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á1Group Classification Theory 1á

Theorem 1. Isomorphism Theorems

G�ker(ϕ) ∼= Im(ϕ) H�N ∩H ∼= NH�N
(G/K)�(H/K) ∼=

G�H

Theorem 2. Sylow Theorems
If: |G| <∞
Then:

(1) Sylow p-subgroups exist for all p

(2) For fixed p, Sylow p-subgroups are conjugates

(3) The number of Sylow p-subgroups np satisfies the following:

á np ≡ 1 mod p

á If G = pnm where gcd(p,m) = 1, then np divides m
á np = [G : NG(P )]

Theorem 3. Recognizing Direct Products

G ∼= H ×K ⇐⇒

á

á G has two normal subgroups H,K

á HK = G

á H ∩K = {e}
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Theorem 4. Recognizing Semi-Direct Products
If:

á G has a subgroup H and a normal subgroups N

á HN = G

á H ∩N = {e}

Then: G ∼= N oϕ H assuming there exists a non-trivial homomorphism ϕ : H →
Aut(N).

***Note that if a semi-direct product exists, then its multiplication is given by nhn−1 =
ϕ(h)(n) for h ∈ H, n ∈ N .

Theorem 5. Isomoprhic Semi-Direct Products
Given N oϕ1 H and N oϕ2 H with ϕ1, ϕ2 : H → Aut(N)

If:
á there exists an automorphism σ : H → H such that ϕ1 ◦ σ = ϕ2

á OR there exists an automorphism α : N → N so
ϕ1(h) = α ◦ ϕ2(h) ◦ α−1 for all h ∈ H

á OR a there exists both σ and α so (ϕ1 ◦ σ)(h) = α ◦ ϕ2(h) ◦ α−1 for all h ∈ H

Then:
N oϕ1 H

∼= N oϕ2 H

Example 1.

Determine all semi-direct products up to isomorphism of Z15 o Z67

First, let Z3 ∼= 〈a〉, Z5 ∼= 〈b〉, and Z67 ∼= 〈c〉.
Then since Aut(Z67) ∼= Z66 we have that ϕ(b) =id since 5 does not divide the order of

Z66 and ϕ(a) = α where α has order 3.
Since Z66 is abelian, there are exactly two non-trivial options for α and one will be the

square of the other. Namely, if ϕ1(a) = α and ϕ2(a) = α2, then ϕ1(a2) = ϕ2(a) and since
a 7→ a2 is an automorphism of Z3, these will generate isomorphic semi-direct products.

One can check that α3(c) = α2(c29) = α(c37) = c has order 3 and defines multiplication
for G given by bcb−1 = ϕ(b)(c) = c and aca−1 = ϕ(a)(c) = c29.

Thus, Z15 o Z67 ∼= 〈a, b, c | a3 = b5 = c67 = 1, ab = ba, bc = cb, ac = c29a〉.

2



Kayla Orlinsky
Algebra

Theorem 6. Classification of Finitely Generated Abelian Groups
If: G is a finitely generated abelian group

Then:
G ∼= Zm ⊕ Zn1 ⊕ Zn2 ⊕ · · · ⊕ Znm ni|ni+1∀i.

***Note that it is possible to break each of the Zni
into its prime power divisors and

reorder, however, the primes may not be distinct.
For example, Z12×Z2 = Z2×Z22×Z3 which is of course different from Z2×Z2×Z2×Z3.

Definition 1. Solvable Groups
A group G is solvable if there exists a subnormal series

{e} E Gn E Gn−1 E · · · E G0 = G Gi−1/Gi abelain ∀i

Lemma 1. Facts about Solvable Groups

1 Subgroups and quotients of solvable groups are solvable

1 If N is normal in G and solvable, and G/N is solvable, then G is solvable

1 Sn is not solvable for n ≥ 5 (S3 and S4 are solvable)

Lemma 2. Useful Results that Should be Reproved
For |G| <∞

1 If P is a Sylow p-subgroup of a normal subgroup N E G and P E N , then P is normal
in G.

1 If p is the smallest prime dividing |G|, then any subgroup of index p is normal in G.

Lemma 3. Crucial (and Citeable) Results
For |G| <∞

1 The product of a subgroup and a normal subgroup is again a subgroup

1 If |HK| = |H||K|
|H∩K| = |G| then HK = G even if neither H nor K is normal
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1 From the class equation: p-groups (groups of order pn for p prime) have non-trivial
centers.

