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Problem 1. Let Fp be a finite field with p elements, and consider the group GLn(Fp).
Write down the order of GLn(Fp) and a Sylow p-subgroup.

Solution. If X ∈ GLn(Fp), then X must be an invertible n×n matrix with elements in Fp.
Namely, X must have linearly independent columns. If [xi] are the columns of X, then the
first column x1 can by anything except the zero vector, which vies pn − 1 possible options.

The second column x2 can be anything but a multiple of the first column. So once x1 is
chosen, x2 6= ax1, there are p vectors that x2 cannot be. Namely, there are pn − p choices for
x2.

Inductively, we can see that there are pn − pk choices for xk+1 0 ≤ k ≤ n− 1.
Thus,

|GLn(Fp)| = (pn − 1)(pn − p) · · · (pn − pn−1).

***Although it was not asked, we can note that the determinant function

det : GLn(Fp)→ F∗p

is a surjective homomorphism with kernel SLn(Fp). Namely,∣∣∣∣∣GLn(Fp)
SLn(Fp)

∣∣∣∣∣ = |F∗p| = p− 1

and so
|SLn(Fp)| = |GLn(Fp)|

p− 1 .

We further note that if instead we were interested in Fq where q = pk, then we could
replace p with q in all instances and achieve the same results.

Finally, we claim that if P that set of all upper triangular matrices with 1 down the
main diagonal forms a Sylow p-subgroup.

First, there are
n2 − n

2
entries in matrices of this form, and p possible choices for each entry, so |P | = p(n−1)n/2.
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Since Sylow p-subgroups have order pn−1pn−2 · · · p or p(n−1)n/2, we have that P has the
right size.

Thus, if P is a subgroup it is a Sylow p-subgroup.
However, this is trivial since products of upper triangular matrices are upper triangular

and inveres of upper triangular matrices are also upper triangular.
Since det(Y ) = 1 if Y ∈ P , we also get that Y −1 ∈ P . Note that the determinant of an

upper triangular matrix is the prdouct of the entries down the main diagonal.
Thus, P is a subgroup and so it is a Sylow p-subgroup. �
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Problem 2. Prove that there are no simple groups of order 600.

Solution. Let G be a group of order 600 = 10 · 10 · 6 = 23 · 3 · 52.
Then, by Sylow Theorems, n5 ≡ 1 mod 5 and n5|23 · 3.
Namely, n5 = 1, 6.
Now, if G is simple, then n5 = 6 and so since Sylow 5-subgroups are conjugates, G can

act on its Sylow 5 subgroups by conjugation.
This action defines a homomorphism

ϕ : G→ S6

where ϕ(g) = σg and σg : Syl5(G) → Syl5(G) with σg(P5) = gP5g
−1 and P5 a Sylwo

5-subgroup of G.
Now, since kernels of homomorphisms are normal subgroups in the domain, kerϕ must

be trivial. Namely, ϕ must be an embedding.
However, |S6| = 6! = 720, and since |G| = 600 which does not divide 720, there cannot

be any isomorphic copies of G inside S6.
This is a contradiction and so G cannot be simple. �
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Problem 3. Prove that Z[
√

10] is integrally closed in its field of fractions, but not a
UFD.

Solution. Let a+ b
√

10 ∈ Q[
√

10]. Note that this is the field of fractions of Z[
√

10] since
for s, t, p, q ∈ Z,

s+ t
√

10
p+ q

√
10

= (s+ t
√

10)(p− q
√

10)
p2 − 10q2 ∈ Q[

√
10].

Then we note that ma,b(x) = (x− a− b
√

10)(x− a+ b
√

10) = x2 − 2ax+ a2 − 10b2 is
the minimal polynomial of a+ b

√
10 over Q. ma,b(x) is irreducible over Q and so it is also

irreducible over Z.
Now, if a+ b

√
10 is integral over Z[

√
10] it satisfies f(x) a monic irreducible polynomial

with coefficients in Z[
√

10]. Since f(x) is irreducible, over Z[
√

10], by Gauss’ Lemma, f(x) is
also irreducible over Q[

√
10]. However, then ma,b(x) must divide f(x) in Q[

√
10] and so by

irreducibly, f(x) = uma,b(x) for u a unit. Namely, ma,b(x) has coefficients in Z.
Therefore, a+ b

√
10 is integral over Z[

√
10] if and only if ma,b(x) has coefficients in Z.

