ where

$$
\begin{aligned}
\sigma_{g}: X & \rightarrow X \\
x & \mapsto g \cdot x
\end{aligned}
$$

***The two most useful group actions for qualifiying exams are:
E Conjugation action on a set of Sylow p-subgroups to help determine if they are normal

트 Left multiplication on cosets of a subgroups to help determine if the subgroup is normal

Example 2.

Prove that there are no simple groups of order 600.

Let G be a group of order $600=10 \cdot 10 \cdot 6=2^{3} \cdot 3 \cdot 5^{2}$.
By the Sylow Theorems, $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 2^{3} \cdot 3$ so $n_{5}=1,6$.
If G is simple, then $n_{5}=6$ and we can let G act on its Sylow 5 subgroups by conjugation (since Sylow 5-subgroups are conjugates).

This action defines a homomorphism $\varphi: G \rightarrow S_{6}$ where

$$
\begin{aligned}
\varphi(g)=\sigma_{g}: \operatorname{Syl}_{5}(G) & \rightarrow \operatorname{Syl}_{5}(G) \\
P_{5} & \mapsto g P_{5} g^{-1}
\end{aligned}
$$

with P_{5} a Sylow 5-subgroup of G.
Since kernels of homomorphisms are normal subgroups in the domain, if G is simple $\operatorname{ker} \varphi=\{e\}$. Namely, φ must be an embedding.

However, $\left|S_{6}\right|=6!=720$, and since $|G|=600$ which does not divide 720 , there cannot be any isomorphic copies of G inside S_{6}.

This is a contradiction and so $n_{5}=1$ and G cannot be simple.

Example 3.

For $n \geq 5$, there are no subgroups of S_{n} with $2<\left[S_{n}: H\right]<n$.

Let H be a subgroup of S_{n} such that $2<\left[S_{n}: H\right]=k<n$. Let S_{n} act on $X=S_{n} / H$ the set of left cosets of H by left-multiplication.

Then because $2<|X|<n$, this induces a homomorphism from S_{n} to S_{k} where $k=|X|$.
Specifically, this defines a map

$$
\begin{array}{rlrl}
\varphi: S_{n} & \rightarrow S_{|X|}=S_{k} & \sigma_{a}: X & \rightarrow X \\
a & \mapsto \sigma_{a} & b H & \mapsto a b H
\end{array}
$$

Now, we note that if $a \in \operatorname{ker} \varphi$, then $a b H=b H$ for all $b \in S_{n}$ and so namely, $a b h=b h^{\prime}$ for $h, h^{\prime} \in H$ so $a=b h^{\prime} h^{-1} b^{-1} \in b H b^{-1}$ for all $b \in S_{n}$ and so namely, $\operatorname{ker}(\varphi) \subset H$.

Finally, we note that for $n \geq 5$, the only normal subgroups of S_{n} are the trivial subgroup, S_{n} itself, and A_{n}. Since $\left[S_{n}: A_{n}\right]=2<\left[S_{n}: H\right]<n, \operatorname{ker}(\varphi) \neq S_{n}$ and not A_{n}.

Namely, the kernel is trivial and so we have an embedding of S_{n} into a symmetric group of strictly smaller degree, which is of course, nonsense.

Thus, H cannot exist.

Definition 3. Galois Field Extension

If E / F is finite then E / F is Galois if E is the splitting field of a separable (all roots are distinct) polynomial $f \in F[x]$

Theorem 7. Fundamental Theorem of Galois Theory
If: E / F is Galois
Then:
E is the splitting field of a separable polynomial $f(x) \in F[x]$ of degree n, and $G=\operatorname{Gal}(E / F)$ is the set of automorphisms of E which fix F. Additionally,
\& Every automorphism in G permutes the roots of each irreducible factor of f
\& $|G|=[E: F] \leq n$!
in There is a 1-to-1 correspondence between subgroups of G and subfields of E containing F
\& If H is a subgroup of G then there exists $K \subset E$ with $F \subset K$ so $H=\operatorname{Gal}(E / K)$. Namely, $|H|=[E: K],[G: H]=[K: F]$

