Kayla Orlinsky Algebra Exam Fall 2018

Problem 1. Let \mathbb{F}_{p} be a finite field with p elements, and consider the group $G L_{n}\left(\mathbb{F}_{p}\right)$. Write down the order of $G L_{n}\left(\mathbb{F}_{p}\right)$ and a Sylow p-subgroup.

Solution. If $X \in G L_{n}\left(\mathbb{F}_{p}\right)$, then X must be an invertible $n \times n$ matrix with elements in \mathbb{F}_{p}. Namely, X must have linearly independent columns. If $\left[x_{i}\right]$ are the columns of X, then the first column x_{1} can by anything except the zero vector, which vies $p^{n}-1$ possible options.

The second column x_{2} can be anything but a multiple of the first column. So once x_{1} is chosen, $x_{2} \neq a x_{1}$, there are p vectors that x_{2} cannot be. Namely, there are $p^{n}-p$ choices for x_{2}.

Inductively, we can see that there are $p^{n}-p^{k}$ choices for $x_{k+1} 0 \leq k \leq n-1$.
Thus,

$$
\left|G L_{n}\left(\mathbb{F}_{p}\right)\right|=\left(p^{n}-1\right)\left(p^{n}-p\right) \cdots\left(p^{n}-p^{n-1}\right)
$$

***Although it was not asked, we can note that the determinant function

$$
\text { det }: G L_{n}\left(\mathbb{F}_{p}\right) \rightarrow \mathbb{F}_{p}^{*}
$$

is a surjective homomorphism with kernel $S L_{n}\left(\mathbb{F}_{p}\right)$. Namely,

$$
\left|\frac{G L_{n}\left(\mathbb{F}_{p}\right)}{S L_{n}\left(\mathbb{F}_{p}\right)}\right|=\left|\mathbb{F}_{p}^{*}\right|=p-1
$$

and so

$$
\left|S L_{n}\left(\mathbb{F}_{p}\right)\right|=\frac{\left|G L_{n}\left(\mathbb{F}_{p}\right)\right|}{p-1}
$$

We further note that if instead we were interested in \mathbb{F}_{q} where $q=p^{k}$, then we could replace p with q in all instances and achieve the same results.

Finally, we claim that if P that set of all upper triangular matrices with 1 down the main diagonal forms a Sylow p-subgroup.

First, there are

$$
\frac{n^{2}-n}{2}
$$

entries in matrices of this form, and p possible choices for each entry, so $|P|=p^{(n-1) n / 2}$.

Since Sylow p-subgroups have order $p^{n-1} p^{n-2} \cdots p$ or $p^{(n-1) n / 2}$, we have that P has the right size.

Thus, if P is a subgroup it is a Sylow p-subgroup.
However, this is trivial since products of upper triangular matrices are upper triangular and inveres of upper triangular matrices are also upper triangular.

Since $\operatorname{det}(Y)=1$ if $Y \in P$, we also get that $Y^{-1} \in P$. Note that the determinant of an upper triangular matrix is the prdouct of the entries down the main diagonal.

Thus, P is a subgroup and so it is a Sylow p-subgroup.

Problem 2. Prove that there are no simple groups of order 600.

Solution. Let G be a group of order $600=10 \cdot 10 \cdot 6=2^{3} \cdot 3 \cdot 5^{2}$.
Then, by Sylow Theorems, $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 2^{3} \cdot 3$.
Namely, $n_{5}=1,6$.
Now, if G is simple, then $n_{5}=6$ and so since Sylow 5 -subgroups are conjugates, G can act on its Sylow 5 subgroups by conjugation.

This action defines a homomorphism

$$
\varphi: G \rightarrow S_{6}
$$

where $\varphi(g)=\sigma_{g}$ and $\sigma_{g}: \operatorname{Syl}_{5}(G) \rightarrow \operatorname{Syl}_{5}(G)$ with $\sigma_{g}\left(P_{5}\right)=g P_{5} g^{-1}$ and P_{5} a Sylwo 5 -subgroup of G.

