Kayla Orlinsky
 Algebra Exam Spring 2018

Problem 1. Prove that a group of order 72 cannot be simple.

Solution. Let G be a group of order 72 . Note that $72=9 \cdot 8=3^{2} \cdot 2^{3}$. Now, by the Sylow Theorems, $n_{3} \equiv 1 \bmod 3$ and $n_{3} \mid 8$, so $n_{3}=1,4$.

Assume G is simple. By the Sylow Theorems, Sylow 3-subgroups are conjugates and G can act on $\operatorname{Syl}_{3}(G)$ the set of Sylow 3 subgroups by conjugation. Note that since $n_{3} \neq 1$, $n_{3}=4$ and so $\left|\operatorname{Syl}_{3}(G)\right|=4$.

This induces a homomorphism $\varphi: G \rightarrow S_{4}$ where $\varphi(g)=\sigma_{g}$ which is the conjugation map

$$
\begin{aligned}
\sigma_{g}: \operatorname{Syl}_{3}(G) & \rightarrow \operatorname{Syl}_{3}(G) \\
P_{3} & \mapsto g P_{3} g^{-1}
\end{aligned}
$$

Since G is simple, $\operatorname{ker} \varphi$ must be trivial, since kernels are normal subgroups.
However, then S_{4} has an isomorphic copy of G inside it, which is not possible since $\left|S_{4}\right|=4!=24<|G|=72$.

This is a contradiction and so G cannot be simple.
${ }^{* * *}$ Note that $n_{3}=4$ could still be possible, however, in this case, the kernel of the homomorphism induced by the conjuation action cannot be trivial.

Problem 2. Say that a group G is uniquely p-divisible if the p-th power map sending $x \in G$ to x^{p} is bijective. Show that if G is a finitely generated uniquely p-divisible abelian group, then G is finite and has order coprime to p.

Solution. Assume G is abelian and finitely generated. Then by the fundamental theorem of finitely generated abelian groups,

$$
G \cong \mathbb{Z}^{n} \oplus\left(\mathbb{Z}_{p_{1}^{\alpha_{1}}}\right)^{n_{1}} \oplus \cdots \oplus\left(\mathbb{Z}_{p_{k}^{\alpha_{k}}}\right)^{n_{k}}
$$

where p_{i} are primes, and the α_{i} are distinct.
Now, G is uniquely p divisible, and so if φ_{p} is the $p^{\text {th }}$ power map, then φ_{p} is bijective. However, this is only possible if φ_{p} is bijective in each coordinate.

Let π_{l} be the projection homorphism to the $l^{\text {th }}$ coordinate.
However, then we can restrict φ_{p} to the $l^{\text {th }}$ coordinate to get that $\left.\pi_{l} \circ \varphi_{p}\right|_{l^{\text {th }}}$ coordinate is also bijective for all l.

Since φ_{p} is certainly not a surjective map restricted to $\mathbb{Z}, n=0$. Namely, $|G|<\infty$.
Furthermore, restricting to an automorphism of $\mathbb{Z}_{p_{i}^{\alpha_{i}}}$, we immediately get that $p \neq p_{i}$. Else, there would exist an element x of order p in $\mathbb{Z}_{p_{i}^{\alpha_{i}}}$ and so $\varphi_{p}(x)=x^{p}=e$. making φ_{p} not injective on that coordinate.

Thus, $p \neq p_{i}$ for all i, and so G must have order coprime to p.

Problem 3. Let \mathbb{Q} be the field of rational numbers and consider $f(x)=x^{8}+x^{4}+1 \in \mathbb{Q}[x]$. Write E for a splitting field for $f(x)$ over \mathbb{Q} and set $G=\operatorname{Gal}(E / \mathbb{Q})$. Find $|E: \mathbb{Q}|$ and determine the Galois group G up to isomorphism. If $\Omega \subset E$ is the set of roots of $f(x)$, find the number of orbits for the action of G on Ω.

Solution. Let $u=x^{4}$. Then $f(u)=u^{2}+u+1$, so

$$
\begin{aligned}
u^{2}+u+1 & =0 \\
\Longrightarrow u & =\frac{-1 \pm \sqrt{1-4}}{2} \\
& =\frac{-1 \pm \sqrt{3} i}{2} \\
& =e^{i 2 \pi / 3}, e^{i 4 \pi / 3}
\end{aligned}
$$

Now, if u is a root of $u^{2}+u+1$, then x is a $4^{\text {th }}$ root of u. At this point, we can note that the roots are all distinct and so E is the splitting field of a separable polynomial so it is a Galois extension of \mathbb{Q} and so $G=\operatorname{Gal}(E / \mathbb{Q})$ exists.