1. And H is normal in G if and only if K is Galois over F, and in this case $\operatorname{Gal}(K / F) \cong G / H$

Theorem 8. Eisenstein's Criterion

If:
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ where a_{i} are an a UFD D, and there exists a prime element p such that $p \nmid\left|a_{n}, p\right| a_{i}$ for all $i \neq n$ and $p^{2} \nmid \mid a_{0}$,

Then: $f(x)$ is irreducible in $D[x]$ and in $F[x]$ where F is the field of fractions of D.

Lemma 5. Facts about Galois Extensions

If ξ_{n} is a primitive $n^{\text {th }}$ root of unity, then $\left[\mathbb{Q}\left(\xi_{n}\right): \mathbb{Q}\right]=\varphi(n)$ where φ is the Euler totient function. Additionally, $\varphi(n)$ is the number of primitive $n^{\text {th }}$ roots of unity.

E If ξ_{n} is a primitive $n^{\text {th }}$ root of unity, then the splitting field K of $x^{n}-1$ over \mathbb{F}_{q} for $q=p^{t}$ some t, p prime, is a finite extension of \mathbb{F}_{q}. Namely, $K=\mathbb{F}_{q^{k}}$ some k. Now, to find k, we note that $\xi_{n}^{n+1}=\xi_{n}$ and $\xi_{n}^{q^{k}}=\xi_{n}$ because $\xi_{n} \in K$. Since $\xi_{n}^{n}=1$, and n is minimal, we have that n divides $q^{k}-1$. The smallest such k is the degree of the extension. Namely,

$$
\left[\mathbb{F}_{q}\left(\xi_{n}\right): \mathbb{F}_{q}\right]=k \quad q^{k} \equiv 1 \quad \bmod n \text { for } k \text { minimal. }
$$

© In fields of characteristic 0 , irreducible implies separable

Example 4.

Let L be a Galois extension of a field F with $\operatorname{Gal}(L / F) \cong D_{10}$, the dihedral group of order 10. How many subfields $F \subset M \subset L$ are there, what are their dimensions over F, and how many are Galois over F ?
$\left|D_{10}\right|=10=2 \cdot 5$. Thus, by Sylow, $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 2$ so $n_{5}=1$. Thus, D_{10} has one Sylow 5 -subgroup which is normal. Since D_{10} is not abelian, $n_{2} \neq 1$. Thus, $n_{2} \equiv 1$ $\bmod 2$ and $n_{2} \mid 5$ so $n_{2}=5$.

There is the trivial subgroup $\{e\}$ which corresponds to the basefield F which is trivially Galois over itself.

There are 5 subgroups $P_{i} i=1, \ldots, 5$ of order 2, which are not normal in G. Thus, there are 5 intermediate fields $F \subset M_{i} \subset L i=1, \ldots, 5$, such that $\left|P_{i}\right|=\left[L: M_{i}\right]=2$ so $\left[M_{i}: F\right]=5$ and M_{i} / F is not a Galois extension for $i=1, \ldots, 5$.

There is 1 normal subgroup of order $5 Q$. Thus, there is one intermediate field $F \subset K \subset L$ with $|Q|=5=[L: K]$ and $[K: F]=2$ and K / F is a Galois extension.

Finally, there is the top field L which corresponds to $D_{10}=\operatorname{Gal}(L / F)$ which is Galois over F and $[L: F]=10$.

Definition 4. Solvable Field Extension

If E / F is a solvable extension if there exists a chain

$$
F \subset F\left(\alpha_{1}\right) \subset F\left(\alpha_{1}, \alpha_{2}\right) \subset \cdots \subset F\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=E
$$

and for all i there exists an r_{i} such that $\alpha_{i+1}^{r_{i}} \in F\left(\alpha_{1}, \ldots, \alpha_{i}\right)$.

