Kayla Orlinsky Algebra Exam Fall 2018

Problem 1. Let \mathbb{F}_p be a finite field with p elements, and consider the group $GL_n(\mathbb{F}_p)$. Write down the order of $GL_n(\mathbb{F}_p)$ and a Sylow p-subgroup.

Solution. If $X \in GL_n(\mathbb{F}_p)$, then X must be an invertible $n \times n$ matrix with elements in \mathbb{F}_p . Namely, X must have linearly independent columns. If $[x_i]$ are the columns of X, then the first column x_1 can by anything except the zero vector, which vies $p^n - 1$ possible options.

The second column x_2 can be anything but a multiple of the first column. So once x_1 is chosen, $x_2 \neq ax_1$, there are p vectors that x_2 cannot be. Namely, there are $p^n - p$ choices for x_2 .

Inductively, we can see that there are $p^n - p^k$ choices for $x_{k+1} \ 0 \le k \le n-1$.

Thus,

$$|GL_n(\mathbb{F}_p)| = (p^n - 1)(p^n - p)\cdots(p^n - p^{n-1}).$$

***Although it was not asked, we can note that the determinant function

$$\det: GL_n(\mathbb{F}_p) \to \mathbb{F}_p^*$$

is a surjective homomorphism with kernel $SL_n(\mathbb{F}_p)$. Namely,

$$\left.\frac{GL_n(\mathbb{F}_p)}{SL_n(\mathbb{F}_p)}\right| = |\mathbb{F}_p^*| = p - 1$$

and so

$$|SL_n(\mathbb{F}_p)| = \frac{|GL_n(\mathbb{F}_p)|}{p-1}.$$

We further note that if instead we were interested in \mathbb{F}_q where $q = p^k$, then we could replace p with q in all instances and achieve the same results.

Finally, we claim that if P that set of all upper triangular matrices with 1 down the main diagonal forms a Sylow p-subgroup.

First, there are

$$\frac{n^2 - n}{2}$$

entries in matrices of this form, and p possible choices for each entry, so $|P| = p^{(n-1)n/2}$.

Since Sylow *p*-subgroups have order $p^{n-1}p^{n-2}\cdots p$ or $p^{(n-1)n/2}$, we have that *P* has the right size.

Thus, if P is a subgroup it is a Sylow p-subgroup.

However, this is trivial since products of upper triangular matrices are upper triangular and inverse of upper triangular matrices are also upper triangular.

Since det(Y) = 1 if $Y \in P$, we also get that $Y^{-1} \in P$. Note that the determinant of an upper triangular matrix is the product of the entries down the main diagonal.

Thus, P is a subgroup and so it is a Sylow p-subgroup.

H

Problem 2. Prove that there are no simple groups of order 600.

Solution. Let G be a group of order $600 = 10 \cdot 10 \cdot 6 = 2^3 \cdot 3 \cdot 5^2$.

Then, by Sylow Theorems, $n_5 \equiv 1 \mod 5$ and $n_5 | 2^3 \cdot 3$.

Namely, $n_5 = 1, 6$.

Now, if G is simple, then $n_5 = 6$ and so since Sylow 5-subgroups are conjugates, G can act on its Sylow 5 subgroups by conjugation.

This action defines a homomorphism

$$\varphi: G \to S_6$$

where $\varphi(g) = \sigma_g$ and $\sigma_g : \text{Syl}_5(G) \to \text{Syl}_5(G)$ with $\sigma_g(P_5) = gP_5g^{-1}$ and P_5 a Sylwo 5-subgroup of G.

Now, since kernels of homomorphisms are normal subgroups in the domain, $\ker\varphi$ must be trivial. Namely, φ must be an embedding.

However, $|S_6| = 6! = 720$, and since |G| = 600 which does not divide 720, there cannot be any isomorphic copies of G inside S_6 .

This is a contradiction and so G cannot be simple.

H

Problem 3. Prove that $\mathbb{Z}[\sqrt{10}]$ is integrally closed in its field of fractions, but not a UFD.

