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Problem 1. Prove that a group of order 72 cannot be simple.

Solution. Let G be a group of order 72. Note that 72 =9 -8 = 32 - 23, Now, by the Sylow
Theorems, n3 =1 mod 3 and n38, so ng = 1,4.

Assume G is simple. By the Sylow Theorems, Sylow 3-subgroups are conjugates and
G can act on Syl;(G) the set of Sylow 3 subgroups by conjugation. Note that since ns # 1,
ns = 4 and so |Syl;(G)| = 4.

This induces a homomorphism ¢ : G — Sy where ¢(g) = 0, which is the conjugation
map

ag : Syl3(G) — Syly(G)
Py gPsg™

Since G is simple, ker ¢ must be trivial, since kernels are normal subgroups.

However, then S, has an isomorphic copy of G inside it, which is not possible since

|S4] =4l =24 < |G| = T2.
This is a contradiction and so GG cannot be simple.

***Note that ns3 = 4 could still be possible, however, in this case, the kernel of the
homomorphism induced by the conjuation action cannot be trivial. )
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Problem 2. Say that a group G is uniquely p-divisible if the p-th power map sending
x € G to 2P is bijective. Show that if GG is a finitely generated uniquely p-divisible abelian
group, then G is finite and has order coprime to p.

Solution. Assume G is abelian and finitely generated. Then by the fundamental theorem
of finitely generated abelian groups,

where p; are primes, and the «o; are distinct.

Now, G is uniquely p divisible, and so if ¢, is the p™ power map, then ¢, is bijective.
However, this is only possible if ¢, is bijective in each coordinate.

Let 7 be the projection homorphism to the I** coordinate.

However, then we can restrict ¢, to the ™ coordinate to get that m o ¢,
also bijective for all [.

Ith coordinate 1S

Since ¢, is certainly not a surjective map restricted to Z, n = 0. Namely, |G| < oo.

Furthermore, restricting to an automorphism of Zp?i, we immediately get that p # p;.

Else, there would exist an element x of order p in Z,» and so ¢,(z) = 2P = e. making ¢,
not injective on that coordinate.

Thus, p # p; for all ¢, and so G must have order coprime to p. Y
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Problem 3. Let Q be the field of rational numbers and consider f(z) = 28+2*+1 € Q|z].
Write E for a splitting field for f(z) over Q and set G = Gal(£/Q). Find |E : Q| and
determine the Galois group G up to isomorphism. If Q C E is the set of roots of f(x),
find the number of orbits for the action of G on ).

Solution. Let u=z* Then f(u) =u*+u+1, so

WHu+1=0
—1+1—14
T Ty
 —1£V3i
==

_ 612ﬂ/3, 61471'/3

Now, if u is a root of u? +u + 1, then z is a 4" root of w. At this point, we can note
that the roots are all distinct and so E is the splitting field of a separable polynomial so it is
a Galois extension of Q and so G = Gal(E/Q) exists.

i2r/3

Now, & = €™/6 is a primitive root of e since the four roots are

¢ = (iT/6 gh 2/ (T (R[S (10 _ i3
and since (e2™/3)? = ¢“7/3 we have that ¢ actually generates all the roots of f(z). Now, we

note two things, first, if z is a root of f(z) then —z is also a root. Furthermore, if z is a root,
then Z is also a root. Thus, starting with u and @, we can get that the roots are

Jm

A

A
~
=
@
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Namely, the roots are
5 62 54 55 57 68 510 511.
Therefore, E = Q(£). Now, £% = —1 and so ¢ satisfies g(x) = 25 + 1
2%+ 1= (2?41
=(@*+1)(z* —2* + 1)

since ¢ does not satisfy 2% + 1, it must satisfy 2* — 22 4 1, which is irreducible over Q by the
quadratic formula. Therefore,

[E: Q] =4.

Thus, by the Fundamenal Theorem of Galois theory, |G| = 4. Since there are only two
groups of order 4 up to isomorphism, G is abelian and it is either isomorphic to Zy X Zs or
Zy.

Finally, we check whether GG has any elements of order 4.

Let 0,7 € G be defined by o(¢) = € and 7(§) = —&. Both of these are clearly well
defined by the computation for the roots of f and both maps have order 2, so if they are not
equal, then G must be Zs X Zy since Z4 has only one element of order 4. However,

€ — €—i7r/6 — elliw/(’} . 5 — 67)(7r/6—i—7r) — €i77r/6

and these are clearly not equal, so

G=A{ld,o, 7,07} = Zy X Zs.
Finally, using the image or via direct calculation, we see that the orbits are exactly
{€ o€ 7 & o7 - £} where the action is defined by ¢ - & = g(&) for g € G.
Now, since 7 fixes

has 2 orbits, namely

{6,€,¢7.¢" {6,667
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Problem 4. Show that a 10-dimensional C-algebra necessarily contains a non-zero
nilpotent element (hint: what can you say about the Jacobson radical of such an algebra?).

Solution. There is something very wrong with this question. C!° is a ten-dimensional
C-algebra which clearly contains no non-zero nilpotent elements.

However, note that if A is a 10-dimensional C-algebra, then A is artinian (finite dimen-
sional) and so J(A) is nilpotent.