Theorem 9. Solvable by Radicals
If: E and F are characteristic 0 and E is the splitting field of $f(x) \in F[x]$ (f separable)
Then:
f is solvable by $\Longleftrightarrow E / F$ is a radical $\Longleftrightarrow \operatorname{Gal}(E / F)$ is a radicals extension solvable group

Theorem 10. Finite Fields
If: \mathbb{F}_{q} is the field of q elements where p is prime Then:

ㄴ. $q=p^{n}$ for some prime p
\& \mathbb{F}_{q} is the splitting field (and set of roots) of $x^{q}-x$
\&- Any other field of q elements will be isomorphic to \mathbb{F}_{q}

Theorem 11. Isomorphism Theorems
If R is a ring (or a module) and I, J are ideals (or submodules)

$$
R / \operatorname{ker}(\varphi) \cong \operatorname{Jm}(\varphi) \quad I+J / I \cong J / I \cap J \quad(R / J) /(I / J) \cong R / I
$$

Definition 5. General Info about Ideals

■ I is an ideal of R if $x, y \in I$ implies $x-y \in I$, and if $r x \in I$ for all $r \in R$.
트 $I+J=\{x+y \mid x \in I, y \in J\}$ is an ideal
트 $I J=\left\{\sum_{i=1}^{n} x_{i} y_{i} \mid x_{i} \in I, y_{i} \in J\right\}$ is an ideal
E Prime ideal P is such that $a b \in P$ implies $a \in P$ or $b \in P$ (if R is commutative then R / P is a domain)

E If R is commutative and M is a maximal ideal, then R / M is a field.
트 $\sqrt{I}=\left\{r \in R \mid\right.$ there exists m so $\left.r^{m} \in I\right\}$.

Definition 6. General Info about Rings

E D is integrally closed if for every $k \in K$ the field of fractions of D, if k is algebraic over D (there exists $f \in D[x]$ so $f(k)=0$) then $k \in D$

E R is Noetherian if it has ACC
트 R is artinian if it has DCC

Theorem 12. Cayley Hamilton
Any matrix satisfies its characteristic polynomial.

Theorem 13. Chinese Remainder Theorem
If: $I_{1}, I_{2}, \ldots, I_{n}$ are pairwise coprime $\left(1 \in I_{l}+I_{k}\right.$ for all $\left.k \neq l\right) 2$-sided ideals of R Then:

$$
R / \bigcap_{k=1}^{n} I_{k} \cong R / I_{1} \times R / I_{2} \times \cdots \times R / I_{n}
$$

${ }^{* * *}$ Note that if R is commutative then $\bigcap_{k=1}^{n} I_{k}=\prod_{k=1}^{n} I_{k}$.

Theorem 14. Gauss' Lemma

If: D is a domain, and K its field of fractions
Then: f is irreducible in $D[x] \Longleftrightarrow f$ is irreducible in $K[x]$

Theorem 15. Correspondence Theorem
There is a 1 -to- 1 correspondence between:
$\{$ maximal ideals of $R / I\} \Longleftrightarrow\{$ maximal ideals of R containing $I\}$.

Example 5.

Prove that a power of the polynomial $(x+y)\left(x^{2}+y^{4}-2\right)$ belongs to the ideal $\left(x^{3}+y^{2}, x^{3}+x y\right)$ in $\mathbb{C}[x, y]$.

It suffices to show that $(x+y)\left(x^{2}+y^{4}-2\right)$ is satisfied by all zeros in $V\left(x^{3}+y^{2}, x^{3}+x y\right)$ since by Nullstellenzatz, if $g(x, y)$ is a polynomial such that $g(a, b)=0$ for all $(a, b) \in V(I)$, then there exists an n such that $g^{n}(x, y) \in I$.