Now, $\xi=e^{i \pi / 6}$ is a primitive root of $e^{i 2 \pi / 3}$ since the four roots are

$$
\xi=e^{i \pi / 6}, \xi^{4}=e^{i 2 \pi / 3}, \xi^{7}=e^{i 7 \pi / 6}, \xi^{10}=e^{5 i \pi / 3}
$$

and since $\left(e^{2 i \pi / 3}\right)^{2}=e^{i 4 \pi / 3}$, we have that ξ actually generates all the roots of $f(x)$. Now, we note two things, first, if z is a root of $f(x)$ then $-z$ is also a root. Furthermore, if z is a root, then \bar{z} is also a root. Thus, starting with u and \bar{u}, we can get that the roots are

Namely, the roots are

$$
\xi, \xi^{2}, \xi^{4}, \xi^{5}, \xi^{7}, \xi^{8}, \xi^{10}, \xi^{11}
$$

Therefore, $E=\mathbb{Q}(\xi)$. Now, $\xi^{6}=-1$ and so ξ satisfies $g(x)=x^{6}+1$

$$
\begin{aligned}
x^{6}+1 & =\left(x^{2}\right)^{3}+1 \\
& =\left(x^{2}+1\right)\left(x^{4}-x^{2}+1\right)
\end{aligned}
$$

since ξ does not satisfy $x^{2}+1$, it must satisfy $x^{4}-x^{2}+1$, which is irreducible over \mathbb{Q} by the quadratic formula. Therefore,

$$
[E: \mathbb{Q}]=4
$$

Thus, by the Fundamenal Theorem of Galois theory, $|G|=4$. Since there are only two groups of order 4 up to isomorphism, G is abelian and it is either isomorphic to $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ or \mathbb{Z}_{4}.

Finally, we check whether G has any elements of order 4 .
Let $\sigma, \tau \in G$ be defined by $\sigma(\xi)=\bar{\xi}$ and $\tau(\xi)=-\xi$. Both of these are clearly well defined by the computation for the roots of f and both maps have order 2 , so if they are not equal, then G must be $\mathbb{Z}_{2} \times \mathbb{Z}_{\nsucceq}$ since \mathbb{Z}_{4} has only one element of order 4 . However,

$$
\bar{\xi}=e^{-i \pi / 6}=e^{11 i \pi / 6} \quad-\xi=e^{i(\pi / 6+\pi)}=e^{i 7 \pi / 6}
$$

and these are clearly not equal, so

$$
G=\{\operatorname{Id}, \sigma, \tau, \sigma \tau\} \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}
$$

Finally, using the image or via direct calculation, we see that the orbits are exactly $\left\{\xi^{i}, \sigma \cdot \xi^{i}, \tau \cdot \xi^{i}, \sigma \tau \cdot \xi^{i}\right\}$ where the action is defined by $g \cdot \xi^{i}=g\left(\xi^{i}\right)$ for $g \in G$.

Now, since τ fixes
has 2 orbits, namely

$$
\left\{\xi, \xi^{5}, \xi^{7}, \xi^{11}\right\} \quad\left\{\xi^{2}, \xi^{4}, \xi^{8}, \xi^{10}\right\}
$$

Problem 4. Show that a 10 -dimensional \mathbb{C}-algebra necessarily contains a non-zero nilpotent element (hint: what can you say about the Jacobson radical of such an algebra?).

Solution. There is something very wrong with this question. \mathbb{C}^{10} is a ten-dimensional \mathbb{C}-algebra which clearly contains no non-zero nilpotent elements.

However, note that if A is a 10 -dimensional \mathbb{C}-algebra, then A is artinian (finite dimensional) and so $J(A)$ is nilpotent.

Thus, if $J(A) \neq(0)$, then A will contain a non-zero nilpotent element, namely, an $x \in J(A)$.