Now, since kernels of homomorphisms are normal subgroups in the domain, $\operatorname{ker} \varphi$ must be trivial. Namely, φ must be an embedding.

However, $\left|S_{6}\right|=6!=720$, and since $|G|=600$ which does not divide 720 , there cannot be any isomorphic copies of G inside S_{6}.

This is a contradiction and so G cannot be simple.

Problem 3. Prove that $\mathbb{Z}[\sqrt{10}]$ is integrally closed in its field of fractions, but not a UFD.

Solution. Let $a+b \sqrt{10} \in \mathbb{Q}[\sqrt{10}]$. Note that this is the field of fractions of $\mathbb{Z}[\sqrt{10}]$ since for $s, t, p, q \in \mathbb{Z}$,

$$
\frac{s+t \sqrt{10}}{p+q \sqrt{10}}=\frac{(s+t \sqrt{10})(p-q \sqrt{10})}{p^{2}-10 q^{2}} \in \mathbb{Q}[\sqrt{10}] .
$$

Then we note that $m_{a, b}(x)=(x-a-b \sqrt{10})(x-a+b \sqrt{10})=x^{2}-2 a x+a^{2}-10 b^{2}$ is the minimal polynomial of $a+b \sqrt{10}$ over $\mathbb{Q} . m_{a, b}(x)$ is irreducible over \mathbb{Q} and so it is also irreducible over \mathbb{Z}.

Now, if $a+b \sqrt{10}$ is integral over $\mathbb{Z}[\sqrt{10}]$ it satisfies $f(x)$ a monic irreducible polynomial with coefficients in $\mathbb{Z}[\sqrt{10}]$. Since $f(x)$ is irreducible, over $\mathbb{Z}[\sqrt{10}]$, by Gauss' Lemma, $f(x)$ is also irreducible over $\mathbb{Q}[\sqrt{10}]$. However, then $m_{a, b}(x)$ must divide $f(x)$ in $\mathbb{Q}[\sqrt{10}]$ and so by irreducibly, $f(x)=u m_{a, b}(x)$ for u a unit. Namely, $m_{a, b}(x)$ has coefficients in \mathbb{Z}.

Therefore, $a+b \sqrt{10}$ is integral over $\mathbb{Z}[\sqrt{10}]$ if and only if $m_{a, b}(x)$ has coefficients in \mathbb{Z}.
Now, if $-2 a \in \mathbb{Z}$ and $a^{2}-10 b^{2} \in \mathbb{Z}$ then

$$
4\left(a^{2}-10 b^{2}\right)=(2 a)^{2}-10(2 b)^{2} \in \mathbb{Z}
$$

however, $2 a \in \mathbb{Z}$ and so $10(2 b)^{2} \in \mathbb{Z}$.
Since 10 is squarefree, it cannot be that $(2 b)^{2} \notin \mathbb{Z}$ so $2 b \in \mathbb{Z}$ as well.
Finally, $4\left(a^{2}-10 b^{2}\right)=(2 a)^{2}-10(2 b)^{2}=4 k \quad k \in \mathbb{Z}$ and so $(2 a)^{2}=2\left(5(2 b)^{2}+2 k\right)$, since $2 b \in \mathbb{Z}$ we get that $(2 a)^{2}$ is even. However, if $2 \mid(2 a)^{2}$ then $2 \mid(2 a)$. Namely, $a \in \mathbb{Z}$.