Now, if −2a ∈ Z and a2 − 10b2 ∈ Z then

4(a2 − 10b2) = (2a)2 − 10(2b)2 ∈ Z

however, 2a ∈ Z and so 10(2b)2 ∈ Z.
Since 10 is squarefree, it cannot be that (2b)2 /∈ Z so 2b ∈ Z as well.
Finally, 4(a2 − 10b2) = (2a)2 − 10(2b)2 = 4k k ∈ Z and so (2a)2 = 2(5(2b)2 + 2k),

since 2b ∈ Z we get that (2a)2 is even. However, if 2|(2a)2 then 2|(2a). Namely, a ∈ Z.
Immediately then, it must be that b ∈ Z since again, 10 is squarefree and 10b2 ∈ Z.
Thus, Z[

√
10] is integrally closed.

Now, let N(a+ b
√

10) = a2 − 10b2 be the norm function on Z[
√

10]. Note that

N(xy) = xyxy = xyxy = xxyy = N(x)N(y)

and that
N : Z[

√
10]→ Z.
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We note that if N(a+ b
√

10) = 3, then

a2 − 10b2 = 3
a = 2n+ 1 n ∈ Z

(2n+ 1)2 − 10b2 = 3
4n2 + 4n+ 1− 10b2 = 3

2n2 + 2n− 1 = 5b2

b = 2k + 1 k ∈ Z
4n2 + 4n+ 1− 10(2k + 1)2 = 3

4n2 + 4n+ 1− 10(4k2 + 4k + 1) = 3
4[n2 + n− 10k2 − 10k]− 9 = 3

n2 + n− 10k2 − 10k = 3
n2 + n ≡ 1 mod 2

and this is not possible since if n is odd, then n2 +n is even, and if n is even, then n2 +n ≡ 0
mod 2.

Thus, N(x) 6 3 for all x ∈ Z[
√

10].
Namely, since N(3) = 9, if 3 were reducible, then we would get

N(3) = 9 = N(ab) = N(a)N(b).

However, since N(a) 6 3, and N(b) 6 3, then either a or b is a unit.
Therefore, 3 is irreducible.
Now, since in Z[

√
10],

9 = 3 · 3 = −(1−
√

10)(1 +
√

10),

if Z[
√

10] were a UFD, then 3 would be prime, since it is irreducible.
Namely, 3 must divide 1 +

√
10.

However, if
1 +
√

10 = 3(a+ b
√

10) =⇒ 1 = 3a, 1 = 3b

which is not possible for a, b ∈ Z.
Thus, 3 is not prime and so Z[

√
10] is not a UFD. �
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Problem 4. If F is a field and E/F is an extension, then an element a ∈ E will be
called abelian if Gal(F [a]/F ) is an abelian group. Show taht the set of abelian elements
of E is a subfield of E containing F .

Solution. Let S be the set of abelian elements of E. We need to show that S is a subgfield
of E and that it contains F.

The latter is immediate since if a ∈ F then F [a] = F and so

Gal(F [a]/F ) = Gal(F/F ) = {e}.

And since the trivial group is abelian, a ∈ S.
Thus, S certainly contains 0 and 1 since 0 ∈ F and 1 ∈ F .
Furthermore, S contains inverses since F [a] = F [a−1] and so if a ∈ S then

Gal(F [a]/F ) = Gal(F [a−1]/F ) is abelian.

and so a−1 ∈ S.
Finally, we check that S is closed under addition and multiplication.
Let a, b ∈ S. We prove a small claim.

Claim 1. There is an injective homomorphism

ϕ : Gal(F [a, b]/F )→ Gal(F [a]/F )×Gal(F [b]/F ).

Proof. Let ϕ(σ) = (σ|F [a], σ|F [b]) which is the restriction of σ to F [a] and F [b]
respectively.

Note that ϕ is well defined since by assumption, F [a, b]/F , F [a]/F and
F [b]/F are Galois extensions, and so any automorphism σ : F [a, b] → F [a, b]
must preserve the subfields F [a] and F [b].

Therefore, ϕ is trivially a homomorphism since

(σ ◦ τ)|F [a] = σ(τ |F [a]) = σ|F [a](τ |F [a]) = σ|F [a] ◦ τ |F [a]

because τ |F [a] : F [a]→ F [a].
Similarly for (σ ◦ τ)|F [b].
Finally, if ϕ(σ) = (Id, Id) then σ acts as the identity on F [a] and on F [b] so

it must be the identity on F [a, b].
Thus, kerϕ = 0.
Therefore, there is an isomorphic copy of Gal(F [a, b]/F ) in Gal(F [a]/F )×

Gal(F [b]/F ). �
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Since a, b ∈ S, Gal(F [a]/F ) × Gal(F [b]/F ) is a product of two abelian groups and is
therefore abelian.

Finally, Gal(F [a, b]/F ) is therefore abelain and so all subgroups are normal. Therefore,
since F [a− b] ⊂ F [a, b] and F [ab] ⊂ F [a− b] are both subfields, by the fundamental theorem
of Galois theory F [a − b]/F is a Galois extension with abelian Galois group since it is a
subgroup of Gal(F [a, b]/F ).