Problem 5. Consider the algebra $A:=\mathbb{C}\left[M_{n}(\mathbb{C})\right]$ of polynomial functions of the ring of $n \times n$ matrices $M_{n}(\mathbb{C})$. Consider the polynomial functions defined by the formula $P_{i j}(X):=\left(X^{n}\right)_{i j}$. Let $I \subset A$ be the ideal defined by $P_{i j}, 1 \leq i, j \leq n$. Describe the variety $V(I)$ and use your description to show that $I \neq \sqrt{I}$.

Solution. We note that if $P_{i j}(B)=0$ for all i, j, for some B, then B is a nilpotent matrix of order less than or equal to n.

Therefore, $V(I)$ is exactly the set of tuples which form a nilpotent matrix of degree $\leq n$.
Now, by nullstellenzatz part II, there is a one-to-one correspondence between $V(I)$ and \sqrt{I}.

Let X be a nilpotent matrix of degree $2 n>n$. Then X^{2} is nilpotent of degree n and so X^{2} is satisfied by all points in the variety $V(I)$. Therefore, by Nullstellenzatz, so there exists a k so $\left(X^{2}\right)^{k}=X^{2 k} \in I$. Since there is a positive integer $l=2 k$ for which $X^{l} \in I, X \in \sqrt{I}$ by definition.

Now, if $X \in I$, then X itself must be satisfied by every point in $V(I)$, however, $X^{n} \neq 0$ since X has order $>n$, so this contradicts that $X \in I$.

Thus, $I \neq \sqrt{I}$.

Problem 6. Is the ring $k[x, y] /\left(y^{2}-x^{3}\right)$ integrally closed in its field of fractions?

Solution. Let $R=k[x, y] /\left(y^{2}-x^{3}\right)$. First, we note that $\frac{y}{x}$ is certainly in the field of fractions of $k[x, y]$ and so it is in the field of fractions of R. Furthermore,

$$
\left(\frac{y}{x}\right)^{2}=\frac{y^{2}}{x^{2}}=\frac{x^{3}}{x^{2}}=x
$$

and so

$$
\left(\frac{y}{x}\right)^{2}-x=0 \quad \text { in } R
$$

Clearly, $g(z)=z^{2}-x$ is a monic polynomial in $R[z]$ and so if we can show that $\frac{y}{x} \notin R$, then we have that R is NOT integrally closed.

Now, let

$$
\begin{aligned}
\varphi: k[x, y] & \rightarrow k[t] \\
x & \mapsto t^{2} \\
y & \mapsto t^{3}
\end{aligned}
$$

then $\left(y^{2}-x^{3}\right) \subset \operatorname{ker}(\varphi)$. Now, suppose $f(x, y) \in \operatorname{ker} \varphi$. Then we can apply division algorithm to f and $y^{2}-x^{3}$ and write

$$
f(x, y)=\left(y^{2}-x^{3}\right) f_{1}(x, y)+r_{1}(x, y)
$$

where r_{1} has only y terms of degree 1 and x terms of degree 2 or less.
Now,

$$
f\left(t^{2}, t^{3}\right)=r_{1}\left(t^{2}, t^{3}\right)=0
$$

so $r_{1} \in \operatorname{ker} \varphi$ as well. However, then we can write

$$
r_{1}(x, y)=a_{1}+a_{2} x+a_{3} x^{2}+a_{4} y+a_{5} x y+a_{6} x^{2} y .
$$

However, then

$$
\begin{aligned}
r_{1}\left(t^{2}, t^{3}\right) & =0 \\
& =a_{1}+a_{2} t^{2}+a_{3} t^{4}+a_{4} t^{2}+a_{5} t^{5}+a_{6} t^{7}
\end{aligned}
$$

and so $a_{i}=0$ for all i.
Namely, $r_{1}=0$ and so $f(x, y) \in\left(y^{2}-x^{3}\right)$.
Finally, $R \cong k\left[t^{3}, t^{2}\right]$ is not integrally closed since t is a root of $h(z)=z^{2}-t^{2} \in k\left[t^{3}, t^{2}\right][z]$ but $t \notin k\left[t^{3}, t^{2}\right]$.

Therefore, R is not integrally closed.

Problem 7. Suppose R is a commutative (unital) ring, M and N are R-modules, and $f: M \rightarrow N$ is an R-module homomorphism. Show that f is surjective if and only if, for every prime ideal $\mathfrak{p} \subset R$, the induced map $f_{\mathfrak{p}}: M_{\mathfrak{p}} \rightarrow N_{\mathfrak{p}}$ of modules over $R_{\mathfrak{p}}$ is surjective.

