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Problem 1. Let R be a PID. Let M be an R-module.

(a) Show that if M is finitely generated, then M is cyclic if and only if M/PM is for
all prime ideals P of R.

(b) Show that the previous statement is false if M is not finitely generated.

***Note as written this problem is wrong unless we assume P is a nonzero prime
ideal.

Solution.

(a) This is very similar to Fall 2013: Problem 2.
Let M be finitely generated.

=⇒ Assume M is cyclic. Then M = (x) = xR = {rx | r ∈ R} for some x ∈ X.
However, then M/PM is certainly cyclic since any quotient of a cyclic module must
also be cyclic.
This is because we can define π : M → M/PM to be the quotient map, which is
surjective. Then M/PM ∼= π((x)) = (π(x)) and so is cyclic.
⇐= Assume M/PM is cyclic for all nonzero prime ideals P .

By the structure theorem, there is a chain of ideals

(d1) ⊂ (d2) ⊂ · · · ⊂ (dn)

such that
M ∼= R/(d1)⊕ · · · ⊕R/(dn).

Note that di|di−1 for all i.
If (dn) is not maximal, then there is a maximal (prime) ideal P such that (dn) ⊂ P .
Then PM = P/(d1)⊕ · · · ⊕ P/(dn) so Then

M/PM ∼= (R/(d1))/(P/(d1))⊕ · · · ⊕ (R/(dn))/(P/(dn)) ∼= (R/P )n

However, M/PM is cyclic for all P , and (R/P )n ∼= R/(a) for some a forces n = 1.
Namely, M is cyclic.
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(b) As written, the problem is true regardless of whether or notM is finitely generated. Since
R is a PID, it is a domain, so P = (0) is a prime ideal. However, then PM = (0)M = 0
so M/PM ∼= M is cyclic.
However, with the assumption that we may use only nonzero prime ideals, let R = Z
which is a PID and M = Q. Then M is infinitely generated.
The nonzero prime ideals of R are exactly ideals generated by (p) where p is a prime
and (p)M = M .
Therefore,

M/(p)M ∼= M/M ∼= (0)

which is certainly cyclic.
However, M is not cyclic.

�
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Problem 2. Prove that a power of the polynomial (x+ y)(x2 + y4 − 2) belongs to the
ideal (x3 + y2, x3 + xy) in C[x, y].

Solution. It suffices to show that (x + y)(x2 + y4 − 2) is satisfied by all zeros in V (x3 +
y2, x3 + xy).

By Nullstellenzatz, if g(x, y) is a polynomial such that g(a, b) = 0 for all (a, b) ∈ V (I),
then there exists an n such that gn(x, y) ∈ I.

Let g(x, y) = (x+ y)(x2 + y4 − 2)
Now, we examine V (x3 + y2, x3 + xy).
Clearly (0, 0) ∈ V (x3 + y2, x3 + xy). If x3 + y2 = 0 and x3 + xy = 0 then y2 − xy = 0, so

y(y − x) = 0.
If y = 0 then x = 0, and if y = x, then x2(x+ 1) = 0, so x = −1.
Thus, the only elements of V (x3 + y2, x3 + xy) are (0, 0), (−1,−1).
Since g(0, 0) = 0 and g(−1,−1) = 0, we have that there exists an n such that gn(x, y) ∈

(x3 + y2, x3 + xy). �
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Problem 3. Let G be a finite group with a cyclic Sylow 2-subgroup S.

(a) Show that NG(S) = CG(S).

(b) Show that if S 6= 1, then G contains a normal subgroup of index 2. (hint: suppose
that n = [G : S], consider an appropriate homomorphism from G→ Sn).

(c) Show that G has a normal subgroup N of odd order such that G = NS.

Solution. This problem is very similar to Spring 2011: Problem 1.

(a) We will prove the stronger version of this problem using Spring 2011: Problem 1,
(a).

Claim 1. If p is the smallest prime dividing |G| and P is a cyclic Sylow
p-subgroup, then NG(P ) = CG(P ).

Proof. Let p be the smallest prime dividng |G|. Then, since

P E CG(P ) E NG(P )

we have that

[NG(P ) : CG(P )] = n gcd(n, p) = 1.

Furthermore, because p is the smallest prime dividing |G|, n is only divisible
by primes q with q > p.

Now, let

ϕ : NG(P )→ Aut(P )
a 7→ σa

be the map of the conjugation action of NG(P ) on P.
Then CG(P ) is clearly the kernel of this action and so by the first isomor-
phism theorem,

NG(P )/CG(P ) ∼= A ⊂ Aut(P ).

Finally, because P = 〈x〉 is cyclic, we have that the automorphisms of P
are exactly the maps x 7→ xk for gcd(k, p) = 1. Namely,

|Aut(P )| = pl−1(p− 1) by the Euler Totient Function

4



Kayla Orlinsky
Spring 2017

assuming that |P | = pl. Since the divisors of this are not greater than
p, and |NG(P )/CG(P )| has only divisors greater than p, it must be that
|NG(P )/CG(P )| = 1.
Namely,

NG(P ) = CG(P ).