Immediately then, it must be that $b \in \mathbb{Z}$ since again, 10 is squarefree and $10 b^{2} \in \mathbb{Z}$.
Thus, $\mathbb{Z}[\sqrt{10}]$ is integrally closed.
Now, let $N(a+b \sqrt{10})=a^{2}-10 b^{2}$ be the norm function on $\mathbb{Z}[\sqrt{10}]$. Note that

$$
N(x y)=x y \overline{x y}=x y \overline{x y}=x \bar{x} y \bar{y}=N(x) N(y)
$$

and that

$$
N: \mathbb{Z}[\sqrt{10}] \rightarrow \mathbb{Z}
$$

We note that if $N(a+b \sqrt{10})=3$, then

$$
\begin{aligned}
a^{2}-10 b^{2} & =3 \\
a & =2 n+1 \quad n \in \mathbb{Z} \\
(2 n+1)^{2}-10 b^{2} & =3 \\
4 n^{2}+4 n+1-10 b^{2} & =3 \\
2 n^{2}+2 n-1 & =5 b^{2} \\
b & =2 k+1 \quad k \in \mathbb{Z} \\
4 n^{2}+4 n+1-10(2 k+1)^{2} & =3 \\
4 n^{2}+4 n+1-10\left(4 k^{2}+4 k+1\right) & =3 \\
4\left[n^{2}+n-10 k^{2}-10 k\right]-9 & =3 \\
n^{2}+n-10 k^{2}-10 k & =3 \\
n^{2}+n \equiv 1 \quad \bmod 2 &
\end{aligned}
$$

and this is not possible since if n is odd, then $n^{2}+n$ is even, and if n is even, then $n^{2}+n \equiv 0$ $\bmod 2$.

Thus, $N(x) \not \equiv$ for all $x \in \mathbb{Z}[\sqrt{10}]$.
Namely, since $N(3)=9$, if 3 were reducible, then we would get

$$
N(3)=9=N(a b)=N(a) N(b) .
$$

However, since $N(a) \not \beta$, and $N(b) \not \beta$, then either a or b is a unit.
Therefore, 3 is irreducible.
Now, since in $\mathbb{Z}[\sqrt{10}]$,

$$
9=3 \cdot 3=-(1-\sqrt{10})(1+\sqrt{10})
$$

if $\mathbb{Z}[\sqrt{10}]$ were a UFD, then 3 would be prime, since it is irreducible.
Namely, 3 must divide $1+\sqrt{10}$.
However, if

$$
1+\sqrt{10}=3(a+b \sqrt{10}) \Longrightarrow 1=3 a, 1=3 b
$$

which is not possible for $a, b \in \mathbb{Z}$.
Thus, 3 is not prime and so $\mathbb{Z}[\sqrt{10}]$ is not a UFD.

Problem 4. If F is a field and E / F is an extension, then an element $a \in E$ will be called abelian if $\operatorname{Gal}(F[a] / F)$ is an abelian group. Show taht the set of abelian elements of E is a subfield of E containing F.

Solution. Let S be the set of abelian elements of E. We need to show that S is a subgfield of E and that it contains F.

The latter is immediate since if $a \in F$ then $F[a]=F$ and so

$$
\operatorname{Gal}(F[a] / F)=\operatorname{Gal}(F / F)=\{e\} .
$$

And since the trivial group is abelian, $a \in S$.
Thus, S certainly contains 0 and 1 since $0 \in F$ and $1 \in F$.
Furthermore, S contains inverses since $F[a]=F\left[a^{-1}\right]$ and so if $a \in S$ then

$$
\operatorname{Gal}(F[a] / F)=\operatorname{Gal}\left(F\left[a^{-1}\right] / F\right) \quad \text { is abelian. }
$$

and so $a^{-1} \in S$.
Finally, we check that S is closed under addition and multiplication.
Let $a, b \in S$. We prove a small claim.

Claim 1. There is an injective homomorphism

$$
\varphi: \operatorname{Gal}(F[a, b] / F) \rightarrow \operatorname{Gal}(F[a] / F) \times \operatorname{Gal}(F[b] / F)
$$

Proof. Let $\varphi(\sigma)=\left(\left.\sigma\right|_{F[a]},\left.\sigma\right|_{F[b]}\right)$ which is the restriction of σ to $F[a]$ and $F[b]$ respectively.