1 Inductively on the previous result: p-groups are solvable

1 Groups of order p2 are abelian

1 Groups of order pq where p does not divide q − 1 are abelian

1 If all of the Sylow subgroups of G are normal, then G is a direct product of its Sylow
subgroups.

Lemma 4. Facts about the Symmetric Group
In Sn:

1 Any cycle σ can be written as a product of transpositions: an even number of transpo-
sitions means σ is even, an odd number of transpositions means σ is odd

1 A k-cycle is even when k is odd, and odd when k is even

1 A product of two even permutations is even

1 A product of two odd permutations is odd

1 A product of an even permutation and an odd permutation is odd

1 Any cycle can be written as a product of disjoint cycles and the order of a cycle is the
lcm of its disjoint cycle lengths.

1 Sn is not solvable for all n ≥ 5, S4 is solvable and S3

Formula 1. Automorphism Groups

 Aut(H ×K) ∼= Aut(H)× Aut(K) if |H| and |K| are coprime.

 Aut(Zm) ∼= Zϕ(m) where ϕ is the Euler totient function,

ϕ(pe1
1 · · · pen

n ) = ϕ(pe1
1 ) · · ·ϕ(pen

n ) = (pe1
1 − pe1−1

1 ) · · · (pen
n − pen−1

n )

 Aut(Zn
p ) ∼= GLn(Fp)

 for q = pk |GLn(Fq)| = (qn − 1)(qn − q)(qn − q2) · · · (qn − qn−1) (because each matrix
is invertible so the columns must be linearly independnet, namely, qn choices for first
column, minus 0 vector; qn choices for second column minus a linear combination of
the first, so minus q; qn choices for third minus q2 for all the linear combinations of the
previous two; etc.
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 |SLn(Fq)| = 1
q−1 |GLn(Fq)| because we quotient by the determinant.

Definition 2. Group Action
A group action of a group G on a set X defines a homomorphism ϕ : G→ S|X| defined

by ϕ(g) = σg where

σg : X → X

x 7→ g · x

***The two most useful group actions for qualifiying exams are:

1 Conjugation action on a set of Sylow p-subgroups to help determine if they are
normal

1 Left multiplication on cosets of a subgroups to help determine if the subgroup is
normal

Example 2.

Prove that there are no simple groups of order 600.

Let G be a group of order 600 = 10 · 10 · 6 = 23 · 3 · 52.
By the Sylow Theorems, n5 ≡ 1 mod 5 and n5|23 · 3 so n5 = 1, 6.
If G is simple, then n5 = 6 and we can let G act on its Sylow 5 subgroups by conjugation

(since Sylow 5-subgroups are conjugates).
This action defines a homomorphism ϕ : G→ S6 where

ϕ(g) = σg : Syl5(G)→ Syl5(G)
P5 7→ gP5g

−1

with P5 a Sylow 5-subgroup of G.
Since kernels of homomorphisms are normal subgroups in the domain, if G is simple

kerϕ = {e}. Namely, ϕ must be an embedding.
However, |S6| = 6! = 720, and since |G| = 600 which does not divide 720, there cannot

be any isomorphic copies of G inside S6.
This is a contradiction and so n5 = 1 and G cannot be simple.

Example 3.
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For n ≥ 5, there are no subgroups of Sn with 2 < [Sn : H] < n.

Let H be a subgroup of Sn such that 2 < [Sn : H] = k < n. Let Sn act on X = Sn/H
the set of left cosets of H by left-multiplication.