Solution. Let $a + b\sqrt{10} \in \mathbb{Q}[\sqrt{10}]$. Note that this is the field of fractions of $\mathbb{Z}[\sqrt{10}]$ since for $s, t, p, q \in \mathbb{Z}$,

$$\frac{s+t\sqrt{10}}{p+q\sqrt{10}} = \frac{(s+t\sqrt{10})(p-q\sqrt{10})}{p^2-10q^2} \in \mathbb{Q}[\sqrt{10}].$$

Then we note that $m_{a,b}(x) = (x - a - b\sqrt{10})(x - a + b\sqrt{10}) = x^2 - 2ax + a^2 - 10b^2$ is the minimal polynomial of $a + b\sqrt{10}$ over \mathbb{Q} . $m_{a,b}(x)$ is irreducible over \mathbb{Q} and so it is also irreducible over \mathbb{Z} .

Now, if $a + b\sqrt{10}$ is integral over $\mathbb{Z}[\sqrt{10}]$ it satisfies f(x) a monic irreducible polynomial with coefficients in $\mathbb{Z}[\sqrt{10}]$. Since f(x) is irreducible, over $\mathbb{Z}[\sqrt{10}]$, by Gauss' Lemma, f(x) is also irreducible over $\mathbb{Q}[\sqrt{10}]$. However, then $m_{a,b}(x)$ must divide f(x) in $\mathbb{Q}[\sqrt{10}]$ and so by irreducibly, $f(x) = um_{a,b}(x)$ for u a unit. Namely, $m_{a,b}(x)$ has coefficients in \mathbb{Z} .

Therefore, $a + b\sqrt{10}$ is integral over $\mathbb{Z}[\sqrt{10}]$ if and only if $m_{a,b}(x)$ has coefficients in \mathbb{Z} . Now, if $-2a \in \mathbb{Z}$ and $a^2 - 10b^2 \in \mathbb{Z}$ then

$$4(a^2 - 10b^2) = (2a)^2 - 10(2b)^2 \in \mathbb{Z}$$

however, $2a \in \mathbb{Z}$ and so $10(2b)^2 \in \mathbb{Z}$.

Since 10 is squarefree, it cannot be that $(2b)^2 \notin \mathbb{Z}$ so $2b \in \mathbb{Z}$ as well.

Finally, $4(a^2 - 10b^2) = (2a)^2 - 10(2b)^2 = 4k$ $k \in \mathbb{Z}$ and so $(2a)^2 = 2(5(2b)^2 + 2k)$, since $2b \in \mathbb{Z}$ we get that $(2a)^2$ is even. However, if $2|(2a)^2$ then 2|(2a). Namely, $a \in \mathbb{Z}$.

Immediately then, it must be that $b \in \mathbb{Z}$ since again, 10 is squarefree and $10b^2 \in \mathbb{Z}$. Thus, $\mathbb{Z}[\sqrt{10}]$ is integrally closed.

Now, let $N(a + b\sqrt{10}) = a^2 - 10b^2$ be the norm function on $\mathbb{Z}[\sqrt{10}]$. Note that

$$N(xy) = xy\overline{xy} = xy\overline{xy} = x\overline{x}y\overline{y} = N(x)N(y)$$

and that

$$N: \mathbb{Z}[\sqrt{10}] \to \mathbb{Z}.$$

We note that if $N(a + b\sqrt{10}) = 3$, then

$$\begin{aligned} a^2 - 10b^2 &= 3\\ a &= 2n + 1 \qquad n \in \mathbb{Z}\\ (2n+1)^2 - 10b^2 &= 3\\ 4n^2 + 4n + 1 - 10b^2 &= 3\\ 2n^2 + 2n - 1 &= 5b^2\\ b &= 2k + 1 \qquad k \in \mathbb{Z}\\ 4n^2 + 4n + 1 - 10(2k+1)^2 &= 3\\ 4n^2 + 4n + 1 - 10(4k^2 + 4k + 1) &= 3\\ 4[n^2 + n - 10k^2 - 10k] - 9 &= 3\\ n^2 + n - 10k^2 - 10k &= 3\\ n^2 + n &\equiv 1 \mod 2 \end{aligned}$$

and this is not possible since if n is odd, then $n^2 + n$ is even, and if n is even, then $n^2 + n \equiv 0 \mod 2$.