Thus, if J(A) # (0), then A will contain a non-zero nilpotent element, namely, an
x € J(A). ¥
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Problem 5. Consider the algebra A := C[M,,(C)] of polynomial functions of the ring
of n x n matrices M, (C). Consider the polynomial functions defined by the formula
Pj(X) :== (X™);;. Let I C A be the ideal defined by P;;, 1 < 4,j < n. Describe the
variety V' (I) and use your description to show that I # v/I.

Solution. We note that if P;;(B) = 0 for all ¢, j, for some B, then B is a nilpotent matrix
of order less than or equal to n.

Therefore, V(1) is exactly the set of tuples which form a nilpotent matrix of degree < n.

Now, by nullstellenzatz part 11, there is a one-to-one correspondence between V' (I) and

VI

Let X be a nilpotent matrix of degree 2n > n. Then X? is nilpotent of degree n and so
X? is satisfied by all points in the variety V(7). Therefore, by Nullstellenzatz, so there exists
a k so (X?)* = X?* € I. Since there is a positive integer | = 2k for which X' € I, X € /I
by definition.

Now, if X € I, then X itself must be satisfied by every point in V' (I), however, X" # 0
since X has order > n, so this contradicts that X € I.

Thus, I # /1. ¥
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Problem 6. Is the ring k[z, y]/(y* — z*) integrally closed in its field of fractions?

Solution. Let R = k[z,y]/(y*> — «®). First, we note that ¥ is certainly in the field of
fractions of k[x,y] and so it is in the field of fractions of R. Furthermore,

and so
%
<) —x=0 in R.

Clearly, g(z) = 2° — x is a monic polynomial in R[z] and so if we can show that ¥ ¢ R,
then we have that R is NOT integrally closed.

Now, let

2

@ klx,y] — klt]
x> 12
yr—>t3

then (y* —x3) C ker(p). Now, suppose f(z,y) € ker p. Then we can apply division algorithm
to f and y? — 2% and write

flxy) = (" —2°) filz, y) + (2, y).

where 7, has only y terms of degree 1 and x terms of degree 2 or less.
Now,
fE ) =r (%) =0

so r1 € ker ¢ as well. However, then we can write
ri(z,y) = ay + agx + asx® + agy + asry + agr’y.
However, then

Tl(t2, tg) = O
= a1 + aot® + ast* + ast? + ast® + agt”.

and so a; = 0 for all 7.
Namely, 71 = 0 and so f(z,y) € (y* — x3).

Finally, R = k[t3, t?] is not integrally closed since ¢ is a root of h(z) = 22 —t* € k[t3, t*][2]
but t ¢ k[t3,t?].

Therefore, R is not integrally closed. Y
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Problem 7. Suppose R is a commutative (unital) ring, M and N are R-modules, and
f: M — N is an R-module homomorphism. Show that f is surjective if and only if, for
every prime ideal p C R, the induced map f, : M, — N, of modules over R, is surjective.

Solution. We will actually show something stronger, that localization is exact.

Let P be a prime ideal of R. Then Mp = S™1M is the localization of of M over the
localization ring S™'R where S = R\P.

Namely,
fp :Mp — Np
m ., fm)
s s
Assume f is surjective. Then, for all n € N, there exists an m € M, with
f(m) =n.
Then if 2 € Np, there exists m € M so f(m) =n so

()= 120

S S

and so fp will be surjective for all prime ideals P.

**Similarly, if f is injective, and

then there isa t € S so tf(m) = f(tm) = 0so tm € ker f = (0) so m is torsion and
tm=0¢ec M.
However, this is exactly what it means for = = 0 in Mp.

Assume fp is surjective for all prime ideals P.

Now, we prove a claim.

Claim 1. An R-module T is trivial if and only if Tp is trivial for all prime ideals
P.

Proof. This is clear.
Assume Tp = S7IT is trivial for all prime ideals P.

Let x € T. Assume = # 0. Then let I = {r € R|rx = 0}. Then I # R
since 1z = x # 0. Furthermore, [ is an ideal.

Thus, there exists a maximal (prime) ideal P so I C P.
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Now, Tp = (0), so since ¢ € Tp, there exists an s € S so sz = 0 € T.

However, s € S = R\ P so namely, s ¢ I.

This is a contradiction and so no such x can exist. Namely, T is trivial. &
Now, let g : N — N/ f(M) be the quotient map. Then since

(N/f(M))p = Np/f(M)p = Np/fr(Mp)

gp : Np — Np/f(M)p is well defined.

Now, we clearly have a right exact sequence

Mp " Np 2 Np/fp(Mp) —— 0

since if % € ker gp then

n

or (%) = 2 ¢ fo(Mp) = (),

S

And clearly the reverse is also true.

However, fp is surjective for all P, and so gp is the zero map for all P so Np/fp(Mp) is
trivial for all P. Therefore, by Claim 1, N/ f(M) is trivial and so f is surjective.

& Similarly, assume fp is injective for all P. Assume there is some 0 # m € M with

f(m) =0. Then
m\ _ f(m)

ﬁ<1>_ Y
so fp sends T to 0 € Mp for all P.
Let I = {r € R|rm = 0} which is the torison ideal of the element m. Then I # R
since 1m = m # 0. Also, I is contained in some maximal (prime) ideal P.
Now, fp(m) =0 and fp is injective, so there is some t € S with tm = 0 € M. However,
if t € S, thent ¢ P and sot nl. This is a contradiction. and so there exists t € S
Thus, no such nonzero m € M exists and f is injective.