Then because 2 < |X| < n, this induces a homomorphism from Sn to Sk where k = |X|.
Specifically, this defines a map

ϕ : Sn → S|X| = Sk

a 7→ σa

σa : X → X

bH 7→ abH

Now, we note that if a ∈ kerϕ, then abH = bH for all b ∈ Sn and so namely, abh = bh′

for h, h′ ∈ H so a = bh′h−1b−1 ∈ bHb−1 for all b ∈ Sn and so namely, ker(ϕ) ⊂ H.
Finally, we note that for n ≥ 5, the only normal subgroups of Sn are the trivial subgroup,

Sn itself, and An. Since [Sn : An] = 2 < [Sn : H] < n, ker(ϕ) 6= Sn and not An.
Namely, the kernel is trivial and so we have an embedding of Sn into a symmetric group

of strictly smaller degree, which is of course, nonsense.
Thus, H cannot exist.
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á1Galois and Field Theory 1á

Definition 3. Galois Field Extension
If E/F is finite then E/F is Galois if E is the splitting field of a separable (all roots are

distinct) polynomial f ∈ F [x]

Theorem 7. Fundamental Theorem of Galois Theory
If: E/F is Galois
Then:

E is the splitting field of a separable polynomial f(x) ∈ F [x] of degree n, and
G = Gal(E/F ) is the set of automorphisms of E which fix F . Additionally,

á Every automorphism in G permutes the roots of each irreducible factor
of f

á |G| = [E : F ] ≤ n!

á There is a 1-to-1 correspondence between subgroups of G and subfields
of E containing F

á If H is a subgroup of G then there exists K ⊂ E with F ⊂ K so
H = Gal(E/K). Namely, |H| = [E : K], [G : H] = [K : F ]

á And H is normal in G if and only if K is Galois over F , and in this case
Gal(K/F ) ∼= G/H

Theorem 8. Eisenstein’s Criterion

If:
f(x) = anx

n + an−1x
n−1 + · · ·+ a1x+ a0 where ai are an a UFD D, and there

exists a prime element p such that p - |an, p|ai for all i 6= n and p2 - |a0,

Then:
f(x) is irreducible in D[x] and in F [x] where F is the field of fractions of D.

Lemma 5. Facts about Galois Extensions
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1 If ξn is a primitive nth root of unity, then [Q(ξn) : Q] = ϕ(n) where ϕ is the Euler
totient function. Additionally, ϕ(n) is the number of primitive nth roots of unity.

1 If ξn is a primitive nth root of unity, then the splitting field K of xn − 1 over Fq for
q = pt some t, p prime, is a finite extension of Fq. Namely, K = Fqk some k. Now,
to find k, we note that ξn+1

n = ξn and ξqk

n = ξn because ξn ∈ K. Since ξn
n = 1, and n

is minimal, we have that n divides qk − 1. The smallest such k is the degree of the
extension. Namely,

[Fq(ξn) : Fq] = k qk ≡ 1 mod n for k minimal.

1 In fields of characteristic 0, irreducible implies separable

Example 4.

Let L be a Galois extension of a field F with Gal(L/F ) ∼= D10, the dihedral group
of order 10. How many subfields F ⊂M ⊂ L are there, what are their dimensions over
F, and how many are Galois over F?

|D10| = 10 = 2 · 5. Thus, by Sylow, n5 ≡ 1 mod 5 and n5|2 so n5 = 1. Thus, D10 has
one Sylow 5-subgroup which is normal. Since D10 is not abelian, n2 6= 1. Thus, n2 ≡ 1
mod 2 and n2|5 so n2 = 5.

There is the trivial subgroup {e} which corresponds to the basefield F which is trivially
Galois over itself.

There are 5 subgroups Pi i = 1, ..., 5 of order 2, which are not normal in G. Thus, there
are 5 intermediate fields F ⊂Mi ⊂ L i = 1, ..., 5, such that |Pi| = [L : Mi] = 2 so [Mi : F ] = 5
and Mi/F is not a Galois extension for i = 1, ..., 5.

There is 1 normal subgroup of order 5 Q. Thus, there is one intermediate field F ⊂ K ⊂ L
with |Q| = 5 = [L : K] and [K : F ] = 2 and K/F is a Galois extension.

Finally, there is the top field L which corresponds to D10 = Gal(L/F ) which is Galois
over F and [L : F ] = 10.

Definition 4. Solvable Field Extension
If E/F is a solvable extension if there exists a chain

F ⊂ F (α1) ⊂ F (α1, α2) ⊂ · · · ⊂ F (α1, α2, ..., αn) = E

and for all i there exists an ri such that αri
i+1 ∈ F (α1, ..., αi).