Thus, $N(x) \not \beta$ for all $x \in \mathbb{Z}[\sqrt{10}]$.

Namely, since N(3) = 9, if 3 were reducible, then we would get

$$N(3) = 9 = N(ab) = N(a)N(b).$$

However, since $N(a) \not \beta$, and $N(b) \not \beta$, then either a or b is a unit.

Therefore, 3 is irreducible.

Now, since in $\mathbb{Z}[\sqrt{10}]$,

$$9 = 3 \cdot 3 = -(1 - \sqrt{10})(1 + \sqrt{10})$$

if $\mathbb{Z}[\sqrt{10}]$ were a UFD, then 3 would be prime, since it is irreducible.

Namely, 3 must divide $1 + \sqrt{10}$.

However, if

$$1+\sqrt{10}=3(a+b\sqrt{10})\implies 1=3a,1=3b$$

which is not possible for $a, b \in \mathbb{Z}$.

Thus, 3 is not prime and so $\mathbb{Z}[\sqrt{10}]$ is not a UFD.

S

Problem 4. If F is a field and E/F is an extension, then an element $a \in E$ will be called abelian if $\operatorname{Gal}(F[a]/F)$ is an abelian group. Show taht the set of abelian elements of E is a subfield of E containing F.

Solution. Let S be the set of abelian elements of E. We need to show that S is a subgfield of E and that it contains F.

The latter is immediate since if $a \in F$ then F[a] = F and so

$$\operatorname{Gal}(F[a]/F) = \operatorname{Gal}(F/F) = \{e\}.$$

And since the trivial group is abelian, $a \in S$.

Thus, S certainly contains 0 and 1 since $0 \in F$ and $1 \in F$.

Furthermore, S contains inverses since $F[a] = F[a^{-1}]$ and so if $a \in S$ then

$$\operatorname{Gal}(F[a]/F) = \operatorname{Gal}(F[a^{-1}]/F)$$
 is abelian.

and so $a^{-1} \in S$.

Finally, we check that S is closed under addition and multiplication.

Let $a, b \in S$. We prove a small claim.

Claim 1. There is an injective homomorphism

$$\varphi : \operatorname{Gal}(F[a, b]/F) \to \operatorname{Gal}(F[a]/F) \times \operatorname{Gal}(F[b]/F).$$

Proof. Let $\varphi(\sigma) = (\sigma|_{F[a]}, \sigma|_{F[b]})$ which is the restriction of σ to F[a] and F[b] respectively.

Note that φ is well defined since by assumption, F[a, b]/F, F[a]/F and F[b]/F are Galois extensions, and so any automorphism $\sigma : F[a, b] \to F[a, b]$ must preserve the subfields F[a] and F[b].

Therefore, φ is trivially a homomorphism since

$$(\sigma \circ \tau)|_{F[a]} = \sigma(\tau|_{F[a]}) = \sigma|_{F[a]}(\tau|_{F[a]}) = \sigma|_{F[a]} \circ \tau|_{F[a]}$$

because $\tau|_{F[a]}: F[a] \to F[a]$.

Similarly for $(\sigma \circ \tau)|_{F[b]}$.

Finally, if $\varphi(\sigma) = (\text{Id}, \text{Id})$ then σ acts as the identity on F[a] and on F[b] so it must be the identity on F[a, b].

Thus, $\ker \varphi = 0$.

Therefore, there is an isomorphic copy of $\operatorname{Gal}(F[a,b]/F)$ in $\operatorname{Gal}(F[a]/F) \times \operatorname{Gal}(F[b]/F)$.

Since $a, b \in S$, $\operatorname{Gal}(F[a]/F) \times \operatorname{Gal}(F[b]/F)$ is a product of two abelian groups and is therefore abelian.

Finally, $\operatorname{Gal}(F[a,b]/F)$ is therefore abelain and so all subgroups are normal. Therefore, since $F[a-b] \subset F[a,b]$ and $F[ab] \subset F[a-b]$ are both subfields, by the fundamental theorem of Galois theory F[a-b]/F is a Galois extension with abelian Galois group since it is a subgroup of $\operatorname{Gal}(F[a,b]/F)$.