Note that φ is well defined since by assumption, $F[a, b] / F, F[a] / F$ and $F[b] / F$ are Galois extensions, and so any automorphism $\sigma: F[a, b] \rightarrow F[a, b]$ must preserve the subfields $F[a]$ and $F[b]$.

Therefore, φ is trivially a homomorphism since

$$
\left.(\sigma \circ \tau)\right|_{F[a]}=\sigma\left(\left.\tau\right|_{F[a]}\right)=\left.\sigma\right|_{F[a]}\left(\left.\tau\right|_{F[a]}\right)=\left.\left.\sigma\right|_{F[a]} \circ \tau\right|_{F[a]}
$$

because $\left.\tau\right|_{F[a]}: F[a] \rightarrow F[a]$.
Similarly for $\left.(\sigma \circ \tau)\right|_{F[b]}$.
Finally, if $\varphi(\sigma)=(\mathrm{Id}, \mathrm{Id})$ then σ acts as the identity on $F[a]$ and on $F[b]$ so it must be the identity on $F[a, b]$.

Thus, $\operatorname{ker} \varphi=0$.
Therefore, there is an isomorphic copy of $\operatorname{Gal}(F[a, b] / F)$ in $\operatorname{Gal}(F[a] / F) \times$ $\operatorname{Gal}(F[b] / F)$.

Since $a, b \in S, \operatorname{Gal}(F[a] / F) \times \operatorname{Gal}(F[b] / F)$ is a product of two abelian groups and is therefore abelian.

Finally, $\operatorname{Gal}(F[a, b] / F)$ is therefore abelain and so all subgroups are normal. Therefore, since $F[a-b] \subset F[a, b]$ and $F[a b] \subset F[a-b]$ are both subfields, by the fundamental theorem of Galois theory $F[a-b] / F$ is a Galois extension with abelian Galois group since it is a subgroup of $\operatorname{Gal}(F[a, b] / F)$.

Therefore $a-b \in S$ and similarly $a b^{-1} \in S$.
Thus, S is a subfield of E containing F.

Problem 5. Let K be the splitting field of $x^{4}-2 \in \mathbb{Q}[x]$. Prove that $\operatorname{Gal}(K / \mathbb{Q})$ is D_{8} the dihedral group of order 8 , (i.e., the group of isometries of the square). Find all subfields of K that have degree 2 over \mathbb{Q}.

Solution. Let K be the splitting field of

$$
x^{4}-2=\left(x^{2}-\sqrt{2}\right)\left(x^{2}+\sqrt{2}\right)=\left(x-2^{1 / 4}\right)\left(x+2^{1 / 4}\right)\left(x-2^{1 / 4} i\right)\left(x+2^{1 / 4} i\right)
$$

Then $K=\mathbb{Q}\left(2^{1 / 4}, i\right)$ clearly.
Now, we note that $2^{1 / 4}$ has minimal polynomial $x^{4}-2$ over \mathbb{Q} and i has minimal polynomial $x^{2}+1$. Since $i \notin \mathbb{Q}\left(2^{1 / 4}\right)$ because it is not in \mathbb{R} and $\mathbb{Q}\left(2^{1 / 4}\right) \subset \mathbb{R}$, then this must the minimal polynomial of i over $\mathbb{Q}\left(2^{1 / 4}\right)$.

Namely,

$$
[K: \mathbb{Q}]=\left[K: \mathbb{Q}\left(2^{1 / 4}\right)\right]\left[\mathbb{Q}\left(2^{1 / 4}\right): \mathbb{Q}\right]=2 \cdot 4=8
$$

Now, because $x^{4}-2$ is separable and K is its splitting field, K / \mathbb{Q} is Galois.
Therefore, $G=\operatorname{Gal}(K / \mathbb{Q})$ is of order 8 .
Let $\sigma \in G$ be defined by $\sigma\left(2^{1 / 4}\right)=2^{1 / 4} i$ and $\sigma(i)=i$.
Then σ clearly has order 4 since

$$
\sigma^{4}\left(2^{1 / 4}\right)=\sigma^{3}\left(2^{1 / 4} i\right)=\sigma^{2}\left(-2^{1 / 4}\right)=\sigma\left(-2^{1 / 4} i\right)=2^{1 / 4}
$$

