
Kayla Orlinsky
Spring 2018

Kayla Orlinsky
Algebra Exam Spring 2018

Problem 1. Prove that a group of order 72 cannot be simple.

Solution. Let G be a group of order 72. Note that 72 = 9 · 8 = 32 · 23. Now, by the Sylow
Theorems, n3 ≡ 1 mod 3 and n3|8, so n3 = 1, 4.

Assume G is simple. By the Sylow Theorems, Sylow 3-subgroups are conjugates and
G can act on Syl3(G) the set of Sylow 3 subgroups by conjugation. Note that since n3 6= 1,
n3 = 4 and so |Syl3(G)| = 4.

This induces a homomorphism ϕ : G → S4 where ϕ(g) = σg which is the conjugation
map

σg : Syl3(G)→ Syl3(G)
P3 7→ gP3g

−1

Since G is simple, kerϕ must be trivial, since kernels are normal subgroups.
However, then S4 has an isomorphic copy of G inside it, which is not possible since

|S4| = 4! = 24 < |G| = 72.
This is a contradiction and so G cannot be simple.
***Note that n3 = 4 could still be possible, however, in this case, the kernel of the

homomorphism induced by the conjuation action cannot be trivial. �
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Problem 2. Say that a group G is uniquely p-divisible if the p-th power map sending
x ∈ G to xp is bijective. Show that if G is a finitely generated uniquely p-divisible abelian
group, then G is finite and has order coprime to p.

Solution. Assume G is abelian and finitely generated. Then by the fundamental theorem
of finitely generated abelian groups,

G ∼= Zn ⊕ (Zpα1
1

)n1 ⊕ · · · ⊕ (Zpαk
k

)nk

where pi are primes, and the αi are distinct.
Now, G is uniquely p divisible, and so if ϕp is the pth power map, then ϕp is bijective.

However, this is only possible if ϕp is bijective in each coordinate.
Let πl be the projection homorphism to the lth coordinate.
However, then we can restrict ϕp to the lth coordinate to get that πl ◦ ϕp|lth coordinate is

also bijective for all l.
Since ϕp is certainly not a surjective map restricted to Z, n = 0. Namely, |G| <∞.
Furthermore, restricting to an automorphism of Zpαii , we immediately get that p 6= pi.

Else, there would exist an element x of order p in Zpαii and so ϕp(x) = xp = e. making ϕp
not injective on that coordinate.

Thus, p 6= pi for all i, and so G must have order coprime to p. �
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Problem 3. LetQ be the field of rational numbers and consider f(x) = x8+x4+1 ∈ Q[x].
Write E for a splitting field for f(x) over Q and set G = Gal(E/Q). Find |E : Q| and
determine the Galois group G up to isomorphism. If Ω ⊂ E is the set of roots of f(x),
find the number of orbits for the action of G on Ω.

Solution. Let u = x4. Then f(u) = u2 + u+ 1, so

u2 + u+ 1 = 0

=⇒ u = −1±
√

1− 4
2

= −1±
√

3i
2

= ei2π/3, ei4π/3

Now, if u is a root of u2 + u+ 1, then x is a 4th root of u. At this point, we can note
that the roots are all distinct and so E is the splitting field of a separable polynomial so it is
a Galois extension of Q and so G = Gal(E/Q) exists.

Now, ξ = eiπ/6 is a primitive root of ei2π/3 since the four roots are

ξ = eiπ/6, ξ4 = ei2π/3, ξ7 = ei7π/6, ξ10 = e5iπ/3

and since (e2iπ/3)2 = ei4π/3, we have that ξ actually generates all the roots of f(x). Now, we
note two things, first, if z is a root of f(x) then −z is also a root. Furthermore, if z is a root,
then z is also a root. Thus, starting with u and u, we can get that the roots are

ξ

Re

Im

3



Kayla Orlinsky
Spring 2018

Namely, the roots are
ξ, ξ2, ξ4, ξ5, ξ7, ξ8, ξ10, ξ11.