8



Kayla Orlinsky
Algebra

Theorem 9. Solvable by Radicals

If: E and F are characteristic 0 and E is the splitting field of f(x) ∈ F [x] (f
separable)

Then:
f is solvable by
radicals

⇐⇒ E/F is a radical
extension

⇐⇒ Gal(E/F ) is a
solvable group

Theorem 10. Finite Fields
If: Fq is the field of q elements where p is prime

Then:

á q = pn for some prime p

á Fq is the splitting field (and set of roots) of xq − x

á Any other field of q elements will be isomorphic to Fq
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á1Rings and Nullstellensatz 1á

Theorem 11. Isomorphism Theorems
If R is a ring (or a module) and I, J are ideals (or submodules)

R�ker(ϕ) ∼= Im(ϕ) I + J�I ∼= J�I ∩ J
(R/J)�(I/J) ∼=

R�I

Definition 5. General Info about Ideals

1 I is an ideal of R if x, y ∈ I implies x− y ∈ I, and if rx ∈ I for all r ∈ R.

1 I + J = {x+ y |x ∈ I, y ∈ J} is an ideal

1 IJ = {∑n
i=1 xiyi |xi ∈ I, yi ∈ J} is an ideal

1 Prime ideal P is such that ab ∈ P implies a ∈ P or b ∈ P (if R is commutative then
R/P is a domain)

1 If R is commutative and M is a maximal ideal, then R/M is a field.

1
√
I = {r ∈ R | there exists m so rm ∈ I}.

Definition 6. General Info about Rings

1 D is integrally closed if for every k ∈ K the field of fractions of D, if k is algebraic over
D (there exists f ∈ D[x] so f(k) = 0) then k ∈ D

1 R is Noetherian if it has ACC

1 R is artinian if it has DCC

Theorem 12. Cayley Hamilton
Any matrix satisfies its characteristic polynomial.
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Theorem 13. Chinese Remainder Theorem
If:

I1, I2, ..., In are pairwise coprime (1 ∈ Il + Ik for all k 6= l) 2-sided ideals of R

Then:
R� n⋂

k=1
Ik

∼= R/I1 ×R/I2 × · · · ×R/In

***Note that if R is commutative then ⋂n
k=1 Ik = ∏n

k=1 Ik.

Theorem 14. Gauss’ Lemma
If: D is a domain, and K its field of fractions

Then: f is irreducible in D[x] ⇐⇒ f is irreducible in K[x]

Theorem 15. Correspondence Theorem
There is a 1-to-1 correspondence between:

{ maximal ideals of R/I} ⇐⇒ { maximal ideals of R containing I}.

Example 5.

Prove that a power of the polynomial (x + y)(x2 + y4 − 2) belongs to the ideal
(x3 + y2, x3 + xy) in C[x, y].

It suffices to show that (x+ y)(x2 + y4− 2) is satisfied by all zeros in V (x3 + y2, x3 + xy)
since by Nullstellenzatz, if g(x, y) is a polynomial such that g(a, b) = 0 for all (a, b) ∈ V (I),
then there exists an n such that gn(x, y) ∈ I.

Let g(x, y) = (x+ y)(x2 + y4 − 2). Clearly (0, 0) ∈ V (x3 + y2, x3 + xy). If x3 + y2 = 0
and x3 + xy = 0 then y2 − xy = 0, so y(y − x) = 0. If y = 0 then x = 0, and if y = x, then
x2(x+ 1) = 0, so x = −1.

Thus, the only elements of V (x3 + y2, x3 + xy) are (0, 0), (−1,−1).
Since g(0, 0) = 0 and g(−1,−1) = 0, we have that there exists an n such that gn(x, y) ∈

(x3 + y2, x3 + xy).