Let $\tau \in G$ be defined by $\tau\left(2^{1 / 4}\right)=2^{1 / 4}$ and $\tau(i)=-i$. Then τ has order 2 .
Finally,

$$
\begin{aligned}
& \sigma\left(\tau\left(2^{1 / 4} i\right)\right)=\sigma\left(-2^{1 / 4} i\right)=2^{1 / 4} \\
& \tau\left(\sigma\left(2^{1 / 4} i\right)\right)=\tau\left(-2^{1 / 4}\right)=-2^{1 / 4}
\end{aligned}
$$

and so σ and τ do not commute.
Therefore, G is non-abelian and so clearly

$$
G \cong D_{8}=\left\langle\sigma, \tau \mid \sigma^{4}=\tau^{2}=1, \sigma \tau=\tau \sigma^{-1}\right\rangle
$$

Now, the subfields F of K which have degree 2 over \mathbb{Q} correspond by the Galois Correspondence Theorem, to the subgroups of G which have index 2. Namely, to the subgroups of G of order 4.

Note that $\langle\sigma\rangle,\left\langle\tau, \sigma^{2}\right\rangle,\left\langle\tau \sigma, \sigma^{2}\right\rangle$ all have order 4.
One can check that these are the only subgroups of order 4. Namely, if H were another subgroup of order 4 containing σ or σ^{3}, then H would be the first subgroup.

Similarly, if H contains σ^{2}, then it must contain at least one of the $\tau, \tau \sigma, \tau \sigma^{2}, \tau \sigma^{3}$ and these would all result in either the second or third subgroup listed.

Thus, no such fourth H exists.
Finally, σ fixes i and so

$$
\langle\sigma\rangle=\operatorname{Gal}(K / \mathbb{Q}(i)) \rightsquigarrow \mathbb{Q}(i)
$$

σ^{2} fixes i and $\sqrt{2}$ since

$$
\sigma^{2}\left(\left(2^{1 / 4}\right)^{2}\right)=\sigma\left(\left(2^{1 / 4} i\right)^{2}\right)=\sigma\left(-\left(2^{1 / 4}\right)^{2}\right)=-\left(2^{1 / 4} i\right)^{2}=\left(2^{1 / 4}\right)^{2}
$$

, and τ fixes $\sqrt{2}$, so

$$
\langle\sigma\rangle=\operatorname{Gal}(K / \mathbb{Q}(\sqrt{2})) \rightsquigarrow \mathbb{Q}(\sqrt{2})
$$

and $\tau \sigma$ and σ^{2} both fix $\sqrt{2} i$ since

$$
\tau \sigma\left(\left(2^{1 / 4}\right)^{2} i\right)=\tau\left(-\left(2^{1 / 4}\right)^{2} i\right)=\left(2^{1 / 4}\right)^{2} i
$$

and σ^{2} fixes $\sqrt{2}$ and i, so

$$
\langle\sigma\rangle=\operatorname{Gal}(K / \mathbb{Q}(i \sqrt{2})) \rightsquigarrow \mathbb{Q}(i \sqrt{2}) .
$$

Problem 6. Let F be a field, and suppose A is a finite-dimensional F-algebra. Write $[A, A]$ for the F-subspace of A spanned by elements of the form $a b-b a$ with $a, b \in A$. Show that $[A, A] \neq A$ in the following two cases:
(a) When A is a matrix algebra over F;
(b) When A is a central division algebra over F.
(Recall that a division algebra over F is called central if its center is isomorphic with F).

Solution.

(a) Let $A=M_{n}(F)$ the algebra of $n \times n$ matrices with coefficients in F.