Therefore, E = Q(ξ). Now, ξ6 = −1 and so ξ satisfies g(x) = x6 + 1

x6 + 1 = (x2)3 + 1
= (x2 + 1)(x4 − x2 + 1)

since ξ does not satisfy x2 + 1, it must satisfy x4 − x2 + 1, which is irreducible over Q by the
quadratic formula. Therefore,

[E : Q] = 4.

Thus, by the Fundamenal Theorem of Galois theory, |G| = 4. Since there are only two
groups of order 4 up to isomorphism, G is abelian and it is either isomorphic to Z2 × Z2 or
Z4.

Finally, we check whether G has any elements of order 4.
Let σ, τ ∈ G be defined by σ(ξ) = ξ and τ(ξ) = −ξ. Both of these are clearly well

defined by the computation for the roots of f and both maps have order 2, so if they are not
equal, then G must be Z2 × Z2 since Z4 has only one element of order 4. However,

ξ = e−iπ/6 = e11iπ/6 − ξ = ei(π/6+π) = ei7π/6

and these are clearly not equal, so

G = {Id, σ, τ, στ} ∼= Z2 × Z2.

Finally, using the image or via direct calculation, we see that the orbits are exactly
{ξi, σ · ξi, τ · ξi, στ · ξi} where the action is defined by g · ξi = g(ξi) for g ∈ G.

Now, since τ fixes
has 2 orbits, namely

{ξ, ξ5, ξ7, ξ11} {ξ2, ξ4, ξ8, ξ10}.

�
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Problem 4. Show that a 10-dimensional C-algebra necessarily contains a non-zero
nilpotent element (hint: what can you say about the Jacobson radical of such an algebra?).

Solution. There is something very wrong with this question. C10 is a ten-dimensional
C-algebra which clearly contains no non-zero nilpotent elements.

However, note that if A is a 10-dimensional C-algebra, then A is artinian (finite dimen-
sional) and so J(A) is nilpotent.

Thus, if J(A) 6= (0), then A will contain a non-zero nilpotent element, namely, an
x ∈ J(A). �
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Problem 5. Consider the algebra A := C[Mn(C)] of polynomial functions of the ring
of n × n matrices Mn(C). Consider the polynomial functions defined by the formula
Pij(X) := (Xn)ij. Let I ⊂ A be the ideal defined by Pij, 1 ≤ i, j ≤ n. Describe the
variety V (I) and use your description to show that I 6=

√
I.

Solution. We note that if Pij(B) = 0 for all i, j, for some B, then B is a nilpotent matrix
of order less than or equal to n.

Therefore, V (I) is exactly the set of tuples which form a nilpotent matrix of degree ≤ n.
Now, by nullstellenzatz part II, there is a one-to-one correspondence between V (I) and√

I.
Let X be a nilpotent matrix of degree 2n > n. Then X2 is nilpotent of degree n and so

X2 is satisfied by all points in the variety V (I). Therefore, by Nullstellenzatz, so there exists
a k so (X2)k = X2k ∈ I. Since there is a positive integer l = 2k for which X l ∈ I, X ∈

√
I

by definition.
Now, if X ∈ I, then X itself must be satisfied by every point in V (I), however, Xn 6= 0

since X has order > n, so this contradicts that X ∈ I.
Thus, I 6=

√
I. �
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Problem 6. Is the ring k[x, y]/(y2 − x3) integrally closed in its field of fractions?

Solution. Let R = k[x, y]/(y2 − x3). First, we note that y
x
is certainly in the field of

fractions of k[x, y] and so it is in the field of fractions of R. Furthermore,
(
y

x

)2
= y2

x2 = x3

x2 = x

and so (
y

x

)2
− x = 0 in R.

Clearly, g(z) = z2 − x is a monic polynomial in R[z] and so if we can show that y
x
/∈ R,

then we have that R is NOT integrally closed.
Now, let

ϕ : k[x, y]→ k[t]
x 7→ t2

y 7→ t3

then (y2−x3) ⊂ ker(ϕ). Now, suppose f(x, y) ∈ kerϕ. Then we can apply division algorithm
to f and y2 − x3 and write

f(x, y) = (y2 − x3)f1(x, y) + r1(x, y).

where r1 has only y terms of degree 1 and x terms of degree 2 or less.
Now,

f(t2, t3) = r1(t2, t3) = 0

so r1 ∈ kerϕ as well. However, then we can write

r1(x, y) = a1 + a2x+ a3x
2 + a4y + a5xy + a6x

2y.