�

(b) Assume S 6= 1. Then let n = |G|/|S|. Note that n is odd. Let

ϕ : G→ S|G|

a 7→ τa

where τa(g) = ag is the left multiplication map.
Then ϕ is certainly injective since τa = Id if and only if a = e.
Now, if S = 〈a〉, then ϕ(a) = τa is a cycle of order |S| which is even. Now, let g ∈ G,
then τa(g) = ag and τa(ag) = a2g so ϕ(a) has a cycle of the form (g, ag, a2g, ..., a|S|−1g).
Since

τa(ak) = ak+1 = τak+1(e) = (τa)k+1(e),
we see that

ϕ(a) = (a, a2, ..., a|S|−1)
∏

g∈G\S
(g, ag, a2g, ..., a|S|−1g).

Namely, ϕ(a) is a product of n cycles of even length, so ϕ(a) is an odd permutation.
Finally, let

sgn : S|G| → {1,−1}
be the sign map. Then since sgn(Id) = 1, and sgn(ϕ(a)) = −1, we have that

sgn ◦ ϕ : G→ {1,−1}

is surjective.
Therefore, G/ ker(sgn ◦ ϕ) ∼= Z2 so G has a normal (because it is a kernel) subgroup,
H = ker(sgn ◦ ϕ) of index 2.

(c) Let |G| = 2rn. Then we proceed by induction on r.
For r = 1, we are done since by (b), G has a normal subgroup H of index 2. Namely,
|H| = n. Therefore,

|SH| = |S||H|/|S ∩H| = |S||H|/1 = 2n = |G|

and since H is normal, SH is a subgroup of G so SH = G.
Now, assume the statement holds for all 1 ≤ k ≤ r. Then let |G| = 2r+1n and have a
cylic Sylow 2-subgroup S.
From (b), G has a normal subgroup H of order 2rn. Now, S ∩H will also be cyclic
subgroup. Now, H is normal so SH is a subgroup of G. Since S 6⊂ H, it must be that
|SH| > H so SH = G.
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Finally
|S ∩H| = |S||H|/|SH| = 2r+12rn/2r+1n = 2r

so H has a cyclic Sylow 2-subgroup S ∩H.
Therefore, by the inductive hypothesis, there exists an N normal subgroup of H of
order n such that H = (S ∩H)N . Now, N is also a subgroup of G so it suffices to show
that N is normal.
However, clearly any element g ∈ G normalizes n. Since N is exactly all the elements
in G of odd order. Therefore, gng−1 has odd order and so it is in N .
Thus, N is normal in G so

G = SN.

�
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Problem 4. Show that Z[
√

5] is not integrally closed in its quotient field.

Solution. First, we note that if a+ b
√

5 ∈ Q[
√

5], then a+ b
√

5 satisfies

(x− a− b
√

5)(x− a+ b
√

5) = x2 − 2ax+ a2 − 5b2 ∈ Q[x].

And this polynomial is minimal over Q[x], since a+ b
√

5 /∈ Q.

Now, clearly 1+
√

5
2 is in the field of fractions of Z[

√
5]. Furthermore, it has minimal

polynomial
x2 − 2

2x+ 1
4 −

5
4 = x2 − x− 1 ∈ Z[x].

Therefore, 1+
√

5
2 is integral over Z and so it is integral over Z[

√
5]. However, clearly

1+
√

5
2 /∈ Z[

√
5] so Z[

√
5] is not integrally closed. �
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Problem 5. Let f(x) = x11 − 5 ∈ Q[x].

(a) Show that f is irreducible in Q[x].

(b) Let K be the splitting field of f over Q. What is the Galois group of K/Q.

(c) How many subfields L of K are there such that [K : L] = 11.

Solution.

(a) We will apply Eisenstein’s with p = 5. Then p does not divide the leading coefficient of
f , p does divide every other coefficient, and p2 does not divide the constant term.
Therefore, by Eisenstein’s Criteion, f(x) is irreducible over Q[x].

(b) Let K be the splitting field of f over Q.
Let z11 = 5 and z = reiθ. Then r = 11

√
5 and 11θ = 2kπ for k = 1, ..., 11. Clearly, 11

√
5ξ

where ξ = e2iπ/11 is a primitive root of f(x).
Therefore,

K = Q( 11
√

5, ξ).

Now, since ξ11 is primitive, it satisfies g(x) = x10 + x9 + · · ·+ x+ 1.
Therefore,

[K : Q] = [K : Q( 11
√

5)][Q( 11
√

5) : Q] = [K : Q( 11
√

5)]11

and
[K : Q] = [K : Q(ξ)][Q(ξ) : Q] = [K : Q(ξ)]10.