Therefore a− b ∈ S and similarly ab−1 ∈ S.
Thus, S is a subfield of E containing F . �
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Problem 5. Let K be the splitting field of x4 − 2 ∈ Q[x]. Prove that Gal(K/Q) is
D8 the dihedral group of order 8, (i.e., the group of isometries of the square). Find all
subfields of K that have degree 2 over Q.

Solution. Let K be the splitting field of

x4 − 2 = (x2 −
√

2)(x2 +
√

2) = (x− 21/4)(x+ 21/4)(x− 21/4i)(x+ 21/4i)

Then K = Q(21/4, i) clearly.
Now, we note that 21/4 has minimal polynomial x4 − 2 over Q and i has minimal

polynomial x2 + 1. Since i /∈ Q(21/4) because it is not in R and Q(21/4) ⊂ R, then this must
the minimal polynomial of i over Q(21/4).

Namely,
[K : Q] = [K : Q(21/4)][Q(21/4) : Q] = 2 · 4 = 8.

Now, because x4 − 2 is separable and K is its splitting field, K/Q is Galois.
Therefore, G = Gal(K/Q) is of order 8.
Let σ ∈ G be defined by σ(21/4) = 21/4i and σ(i) = i.
Then σ clearly has order 4 since

σ4(21/4) = σ3(21/4i) = σ2(−21/4) = σ(−21/4i) = 21/4.

Let τ ∈ G be defined by τ(21/4) = 21/4 and τ(i) = −i. Then τ has order 2.
Finally,

σ(τ(21/4i)) = σ(−21/4i) = 21/4

τ(σ(21/4i)) = τ(−21/4) = −21/4

and so σ and τ do not commute.
Therefore, G is non-abelian and so clearly

G ∼= D8 = 〈σ, τ |σ4 = τ 2 = 1, στ = τσ−1〉.

Now, the subfields F of K which have degree 2 over Q correspond by the Galois
Correspondence Theorem, to the subgroups of G which have index 2. Namely, to the
subgroups of G of order 4.

Note that 〈σ〉, 〈τ, σ2〉, 〈τσ, σ2〉 all have order 4.
One can check that these are the only subgroups of order 4. Namely, if H were another

subgroup of order 4 containing σ or σ3, then H would be the first subgroup.
Similarly, if H contains σ2, then it must contain at least one of the τ, τσ, τσ2, τσ3 and

these would all result in either the second or third subgroup listed.
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Thus, no such fourth H exists.
Finally, σ fixes i and so

〈σ〉 = Gal(K/Q(i)) Q(i)

σ2 fixes i and
√

2 since

σ2((21/4)2) = σ((21/4i)2) = σ(−(21/4)2) = −(21/4i)2 = (21/4)2

, and τ fixes
√

2, so
〈σ〉 = Gal(K/Q(

√
2)) Q(

√
2)

and τσ and σ2 both fix
√

2i since

τσ((21/4)2i) = τ(−(21/4)2i) = (21/4)2i

and σ2 fixes
√

2 and i, so

〈σ〉 = Gal(K/Q(i
√

2)) Q(i
√

2).

�
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Problem 6. Let F be a field, and suppose A is a finite-dimensional F -algebra. Write
[A,A] for the F -subspace of A spanned by elements of the form ab − ba with a, b ∈ A.
Show that [A,A] 6= A in the following two cases:

(a) When A is a matrix algebra over F ;

(b) When A is a central division algebra over F.

(Recall that a division algebra over F is called central if its center is isomorphic with F ).

Solution.

(a) Let A = Mn(F ) the algebra of n× n matrices with coefficients in F .
Now, we note that

tr(XY − Y X) = tr(XY )− tr(Y X) = tr(XY )− tr(XY ) = 0

where tr(X) is the trace of X.
Therefore, [A,A] ( A since there are clearly matrices in A with nonzero trace.

(b) Let A be a central division algebra over F .
We prove several small claims.

Claim 2. The center with A,B both F -algebras (F a field), Z(A⊗F B) =
Z(A)⊗F Z(B).