However, then

r1(t2, t3) = 0
= a1 + a2t

2 + a3t
4 + a4t

2 + a5t
5 + a6t

7.

and so ai = 0 for all i.
Namely, r1 = 0 and so f(x, y) ∈ (y2 − x3).
Finally, R ∼= k[t3, t2] is not integrally closed since t is a root of h(z) = z2− t2 ∈ k[t3, t2][z]

but t /∈ k[t3, t2].
Therefore, R is not integrally closed. �
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Problem 7. Suppose R is a commutative (unital) ring, M and N are R-modules, and
f : M → N is an R-module homomorphism. Show that f is surjective if and only if, for
every prime ideal p ⊂ R, the induced map fp : Mp → Np of modules over Rp is surjective.

Solution. We will actually show something stronger, that localization is exact.
Let P be a prime ideal of R. Then MP = S−1M is the localization of of M over the

localization ring S−1R where S = R\P .
Namely,

fP : MP → NP

m

s
m 7→ f(m)

s

=⇒ Assume f is surjective. Then, for all n ∈ N , there exists an m ∈ M , with
f(m) = n.

Then if n
s
∈ NP , there exists m ∈M so f(m) = n so

fP

(
m

s

)
= f(m)

s
= n

s

and so fP will be surjective for all prime ideals P .

***Similarly, if f is injective, and

fP

(
m

s

)
= f(m)

s
= 0

then there is a t ∈ S so tf(m) = f(tm) = 0 so tm ∈ ker f = (0) so m is torsion and
tm = 0 ∈M .
However, this is exactly what it means for m

s
= 0 in MP .

⇐= Assume fP is surjective for all prime ideals P .
Now, we prove a claim.

Claim 1. An R-module T is trivial if and only if TP is trivial for all prime ideals
P.

Proof. =⇒ This is clear.
⇐= Assume TP = S−1T is trivial for all prime ideals P .

Let x ∈ T . Assume x 6= 0. Then let I = {r ∈ R | rx = 0}. Then I 6= R
since 1x = x 6= 0. Furthermore, I is an ideal.

Thus, there exists a maximal (prime) ideal P so I ⊂ P .
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Now, TP = (0), so since x
1 ∈ TP , there exists an s ∈ S so sx = 0 ∈ T .

However, s ∈ S = R\P so namely, s /∈ I.
This is a contradiction and so no such x can exist. Namely, T is trivial. �

Now, let g : N → N/f(M) be the quotient map. Then since

(N/f(M))P = NP/f(M)P = NP/fP (MP )

gP : NP → NP/f(M)P is well defined.
Now, we clearly have a right exact sequence

MP NP NP/fP (MP ) 0fP gP

since if n
s
∈ ker gP then

gP

(
n

s

)
= g(n)

s
∈ fP (MP ) = Im(f).

And clearly the reverse is also true.
However, fP is surjective for all P , and so gP is the zero map for all P so NP/fP (MP ) is

trivial for all P . Therefore, by Claim 1, N/f(M) is trivial and so f is surjective.

***Similarly, assume fP is injective for all P . Assume there is some 0 6= m ∈M with
f(m) = 0. Then

fP

(
m

1

)
= f(m)

1 = 0

so fP sends m
1 to 0 ∈MP for all P .

Let I = {r ∈ R | rm = 0} which is the torison ideal of the element m. Then I 6= R
since 1m = m 6= 0. Also, I is contained in some maximal (prime) ideal P .
Now, fP (m) = 0 and fP is injective, so there is some t ∈ S with tm = 0 ∈M . However,
if t ∈ S, then t /∈ P and so t 6 inI. This is a contradiction. and so there exists t ∈ S
Thus, no such nonzero m ∈M exists and f is injective.

�
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