Let $g(x, y)=(x+y)\left(x^{2}+y^{4}-2\right)$. Clearly $(0,0) \in V\left(x^{3}+y^{2}, x^{3}+x y\right)$. If $x^{3}+y^{2}=0$ and $x^{3}+x y=0$ then $y^{2}-x y=0$, so $y(y-x)=0$. If $y=0$ then $x=0$, and if $y=x$, then $x^{2}(x+1)=0$, so $x=-1$.

Thus, the only elements of $V\left(x^{3}+y^{2}, x^{3}+x y\right)$ are $(0,0),(-1,-1)$.
Since $g(0,0)=0$ and $g(-1,-1)=0$, we have that there exists an n such that $g^{n}(x, y) \in$ $\left(x^{3}+y^{2}, x^{3}+x y\right)$.

Theorem 16. Nullstellensatz
-
․ Maximal ideals of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ are of the form $\left(x_{1}-a_{1}, x_{2}-a_{2}, \ldots, x_{n}-a_{n}\right)$ for $\left(a_{1}, \ldots, a_{n}\right) \in$ \mathbb{C}^{n}
\&. \sqrt{I} is the intersection of all maximal ideals of $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ containing I
\& There is a 1-to- 1 correspondence between $V(I)$ and \sqrt{I}
나 $V(I)=\varnothing \Longleftrightarrow 1 \in I$ (proper ideals have nonempty variety)
\& If $g(a)=0$ for all $a \in V(I) \Longleftrightarrow g \in \sqrt{I}$ (there exists m such that $g^{m} \in I$)

Theorem 17. Generalized Nullstellensatz

If: k is a field and K is its algebraic closure,
Then:
\& for $I \subset k\left[x_{1}, \ldots, x_{n}\right]$ and $V(I) \subset K^{n}, V(I)=\varnothing \Longleftrightarrow 1 \in I$ (proper ideals have nonempty variety)
\& If $g(a)=0$ for all $a \in V(I) \subset K^{n} \Longleftrightarrow$ there exists m such that $g^{m} \in I \subset$ $k\left[x_{1}, \ldots, x_{n}\right]$

Theorem 18. Hilbert Basis Theorem
If: R is Noetherian
Then: $R[x]$ is Noetherian
${ }^{* * *}$ Note that R is Noetherian \Longleftrightarrow every ideal of R is finitely generated

Lemma 6. Facts about Rings and Ideals

EIf R is a ring with 1 , then for any ideal I there exists a maximal ideal M so $I \subset M$

- If D is a UFD, then $D[x]$ is UFD
- If F is a field, $F[x]$ is a PID

E UFDs are integerally closed in their field of fractions (by Gauss' Lemma)
E If R is Noetherian and I is a 2 -sided ideal, then R / I is Noetherian
E If R is artinian, R / I is artinian for any ideal (including one-sided) of R.

Example 6.

If F and $L=F\left[x_{1}, \ldots, x_{n}\right] / M$ are fields, then L is a finite field extension of F.

We proceed by induction on n. Basecase: let $L=F\left[a_{1}\right]$ be a field. Then for $f\left(a_{1}\right) \in L$ there exists $g\left(a_{1}\right) \in L$ such that $f\left(a_{1}\right) g\left(a_{1}\right)=1 \in L$ and so a_{1} satisfies $h(x)=f(x) g(x)-1$. Namely, a_{1} is algebraic over F and so L is a finite field extension of F.

Assume $L=F\left[a_{1}, \ldots, a_{k}\right]$ is a finite field extension of F for all $k \leq n$.
Then let $L=F\left[a_{1}, \ldots, a_{n}\right]\left[a_{n+1}\right]$. Since L is a field, by the same reasoning as the basecase, L is algebraic over $F\left[a_{1}, \ldots, a_{n}\right]$. However, by the inductive hypothesis, $F\left[a_{1}, \ldots, a_{n}\right]$ is a finite field extension of F and so $[L: F]=\left[L: F\left[a_{1}, \ldots, a_{n}\right]\right]\left[F\left[a_{1}, \ldots, a_{n}\right]: F\right]<\infty$.

Example 7.