Therefore $a - b \in S$ and similarly $ab^{-1} \in S$.

Thus, S is a subfield of E containing F.

H

Problem 5. Let K be the splitting field of $x^4 - 2 \in \mathbb{Q}[x]$. Prove that $\operatorname{Gal}(K/\mathbb{Q})$ is D_8 the dihedral group of order 8, (i.e., the group of isometries of the square). Find all subfields of K that have degree 2 over \mathbb{Q} .

Solution. Let K be the splitting field of

$$x^4 - 2 = (x^2 - \sqrt{2})(x^2 + \sqrt{2}) = (x - 2^{1/4})(x + 2^{1/4})(x - 2^{1/4}i)(x + 2^{1/4}i)$$

Then $K = \mathbb{Q}(2^{1/4}, i)$ clearly.

Now, we note that $2^{1/4}$ has minimal polynomial $x^4 - 2$ over \mathbb{Q} and i has minimal polynomial $x^2 + 1$. Since $i \notin \mathbb{Q}(2^{1/4})$ because it is not in \mathbb{R} and $\mathbb{Q}(2^{1/4}) \subset \mathbb{R}$, then this must the minimal polynomial of i over $\mathbb{Q}(2^{1/4})$.

Namely,

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(2^{1/4})][\mathbb{Q}(2^{1/4}):\mathbb{Q}] = 2 \cdot 4 = 8.$$

Now, because $x^4 - 2$ is separable and K is its splitting field, K/\mathbb{Q} is Galois.

Therefore, $G = \operatorname{Gal}(K/\mathbb{Q})$ is of order 8.

Let $\sigma \in G$ be defined by $\sigma(2^{1/4}) = 2^{1/4}i$ and $\sigma(i) = i$.

Then σ clearly has order 4 since

$$\sigma^4(2^{1/4}) = \sigma^3(2^{1/4}i) = \sigma^2(-2^{1/4}) = \sigma(-2^{1/4}i) = 2^{1/4}.$$

Let $\tau \in G$ be defined by $\tau(2^{1/4}) = 2^{1/4}$ and $\tau(i) = -i$. Then τ has order 2. Finally,

$$\sigma(\tau(2^{1/4}i)) = \sigma(-2^{1/4}i) = 2^{1/4}$$

$$\tau(\sigma(2^{1/4}i)) = \tau(-2^{1/4}) = -2^{1/4}$$

and so σ and τ do not commute.

Therefore, G is non-abelian and so clearly

$$G \cong D_8 = \langle \sigma, \tau \, | \, \sigma^4 = \tau^2 = 1, \sigma \tau = \tau \sigma^{-1} \rangle.$$

Now, the subfields F of K which have degree 2 over \mathbb{Q} correspond by the Galois Correspondence Theorem, to the subgroups of G which have index 2. Namely, to the subgroups of G of order 4.

Note that $\langle \sigma \rangle$, $\langle \tau, \sigma^2 \rangle$, $\langle \tau \sigma, \sigma^2 \rangle$ all have order 4.

One can check that these are the only subgroups of order 4. Namely, if H were another subgroup of order 4 containing σ or σ^3 , then H would be the first subgroup.

Similarly, if H contains σ^2 , then it must contain at least one of the $\tau, \tau\sigma, \tau\sigma^2, \tau\sigma^3$ and these would all result in either the second or third subgroup listed.

Thus, no such fourth H exists.