Solution. We will actually show something stronger, that localization is exact.
Let P be a prime ideal of R. Then $M_{P}=S^{-1} M$ is the localization of of M over the localization ring $S^{-1} R$ where $S=R \backslash P$.

Namely,

$$
\begin{aligned}
f_{P}: M_{P} & \rightarrow N_{P} \\
\frac{m}{s} m & \mapsto \frac{f(m)}{s}
\end{aligned}
$$

\square Assume f is surjective. Then, for all $n \in N$, there exists an $m \in M$, with $f(m)=n$.

Then if $\frac{n}{s} \in N_{P}$, there exists $m \in M$ so $f(m)=n$ so

$$
f_{P}\left(\frac{m}{s}\right)=\frac{f(m)}{s}=\frac{n}{s}
$$

and so f_{P} will be surjective for all prime ideals P.
***Similarly, if f is injective, and

$$
f_{P}\left(\frac{m}{s}\right)=\frac{f(m)}{s}=0
$$

then there is a $t \in S$ so $t f(m)=f(t m)=0$ so $t m \in \operatorname{ker} f=(0)$ so m is torsion and $t m=0 \in M$.
However, this is exactly what it means for $\frac{m}{s}=0$ in M_{P}.
\Longleftarrow Assume f_{P} is surjective for all prime ideals P.
Now, we prove a claim.
Claim 1. An R-module T is trivial if and only if T_{P} is trivial for all prime ideals P.

Proof. \Rightarrow This is clear.
\Longleftrightarrow Assume $T_{P}=S^{-1} T$ is trivial for all prime ideals P.
Let $x \in T$. Assume $x \neq 0$. Then let $I=\{r \in R \mid r x=0\}$. Then $I \neq R$ since $1 x=x \neq 0$. Furthermore, I is an ideal.

Thus, there exists a maximal (prime) ideal P so $I \subset P$.

Now, $T_{P}=(0)$, so since $\frac{x}{1} \in T_{P}$, there exists an $s \in S$ so $s x=0 \in T$. However, $s \in S=R \backslash P$ so namely, $s \notin I$.

This is a contradiction and so no such x can exist. Namely, T is trivial. \nexists Now, let $g: N \rightarrow N / f(M)$ be the quotient map. Then since

$$
(N / f(M))_{P}=N_{P} / f(M)_{P}=N_{P} / f_{P}\left(M_{P}\right)
$$

$g_{P}: N_{P} \rightarrow N_{P} / f(M)_{P}$ is well defined.
Now, we clearly have a right exact sequence

$$
M_{P} \xrightarrow{f_{P}} N_{P} \xrightarrow{g_{P}} N_{P} / f_{P}\left(M_{P}\right) \longrightarrow 0
$$

since if $\frac{n}{s} \in \operatorname{ker} g_{P}$ then

$$
g_{P}\left(\frac{n}{s}\right)=\frac{g(n)}{s} \in f_{P}\left(M_{P}\right)=\operatorname{Im}(f)
$$

And clearly the reverse is also true.
However, f_{P} is surjective for all P, and so g_{P} is the zero map for all P so $N_{P} / f_{P}\left(M_{P}\right)$ is trivial for all P. Therefore, by Claim 1, $N / f(M)$ is trivial and so f is surjective.
***Similarly, assume f_{P} is injective for all P. Assume there is some $0 \neq m \in M$ with $f(m)=0$. Then

$$
f_{P}\left(\frac{m}{1}\right)=\frac{f(m)}{1}=0
$$

so f_{P} sends $\frac{m}{1}$ to $0 \in M_{P}$ for all P.
Let $I=\{r \in R \mid r m=0\}$ which is the torison ideal of the element m. Then $I \neq R$ since $1 m=m \neq 0$. Also, I is contained in some maximal (prime) ideal P.
Now, $f_{P}(m)=0$ and f_{P} is injective, so there is some $t \in S$ with $t m=0 \in M$. However, if $t \in S$, then $t \notin P$ and so $t \nexists n I$. This is a contradiction. and so there exists $t \in S$ Thus, no such nonzero $m \in M$ exists and f is injective.