Theorem 16. Nullstellensatz
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á

á Maximal ideals of C[x1, ..., xn] are of the form (x1−a1, x2−a2, ..., xn−an) for (a1, ..., an) ∈
Cn

á
√
I is the intersection of all maximal ideals of C[x1, ..., xn] containing I

á There is a 1-to-1 correspondence between V (I) and
√
I

á V (I) = ∅ ⇐⇒ 1 ∈ I (proper ideals have nonempty variety)

á If g(a) = 0 for all a ∈ V (I) ⇐⇒ g ∈
√
I (there exists m such that gm ∈ I)

Theorem 17. Generalized Nullstellensatz
If: k is a field and K is its algebraic closure,

Then:

á for I ⊂ k[x1, ..., xn] and V (I) ⊂ Kn, V (I) = ∅ ⇐⇒ 1 ∈ I (proper ideals
have nonempty variety)

á If g(a) = 0 for all a ∈ V (I) ⊂ Kn ⇐⇒ there exists m such that gm ∈ I ⊂
k[x1, ..., xn]

Theorem 18. Hilbert Basis Theorem
If: R is Noetherian

Then: R[x] is Noetherian

***Note that R is Noetherian ⇐⇒ every ideal of R is finitely generated

Lemma 6. Facts about Rings and Ideals

1 If R is a ring with 1, then for any ideal I there exists a maximal ideal M so I ⊂M

1 If D is a UFD, then D[x] is UFD

1 If F is a field, F [x] is a PID

1 UFDs are integerally closed in their field of fractions (by Gauss’ Lemma)

1 If R is Noetherian and I is a 2-sided ideal, then R/I is Noetherian

1 If R is artinian, R/I is artinian for any ideal (including one-sided) of R.
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Example 6.

If F and L = F [x1, ..., xn]/M are fields, then L is a finite field extension of F .

We proceed by induction on n. Basecase: let L = F [a1] be a field. Then for f(a1) ∈ L
there exists g(a1) ∈ L such that f(a1)g(a1) = 1 ∈ L and so a1 satisfies h(x) = f(x)g(x)− 1.
Namely, a1 is algebraic over F and so L is a finite field extension of F.

Assume L = F [a1, ..., ak] is a finite field extension of F for all k ≤ n.

Then let L = F [a1, ..., an][an+1]. Since L is a field, by the same reasoning as the basecase,
L is algebraic over F [a1, ..., an]. However, by the inductive hypothesis, F [a1, ..., an] is a finite
field extension of F and so [L : F ] = [L : F [a1, ..., an]][F [a1, ..., an] : F ] <∞.

Example 7.

If L is a finite field extension of F , then there exists only finitely many embeddings
of L into K the algebraic closure of F.

We proceed by induction. Basecase: let L = F (a1) be a finite extension of F . Because
a1 is algebraic over F , it has minimal (irreducible) polynomial

f(x) = xn + αn−1x
n−1 + · · ·+ α1x+ α0 ∈ F [x].

Now, if ϕ : L ↪→ K, because ϕ(1) = 1, ϕ is F -linear and so

ϕ(f(a1)) = ϕ(a1)n + αn−1ϕ(a1)n−1 + · · ·+ α1ϕ(a1) + α0 = 0

so ϕ permutes the roots of f(x). Note that K is the algebraic closure of F and so contains
all such roots.

Thus, there are only finitely many possible choices of ϕ since there are only finitely many
roots of f(x).

Now, assume there are only finitely many injections of L = F (a1, ..., ak) to K for k ≤ n.

Then we examine L = F (a1, ..., an, an+1) = F (a1, ..., an)(an+1). Then there are only
finitely many F (a1, ..., an)-linear injections from L ↪→ K by the same reasoning as the
basecase, and by the induction hypothesis, only finitely many F -linear injections from
F (a1, ..., an) ↪→ K.

Since any injection L ↪→ K will be defined by where it sends the ai, and since there
are only finitely many choices for where to send a1, ..., an and only finitely many choices for
where to send an+1, we have only finitely many possible injections of L into K.
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á1Modules and Algebras 1á

Definition 7. Module
A module (left or right, rarely 2-sided) over a ring is the generalization of a vector space

over a field.
There is no notion of multiplication in a module other than multiplication by scalars in

the base ring.

Theorem 19. Classification of Finitely Generated Modules
If: R is a PID and M is finitely generated over R

Then: M ∼= Rn ⊕ T (M) where Rn ∼= R ⊕ R ⊕ · · · ⊕ R is the free part of M and
T (M) = {m ∈M | there exists 0 6= r ∈ R so rm = 0} is the torsion submodule
of M .

*** We can write T (M) ∼= R/(a1)⊕ · · · ⊕R/(an) for

(a1) ⊃ (a2) ⊃ · · · ⊃ (an)

all ideals.