Now, we note that

$$
\operatorname{tr}(X Y-Y X)=\operatorname{tr}(X Y)-\operatorname{tr}(Y X)=\operatorname{tr}(X Y)-\operatorname{tr}(X Y)=0
$$

where $\operatorname{tr}(X)$ is the trace of X.
Therefore, $[A, A] \subsetneq A$ since there are clearly matrices in A with nonzero trace.
(b) Let A be a central division algebra over F.

We prove several small claims.
Claim 2. The center with A, B both F-algebras (F a field), $Z\left(A \otimes_{F} B\right)=$ $Z(A) \otimes_{F} Z(B)$.

Proof. C Let $x \in Z\left(A \otimes_{F} B\right)$, then x commutes with all elementary tensors. WLOG we can write $x=\sum_{j=1}^{n} \alpha_{j}\left(a_{j} \otimes b_{j}\right)$ where the a_{j} and b_{j} are linearly independent, then

$$
\begin{aligned}
x(a \otimes 1) & =\sum_{j=1}^{n} \alpha_{j}\left(a_{j} \otimes b_{j}\right)(a \otimes 1) \\
& =\sum_{j=1}^{n} \alpha_{j}\left(a_{j} a \otimes b_{j}\right) \\
& =(a \otimes b) x \\
& =\sum_{j=1}^{n} \alpha_{j}\left(a a_{j} \otimes b_{j}\right)
\end{aligned}
$$

and so

$$
\sum_{j=1}^{n} \alpha_{j}\left(\left(a_{j} a-a a_{j}\right) \otimes b_{j}\right)=0
$$

and since the b_{j} are linearly independent, this forces $a_{j} a-a a_{j}=0$ for all j.
Thus, $a_{j} \in Z(A)$ for all j.
Similarly, checking $x(1 \otimes b)$ we get that $b_{j} \in Z(B)$ for all j.
Thus, $x \in Z(A) \otimes_{F} Z(B)$
\supset This is immediate since if $x \in Z(A) \otimes_{F} Z(B)$ then $x=\sum_{j=1}^{n} \alpha_{j}\left(a_{j} \otimes b_{j}\right)$ with $a_{j} \in Z(A)$ and $b_{j} \in Z(B)$ so x will commute with all elementary tensors since
$x(a \otimes b)=\sum_{j=1}^{n} \alpha_{j}\left(a_{j} \otimes b_{j}\right)(a \otimes b)=\sum_{j=1}^{n} \alpha_{j}\left(a_{j} a \otimes b_{j} b\right)=\sum_{j=1}^{n} \alpha_{j}\left(a a_{j} \otimes b b_{j}\right)=(a \otimes b) x$.
Therefore, $x \in Z\left(A \otimes_{F} B\right)$
Claim 3. If A is a central simple algebra, and B is simple then $A \otimes_{F} B$ is simple where F is a field and A, B are F-algebras.

Proof. Let I be an ideal of $A \otimes_{F} B$.
Then there exists an $x \in I$ with $x=\sum_{j=1}^{n} \alpha_{j}\left(a_{j} \otimes b_{j}\right)$ where n is minimal and the b_{j} are linearly independent.
Then $a_{j} \neq 0$ for all j and so the two sided ideal $I_{1}=\left(a_{1}\right)$ is a nonzero ideal of A, so namely, $I_{j}=A$ since A is simple.
Therefore, $1=t_{1} a_{1} s_{1}$ for some $t_{1}, s_{1} \in A$.
Thus,

$$
x^{\prime}=\left(t_{1} \otimes 1\right) x\left(s_{1} \otimes 1\right)=\alpha_{1}\left(1 \otimes b_{1}\right)+\sum_{j=2}^{n} \alpha_{j}\left(t_{1} a_{j} s_{1} \otimes b_{j}\right) \in I
$$

since I is a two sided ideal.
Now, let $a \in A$ be arbitrary, then

$$
x_{0}=(a \otimes 1) x^{\prime}-x^{\prime}(a \otimes 1)=\sum_{j=2}^{n} \alpha_{j}\left(a t_{1} a_{j} s_{1}-t_{1} a_{j} s_{1} a \otimes b_{j}\right)
$$

which is in I and is of length strictly smaller than x. Thus, $x_{0}=0$ and so because the b_{j} are linearly independent, this forces $a t_{1} a_{j} s_{1}-t_{1} a_{j} s_{1} a=0$ for all j. Therefore, since a was arbitrary, $t_{1} a_{j} s_{1} \in Z(A)=F$ because A is central.