Finally, σ fixes i and so

$$\langle \sigma \rangle = \operatorname{Gal}(K/\mathbb{Q}(i)) \rightsquigarrow \mathbb{Q}(i)$$

 σ^2 fixes i and $\sqrt{2}$ since

$$\sigma^2((2^{1/4})^2) = \sigma((2^{1/4}i)^2) = \sigma(-(2^{1/4})^2) = -(2^{1/4}i)^2 = (2^{1/4}i)^2$$

, and τ fixes $\sqrt{2},$ so

$$\langle \sigma \rangle = \operatorname{Gal}(K/\mathbb{Q}(\sqrt{2})) \rightsquigarrow \mathbb{Q}(\sqrt{2})$$

and $\tau\sigma$ and σ^2 both fix $\sqrt{2}i$ since

$$\tau\sigma((2^{1/4})^2i) = \tau(-(2^{1/4})^2i) = (2^{1/4})^2i$$

and σ^2 fixes $\sqrt{2}$ and i, so

$$\langle \sigma \rangle = \operatorname{Gal}(K/\mathbb{Q}(i\sqrt{2})) \rightsquigarrow \mathbb{Q}(i\sqrt{2}).$$

M	
Ð	

Problem 6. Let *F* be a field, and suppose *A* is a finite-dimensional *F*-algebra. Write [A, A] for the *F*-subspace of *A* spanned by elements of the form ab - ba with $a, b \in A$. Show that $[A, A] \neq A$ in the following two cases:

- (a) When A is a matrix algebra over F;
- (b) When A is a central division algebra over F.

(Recall that a division algebra over F is called central if its center is isomorphic with F).

Solution.

(a) Let $A = M_n(F)$ the algebra of $n \times n$ matrices with coefficients in F. Now, we note that

$$\operatorname{tr}(XY - YX) = \operatorname{tr}(XY) - \operatorname{tr}(YX) = \operatorname{tr}(XY) - \operatorname{tr}(XY) = 0$$

where tr(X) is the trace of X.

Therefore, $[A, A] \subsetneq A$ since there are clearly matrices in A with nonzero trace.

(b) Let A be a central division algebra over F.

We prove several small claims.

Claim 2. The center with A, B both F-algebras (F a field), $Z(A \bigotimes_F B) = Z(A) \bigotimes_F Z(B)$.

Proof. \subseteq Let $x \in Z(A \otimes_F B)$, then x commutes with all elementary tensors. WLOG we can write $x = \sum_{j=1}^n \alpha_j (a_j \otimes b_j)$ where the a_j and b_j are linearly independent, then

$$x(a \otimes 1) = \sum_{j=1}^{n} \alpha_j (a_j \otimes b_j) (a \otimes 1)$$
$$= \sum_{j=1}^{n} \alpha_j (a_j a \otimes b_j)$$
$$= (a \otimes b)x$$
$$= \sum_{j=1}^{n} \alpha_j (aa_j \otimes b_j)$$

and so

$$\sum_{j=1}^{n} \alpha_j ((a_j a - a a_j) \otimes b_j) = 0$$

Å

and since the b_j are linearly independent, this forces $a_j a - a a_j = 0$ for all j.

Thus, $a_j \in Z(A)$ for all j.

Similarly, checking $x(1 \otimes b)$ we get that $b_j \in Z(B)$ for all j.

Thus, $x \in Z(A) \bigotimes_F Z(B)$

 \Box This is immediate since if $x \in Z(A) \bigotimes_F Z(B)$ then $x = \sum_{j=1}^n \alpha_j (a_j \otimes b_j)$ with $a_j \in Z(A)$ and $b_j \in Z(B)$ so x will commute with all elementary tensors since

$$x(a\otimes b) = \sum_{j=1}^{n} \alpha_j (a_j \otimes b_j) (a \otimes b) = \sum_{j=1}^{n} \alpha_j (a_j a \otimes b_j b) = \sum_{j=1}^{n} \alpha_j (aa_j \otimes bb_j) = (a \otimes b)x.$$

Therefore, $x \in Z(A \bigotimes_F B)$

Claim 3. If A is a central simple algebra, and B is simple then $A \bigotimes_F B$ is simple where F is a field and A, B are F-algebras.

Proof. Let I be an ideal of $A \bigotimes_F B$.

Then there exists an $x \in I$ with $x = \sum_{j=1}^{n} \alpha_j (a_j \otimes b_j)$ where n is minimal and the b_j are linearly independent.

Then $a_j \neq 0$ for all j and so the two sided ideal $I_1 = (a_1)$ is a nonzero ideal of A, so namely, $I_j = A$ since A is simple.