If L is a finite field extension of F, then there exists only finitely many embeddings of L into K the algebraic closure of F.

We proceed by induction. Basecase: let $L=F\left(a_{1}\right)$ be a finite extension of F. Because a_{1} is algebraic over F, it has minimal (irreducible) polynomial

$$
f(x)=x^{n}+\alpha_{n-1} x^{n-1}+\cdots+\alpha_{1} x+\alpha_{0} \in F[x] .
$$

Now, if $\varphi: L \hookrightarrow K$, because $\varphi(1)=1, \varphi$ is F-linear and so

$$
\varphi\left(f\left(a_{1}\right)\right)=\varphi\left(a_{1}\right)^{n}+\alpha_{n-1} \varphi\left(a_{1}\right)^{n-1}+\cdots+\alpha_{1} \varphi\left(a_{1}\right)+\alpha_{0}=0
$$

so φ permutes the roots of $f(x)$. Note that K is the algebraic closure of F and so contains all such roots.

Thus, there are only finitely many possible choices of φ since there are only finitely many roots of $f(x)$.

Now, assume there are only finitely many injections of $L=F\left(a_{1}, \ldots, a_{k}\right)$ to K for $k \leq n$.
Then we examine $L=F\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=F\left(a_{1}, \ldots, a_{n}\right)\left(a_{n+1}\right)$. Then there are only finitely many $F\left(a_{1}, \ldots, a_{n}\right)$-linear injections from $L \hookrightarrow K$ by the same reasoning as the basecase, and by the induction hypothesis, only finitely many F-linear injections from $F\left(a_{1}, \ldots, a_{n}\right) \hookrightarrow K$.

Since any injection $L \hookrightarrow K$ will be defined by where it sends the a_{i}, and since there are only finitely many choices for where to send a_{1}, \ldots, a_{n} and only finitely many choices for where to send a_{n+1}, we have only finitely many possible injections of L into K.

Definition 7. Module

A module (left or right, rarely 2-sided) over a ring is the generalization of a vector space over a field.

There is no notion of multiplication in a module other than multiplication by scalars in the base ring.

Theorem 19. Classification of Finitely Generated Modules

If: R is a PID and M is finitely generated over R

Then: $M \cong R^{n} \oplus T(M)$ where $R^{n} \cong R \oplus R \oplus \cdots \oplus R$ is the free part of M and $T(M)=\{m \in M \mid$ there exists $0 \neq r \in R$ so $r m=0\}$ is the torsion submodule of M.
*** We can write $T(M) \cong R /\left(a_{1}\right) \oplus \cdots \oplus R /\left(a_{n}\right)$ for

$$
\left(a_{1}\right) \supset\left(a_{2}\right) \supset \cdots \supset\left(a_{n}\right)
$$

all ideals.

Definition 8. Projective Module
An R-module P is projective if there exists an R-module N so $P \oplus N$ is free (so for some $n, P \oplus N \cong R^{n}$.

Lemma 7. Facts about Modules

E M is simple if $M \cong R / M$ for some maximal (left or right) ideal M.
E If P is projective and $0 \longrightarrow N \longrightarrow M \longrightarrow P \longrightarrow 0$ is a short exact sequence, then $M \cong P \oplus N$

Lemma 8. Facts about Jacobson Radical

E $J(R)$ is the intersection of all maximal (right) ideals of R
E $J(R)$ is quasi-regular, so for all $r \in J(R), 1-r$ is invertible in R.
E If R is artinian, then $J(R)$ is nilpotent
E If R is commutative, then $J(R)$ contains all the nilpotent elements of R.
르 $J(R / J(R))=0$

Theorem 20. Schur's Lemma
If: M and N are simple R-modules
Then: any module homomorphism $f: M \rightarrow N$ is either identically 0 or an isomorphism.

Definition 9. Algebra over a field
An algebra over a field is a vector space with a multiplication action which has F in its center (it is a ring and a vector space at the same time).