Thus, 110 divides [K : Q] and since [K : Q] ≤ 10, we have that [K : Q] = 110. Now,
since K is the splitting field of a separable (no repeated roots) polynomial, K/Q is
Galois so G = Gal(K/Q) exists and |G| = 110 = 2 · 5 · 11.
Now, let σ : K → K be an element of G. Then σ( 11

√
5) = 11

√
5ξi and σ(ξ) = ξj for some

i, j = 1, ..., 11.
Note that if σ( 11

√
5) = 11

√
5 and σ(ξ) = ξi and τ( 11

√
5) = 11

√
5ξj and τ(ξ) = ξ, then

στ( 11
√

5ξ) = σ( 11
√

5ξj+1) = 11
√

5ξ(j+1)i

and
τσ( 11
√

5ξ) = τ( 11
√

5ξi) = 11
√

5ξj+i

Namely, we obtain immediately that G is non-abelian.
Finally, if σ : K → K is defined by σ( 11

√
5) = 11

√
5ξ and σ(ξ) = ξ2, then one can check

that σ has order 10.
Namely, G has a subgroup H = 〈σ〉 of order 10.
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Now, if P11 is a Sylow 11-subgroups, and since n11 the number of Sylow 11-subgroups
must divide |G|/11 = 10 by the Sylow theorems, n11 = 1. Note that ρ : K → K defined
by ρ( 11

√
5) = 11

√
5ξ2 and ρ(ξ) = ξ has order 11. Thus, P11 = 〈ρ〉.

So P11 ∼= Z11 is normal in G. Therefore, P11H is a subgroup of G and since |P11H| = |G|,
we have that G must be a semi-direct product of P11 and H.
Now, we must identify the multiplication on G. Since

G ∼= 〈ρ〉oϕ 〈σ〉

where ϕ : 〈σ〉 → Z10 and multiplication on G is defined by ϕ(σ)(ρ) = σρσ−1 = ρt for
some t such that ρ 7→ ρt is an automorphism of P11.
Since σ( 11

√
5ξ5) = 11

√
5ξξ10 = 11

√
5, we have that σ−1( 11

√
5) = 11

√
5ξ5 and σ(ξ6) = ξ so

σρσ−1( 11
√

5) = σρ( 11
√

5ξ5)
= σ( 11

√
5ξ7)

= 11
√

5ξ15

= 11
√

5ξ4

σρσ−1(ξ) = σρ(ξ6)
= σ(ξ6)
= ξ

so σρσ−1 = ρ2.

Therefore,
G ∼= 〈σ, ρ |σ10 = ρ11 = 1, σρσ−1 = ρ2〉.

(c) The subfields L of K such that [K : L] = 11 correspond exactly to the subgroups H of
G such that |H| = 11 (namely, so [G : H] = |G|/11 = 10).
Since if H is a subgroup of G of order 11, it is a Sylow 11-subgroup, and since n11
the number of Sylow 11-subgroups must divide |G|/11 = 10 by the Sylow theorems,
n11 = 1.
Thus, G has exactly one Sylow 11 subgroup and it is normal.
Thus, K contains one subfield L such that [K : L] = 11 and in fact, L/Q is Galois.

�

9



Kayla Orlinsky
Spring 2017

Problem 6. Suppose that R is a finite ring with 1 such that every unit of R has order
dividing 24. Classify all such R.

Solution. Since R is finite, it is trivially artinian. Now, R′ = R/J(R) has trivial Jacobson
and is also artinian. Thus, by Artin Wedderburn, R′ ∼= Mn1(D1)⊕ · · · ⊕Mnk

(Dk) where Di

are division rings.
Since R is finite, each Di is finite, and so each must be a finite field. Note that if

|Di| = pmi then |D×i | = pm−1
i (pi − 1). Furthermore, D×i is the group of units of Di and so

since each unit of R′ divides 24, we have that pm−1
i (pi − 1)|24. Namely, we have the follwing

options for pairs,

(p,m) = (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (5, 1), (7, 1), (13, 1).

Alternatively,
|Di| = 2, 4, 8, 16, 3, 9, 5, 7, 13.

Now, units in Mni
(Di) are exactly elements in GLni

(Di). Since

|GLni
(Di)| = (|Di|ni − 1)(|Di|ni − |Di|) · · · (|Di|ni − |Di|ni−1),

we now have that (|Di|ni − 1)(|Di|ni − |Di|) · · · (|Di|ni − |Di|ni−1) must divide 24. If ni = 1,
then we simply hav a copy of Di which we have already found.

Now, this gives the following possible pairs

(ni, |Di|) = (2, 2).

Everything else grows past 24.
Therefore, R′ is a direct sum of copies of Di, which can be any of the finite fields

previously described and some number of copies of M2(Z2).
Finally, since R/J(R) is finite, it is finitely generated as an R-module.
Write R/J(R) = x1R + · · ·+ xnR for some xi = xi + J(R) ∈ R/J(R).
Then, by Nakayama’s Lemma, R ∼= x1R + · · ·+ xnR.
This fully describes R. �
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