Proof. ⊂ Let x ∈ Z(A⊗F B), then x commutes with all elementary
tensors. WLOG we can write x = ∑n

j=1 αj(aj ⊗ bj) where the aj and bj

are linearly independent, then

x(a⊗ 1) =
n∑

j=1
αj(aj ⊗ bj)(a⊗ 1)

=
n∑

j=1
αj(aja⊗ bj)

= (a⊗ b)x

=
n∑

j=1
αj(aaj ⊗ bj)

and so
n∑

j=1
αj((aja− aaj)⊗ bj) = 0
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and since the bj are linearly independent, this forces aja− aaj = 0 for all
j.
Thus, aj ∈ Z(A) for all j.
Similarly, checking x(1⊗ b) we get that bj ∈ Z(B) for all j.
Thus, x ∈ Z(A)⊗F Z(B)
⊃ This is immediate since if x ∈ Z(A)⊗F Z(B) then x = ∑n

j=1 αj(aj⊗bj)
with aj ∈ Z(A) and bj ∈ Z(B) so x will commute with all elementary
tensors since

x(a⊗b) =
n∑

j=1
αj(aj⊗bj)(a⊗b) =

n∑
j=1

αj(aja⊗bjb) =
n∑

j=1
αj(aaj⊗bbj) = (a⊗b)x.

Therefore, x ∈ Z(A⊗F B) �

Claim 3. If A is a central simple algebra, and B is simple then A⊗F B
is simple where F is a field and A,B are F -algebras.

Proof. Let I be an ideal of A⊗F B.
Then there exists an x ∈ I with x = ∑n

j=1 αj(aj ⊗ bj) where n is minimal
and the bj are linearly independent.
Then aj 6= 0 for all j and so the two sided ideal I1 = (a1) is a nonzero
ideal of A, so namely, Ij = A since A is simple.
Therefore, 1 = t1a1s1 for some t1, s1 ∈ A.
Thus,

x′ = (t1 ⊗ 1)x(s1 ⊗ 1) = α1(1⊗ b1) +
n∑

j=2
αj(t1ajs1 ⊗ bj) ∈ I

since I is a two sided ideal.
Now, let a ∈ A be arbitrary, then

x0 = (a⊗ 1)x′ − x′(a⊗ 1) =
n∑

j=2
αj(at1ajs1 − t1ajs1a⊗ bj)

which is in I and is of length strictly smaller than x. Thus, x0 = 0 and so
because the bj are linearly independent, this forces at1ajs1 − t1ajs1a = 0
for all j. Therefore, since a was arbitrary, t1ajs1 ∈ Z(A) = F because A is
central.
However, then x′ = 1⊗ b for some b ∈ B.
However, then 1 ⊗ (b) ⊂ I where (b) is a two sided ideal of B. However,
since B is also simple, (b) = B and so 1⊗B ⊂ I.
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Therefore, (A⊗ 1)(1⊗B) = A⊗B ⊂ I

So A⊗F B is simple. �

Finally, let F be the algebraic closure of F. Let C = A ⊗F F . From Claim 2 and
Claim 3, C is simple and has center F ⊗F F = F .

Therefore, by Artin-Wedderburn, C = Mn(Di) for some Di division ring over F .
However, since Z(Di) = F , and F is algebraically closed, Di = F . Note Di is finite
dimensional over F by Artin-Wedderburn, and so it must be an algebraic extension,
however F is algebraically closed so Di = F .

Thus, C = Mn(F ) and so by (a), [C,C] 6= C.
Since

[C,C] = [A⊗F F ,A⊗F F ]
= {linear combinations of (a⊗ f)(b⊗ g)− (b⊗ g)(a⊗ f)}
= {linear combinations of ab⊗ fg − ba⊗ gf}
= {linear combinations of ab⊗ fg − ba⊗ fg}
= {linear combinations of (ab− ba)⊗ fg)}
= [A,A]⊗F F 6= A⊗F F

it must be that [A,A] 6= A.

�
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Problem 7. If ϕ : A→ B is a surjective homomorphism of rings, show that the image
of the Jacobson radical of A under ϕ is contained in the Jacobson radical of B.

Solution. First, let M be a maximal ideal of A. Let ϕ(M) ⊂ N where N ⊂ B is maximal.
Then we can define

ϕ̃ : A→ B/N

defined by ϕ̃(a) = ϕ(a) +N.

Clearly ϕ̃(M) ⊂ 0 and so M ⊂ ker(ϕ̃). Therefore, either M = ker ϕ̃ or ker ϕ̃ = A.
In the first case, we get that ϕ(M) = N since if x ∈ N , then ϕ is surjective so there

exists a ∈ A with ϕ(a) = x, namely, ϕ̃(a) = 0 and so a ∈M .
In the second case, we get that N = B, else we could take 1 ∈ B\N and again, there

would exist some a ∈ A such that ϕ̃(a) = 1 +N 6= 0.
Namely, ϕ sends maximal ideals to maximal ideals.
Therefore,

ϕ(J(A)) = ϕ

( ⋂
M max ⊂A

M

)
=

⋂
M max ⊂A

ϕ(M)

⊂
⋂

N max ⊂B

N

= J(B)

�
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