Lemma 9. Fact about Algebras
If A is a finite dimensional F-algebra for F a field, then A is artinian and Noetherian

Theorem 21. Frobenius Theorem
If: D is a division ring which is finite dimensional over \mathbb{R}
Then: $D \cong \mathbb{R}, \mathbb{C}, \mathbb{H}$.

Theorem 22. Artin-Wedderburn

TFAE:
\&. R is artinian and $J(R)=0$
1- R is semi-simple (R is a finite direct sum of minimal left ideals)
ㄴ. $R \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)$ for D_{i} division rings over R.
${ }^{* * *}$ Note that a finite division ring is a finite field by Wedderburn's Little Theorem

Definition 10. Group Algebra

If G is a finite group and F is a field with $\operatorname{char}(F)$ coprime to $|G|$, then $F[G]$ is the set of sums of elements of the form $a g$ where $a \in F$ and $g \in G$.

Lemma 10. Facts about Group Algebras

© Maschke's Theorem: $F[G]$ as from the previous definition is semi-simple

- If $F[G]=M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)$, then D_{i} are division rings over F.

E By Frobenius, $n_{i}| | G \mid$ for all i and $|G|=\sum_{i=1}^{n} n_{i}^{2}$

Example 8.

Determine up to isomorphism the algebra structure of $\mathbb{C}[G]$ where $G=S_{3}$ is the symmetric group of degree 3 .

By Artin Wedderburn, $\mathbb{C}\left[S_{3}\right]$ is semi-simple of dimension 6 so

$$
\mathbb{C}\left[S_{3}\right] \cong \mathbb{C}^{a} \oplus\left(M_{2}(D)\right)^{b}
$$

where D is a division ring over \mathbb{C}.
Note that $M_{n}(D)$ cannot appear for $n>2$ since the dimension of the algebra is 6 and $M_{3}(D)$ has dimension $3^{2}=9$. For the same reason, there can be only one copy of $M_{2}(D)$. Namely, $b=0,1$.

Furthermore, by Frobenius, the only division ring over \mathbb{C} is \mathbb{H}, and since $\mathbb{C} \subset Z\left(\mathbb{C}\left[S_{3}\right]\right)$ is contained in the center of the algebra (definition of algebra), we have that \mathbb{H} cannot appear in the decomposition. Also, $D=\mathbb{C}$ since any central division ring over an algebraically closed field is the base field.

Finally, since S_{3} is non commutative, $b=1$ and so

$$
\mathbb{C}\left[S_{3}\right] \cong \mathbb{C}^{2} \oplus M_{2}(D)
$$

Definition 11. Tensor Product

Tensor product of R-modules is an R-modules with a universal property, that for all abelian groups G, and homomorphism $f: A \times B \rightarrow G$, and $i: A \times B \rightarrow A \otimes_{R} B$ defined by $i(a, b)=a \otimes b$, there exists a unique g such that the diagram commutes, namely $f=g \circ i$.

Facts of tensor sums:

르 If $r \in R, r(a \otimes b)=r a \otimes b=a \otimes r b$.
트 $(a+b) \otimes c=a \otimes c+b \otimes c$.
르 $0 \otimes b=a \otimes 0=0$.

Lemma 11. Facts about Tensor Products
ㄹ $R \otimes_{R} M \cong M \cong M \otimes_{R} R$
트

$$
\begin{aligned}
& (M \oplus N) \otimes_{R} Q \cong\left(M \otimes_{R} Q\right) \oplus\left(N \otimes_{R} Q\right), \\
& Q \otimes_{R}(M \oplus N) \cong\left(Q \otimes_{R} M\right) \oplus\left(Q \otimes_{R} N\right)
\end{aligned}
$$

© Tensor is right exact, namely given a sequence

$$
0 \longrightarrow N \longrightarrow M \longrightarrow Q \longrightarrow 0
$$

we have that

$$
N \otimes_{R} P \longrightarrow M \otimes_{R} P \longrightarrow Q \otimes_{R} P \longrightarrow 0
$$