Definition 8. Projective Module
An R-module P is projective if there exists an R-module N so P ⊕ N is free (so for

some n, P ⊕N ∼= Rn).

Lemma 7. Facts about Modules

1 M is simple if M ∼= R/M for some maximal (left or right) ideal M .

1 If P is projective and 0 N M P 0 is a short exact sequence,
then M ∼= P ⊕N

Lemma 8. Facts about Jacobson Radical
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1 J(R) is the intersection of all maximal (right) ideals of R

1 J(R) is quasi-regular, so for all r ∈ J(R), 1− r is invertible in R.

1 If R is artinian, then J(R) is nilpotent

1 If R is commutative, then J(R) contains all the nilpotent elements of R.

1 J(R/J(R)) = 0

Theorem 20. Schur’s Lemma
If: M and N are simple R-modules

Then: any module homomorphism f : M → N is either identically 0 or an isomor-
phism.

Definition 9. Algebra over a field
An algebra over a field is a vector space with a multiplication action which has F in its

center (it is a ring and a vector space at the same time).

Lemma 9. Fact about Algebras
If A is a finite dimensional F -algebra for F a field, then A is artinian and Noetherian

Theorem 21. Frobenius Theorem
If: D is a division ring which is finite dimensional over R

Then: D ∼= R,C,H.
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Theorem 22. Artin-Wedderburn
TFAE:

á R is artinian and J(R) = 0

á R is semi-simple (R is a finite direct sum of minimal left ideals)

á R ∼= Mn1(D1)⊕ · · · ⊕Mnk
(Dk) for Di division rings over R.

***Note that a finite division ring is a finite field by Wedderburn’s Little Theorem

Definition 10. Group Algebra
If G is a finite group and F is a field with char(F ) coprime to |G|, then F [G] is the set

of sums of elements of the form ag where a ∈ F and g ∈ G.

Lemma 10. Facts about Group Algebras
1 Maschke’s Theorem: F [G] as from the previous definition is semi-simple

1 If F [G] = Mn1(D1)⊕ · · · ⊕Mnk
(Dk), then Di are division rings over F .

1 By Frobenius, ni||G| for all i and |G| =
∑n

i=1 n
2
i

Example 8.

Determine up to isomorphism the algebra structure of C[G] where G = S3 is the
symmetric group of degree 3.

By Artin Wedderburn, C[S3] is semi-simple of dimension 6 so

C[S3] ∼= Ca ⊕ (M2(D))b

where D is a division ring over C.
Note that Mn(D) cannot appear for n > 2 since the dimension of the algebra is 6 and

M3(D) has dimension 32 = 9. For the same reason, there can be only one copy of M2(D).
Namely, b = 0, 1.

Furthermore, by Frobenius, the only division ring over C is H, and since C ⊂ Z(C[S3]) is
contained in the center of the algebra (definition of algebra), we have that H cannot appear
in the decomposition. Also, D = C since any central division ring over an algebraically closed
field is the base field.

Finally, since S3 is non commutative, b = 1 and so

C[S3] ∼= C2 ⊕M2(D).
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Definition 11. Tensor Product
Tensor product of R-modules is an R-modules with a universal property, that for all

abelian groups G, and homomorphism f : A×B → G, and i : A×B → A⊗R B defined by
i(a, b) = a⊗ b, there exists a unique g such that the diagram commutes, namely f = g ◦ i.

A×B G

A×R B

f

i g

Facts of tensor sums:

1 If r ∈ R, r(a⊗ b) = ra⊗ b = a⊗ rb.

1 (a+ b)⊗ c = a⊗ c+ b⊗ c.

1 0⊗ b = a⊗ 0 = 0.

Lemma 11. Facts about Tensor Products

1 R⊗R M ∼= M ∼= M ⊗R R

1
(M ⊕N)⊗R Q ∼= (M ⊗R Q)⊕ (N ⊗R Q),

Q⊗R (M ⊕N) ∼= (Q⊗R M)⊕ (Q⊗R N)

1 Tensor is right exact, namely given a sequence
0 N M Q 0

we have that
N ⊗R P M ⊗R P Q⊗R P 0
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