Therefore, $1 = t_1 a_1 s_1$ for some $t_1, s_1 \in A$.

Thus,

$$x' = (t_1 \otimes 1)x(s_1 \otimes 1) = \alpha_1(1 \otimes b_1) + \sum_{j=2}^n \alpha_j(t_1 a_j s_1 \otimes b_j) \in I$$

since I is a two sided ideal.

Now, let $a \in A$ be arbitrary, then

$$x_0 = (a \otimes 1)x' - x'(a \otimes 1) = \sum_{j=2}^n \alpha_j (at_1 a_j s_1 - t_1 a_j s_1 a \otimes b_j)$$

which is in I and is of length strictly smaller than x. Thus, $x_0 = 0$ and so because the b_j are linearly independent, this forces $at_1a_js_1 - t_1a_js_1a = 0$ for all j. Therefore, since a was arbitrary, $t_1a_js_1 \in Z(A) = F$ because A is central.

However, then $x' = 1 \otimes b$ for some $b \in B$.

However, then $1 \otimes (b) \subset I$ where (b) is a two sided ideal of B. However, since B is also simple, (b) = B and so $1 \otimes B \subset I$.

Therefore,
$$(A \otimes 1)(1 \otimes B) = A \otimes B \subset I$$

So $A \bigotimes_F B$ is simple.

Finally, let \overline{F} be the algebraic closure of F. Let $C = A \otimes_F \overline{F}$. From Claim 2 and Claim 3, C is simple and has center $F \otimes_F \overline{F} = \overline{F}$.

Therefore, by Artin-Wedderburn, $C = M_n(D_i)$ for some D_i division ring over \overline{F} . However, since $Z(D_i) = \overline{F}$, and \overline{F} is algebraically closed, $D_i = \overline{F}$. Note D_i is finite dimensional over \overline{F} by Artin-Wedderburn, and so it must be an algebraic extension, however \overline{F} is algebraically closed so $D_i = \overline{F}$.

Thus, $C = M_n(\overline{F})$ and so by (a), $[C, C] \neq C$.

Since

$$[C, C] = [A \otimes_F \overline{F}, A \otimes_F \overline{F}]$$

= {linear combinations of $(a \otimes f)(b \otimes g) - (b \otimes g)(a \otimes f)$ }
= {linear combinations of $ab \otimes fg - ba \otimes gf$ }
= {linear combinations of $ab \otimes fg - ba \otimes fg$ }
= {linear combinations of $(ab - ba) \otimes fg$ }
= [A, A] $\otimes_F \overline{F} \neq A \otimes_F \overline{F}$

it must be that $[A, A] \neq A$.

M	
Ð	

Problem 7. If $\varphi : A \to B$ is a surjective homomorphism of rings, show that the image of the Jacobson radical of A under φ is contained in the Jacobson radical of B.

Solution. First, let M be a maximal ideal of A. Let $\varphi(M) \subset N$ where $N \subset B$ is maximal. Then we can define

$$\tilde{\varphi}: A \to B/N$$

defined by $\tilde{\varphi}(a) = \varphi(a) + N$.

Clearly $\tilde{\varphi}(M) \subset 0$ and so $M \subset \ker(\tilde{\varphi})$. Therefore, either $M = \ker \tilde{\varphi}$ or $\ker \tilde{\varphi} = A$.

In the first case, we get that $\varphi(M) = N$ since if $x \in N$, then φ is surjective so there exists $a \in A$ with $\varphi(a) = x$, namely, $\tilde{\varphi}(a) = 0$ and so $a \in M$.

In the second case, we get that N = B, else we could take $1 \in B \setminus N$ and again, there would exist some $a \in A$ such that $\tilde{\varphi}(a) = 1 + N \neq 0$.

Namely, φ sends maximal ideals to maximal ideals.

Therefore,

$$\varphi(J(A)) = \varphi\left(\bigcap_{M \max \subset A} M\right)$$
$$= \bigcap_{M \max \subset A} \varphi(M)$$
$$\subset \bigcap_{N \max \subset B} N$$
$$= J(B)$$

Ŵ	
27	
ల	