However, then $x^{\prime}=1 \otimes b$ for some $b \in B$.
However, then $1 \otimes(b) \subset I$ where (b) is a two sided ideal of B. However, since B is also simple, $(b)=B$ and so $1 \otimes B \subset I$.

Therefore, $(A \otimes 1)(1 \otimes B)=A \otimes B \subset I$
So $A \otimes_{F} B$ is simple.
Finally, let \bar{F} be the algebraic closure of F. Let $C=A \otimes_{F} \bar{F}$. From Claim 2 and Claim 3, C is simple and has center $F \otimes_{F} \bar{F}=\bar{F}$.
Therefore, by Artin-Wedderburn, $C=M_{n}\left(D_{i}\right)$ for some D_{i} division ring over \bar{F}. However, since $Z\left(D_{i}\right)=\bar{F}$, and \bar{F} is algebraically closed, $D_{i}=\bar{F}$. Note D_{i} is finite dimensional over \bar{F} by Artin-Wedderburn, and so it must be an algebraic extension, however \bar{F} is algebraically closed so $D_{i}=\bar{F}$.
Thus, $C=M_{n}(\bar{F})$ and so by (a), $[C, C] \neq C$.
Since

$$
\begin{aligned}
{[C, C] } & =\left[A \otimes_{F} \bar{F}, A \otimes_{F} \bar{F}\right] \\
& =\{\text { linear combinations of }(a \otimes f)(b \otimes g)-(b \otimes g)(a \otimes f)\} \\
& =\{\text { linear combinations of } a b \otimes f g-b a \otimes g f\} \\
& =\{\text { linear combinations of } a b \otimes f g-b a \otimes f g\} \\
& =\{\text { linear combinations of }(a b-b a) \otimes f g)\} \\
& =[A, A] \otimes_{F} \bar{F} \neq A \otimes_{F} \bar{F}
\end{aligned}
$$

it must be that $[A, A] \neq A$.

Problem 7. If $\varphi: A \rightarrow B$ is a surjective homomorphism of rings, show that the image of the Jacobson radical of A under φ is contained in the Jacobson radical of B.

Solution. First, let M be a maximal ideal of A. Let $\varphi(M) \subset N$ where $N \subset B$ is maximal.
Then we can define

$$
\tilde{\varphi}: A \rightarrow B / N
$$

defined by $\tilde{\varphi}(a)=\varphi(a)+N$.
Clearly $\tilde{\varphi}(M) \subset 0$ and so $M \subset \operatorname{ker}(\tilde{\varphi})$. Therefore, either $M=\operatorname{ker} \tilde{\varphi}$ or $\operatorname{ker} \tilde{\varphi}=A$.
In the first case, we get that $\varphi(M)=N$ since if $x \in N$, then φ is surjective so there exists $a \in A$ with $\varphi(a)=x$, namely, $\tilde{\varphi}(a)=0$ and so $a \in M$.

In the second case, we get that $N=B$, else we could take $1 \in B \backslash N$ and again, there would exist some $a \in A$ such that $\tilde{\varphi}(a)=1+N \neq 0$.

Namely, φ sends maximal ideals to maximal ideals.
Therefore,

$$
\begin{aligned}
\varphi(J(A)) & =\varphi\left(\bigcap_{M \max \subset A} M\right) \\
& =\bigcap_{M \max \subset A} \varphi(M) \\
& \subset \bigcap_{N \max \subset B} N \\
& =J(B)
\end{aligned}
$$

