Kayla Orlinsky Algebra Exam Spring 2017

Problem 1. Let R be a PID. Let M be an R-module.

- (a) Show that if M is finitely generated, then M is cyclic if and only if M/PM is for all prime ideals P of R.
- (b) Show that the previous statement is false if M is not finitely generated.

***Note as written this problem is wrong unless we assume P is a *nonzero* prime ideal.

Solution.

(a) This is very similar to Fall 2013: Problem 2.

Let M be finitely generated.

Assume M is cyclic. Then $M = (x) = xR = \{rx | r \in R\}$ for some $x \in X$. However, then M/PM is certainly cyclic since any quotient of a cyclic module must also be cyclic.

This is because we can define $\pi : M \to M/PM$ to be the quotient map, which is surjective. Then $M/PM \cong \pi((x)) = (\pi(x))$ and so is cyclic.

 \checkmark Assume M/PM is cyclic for all *nonzero* prime ideals P.

By the structure theorem, there is a chain of ideals

$$(d_1) \subset (d_2) \subset \cdots \subset (d_n)$$

such that

$$M \cong R/(d_1) \oplus \cdots \oplus R/(d_n).$$

Note that $d_i | d_{i-1}$ for all *i*.

If (d_n) is not maximal, then there is a maximal (prime) ideal P such that $(d_n) \subset P$. Then $PM = P/(d_1) \oplus \cdots \oplus P/(d_n)$ so Then

$$M/PM \cong (R/(d_1))/(P/(d_1)) \oplus \cdots \oplus (R/(d_n))/(P/(d_n)) \cong (R/P)^n$$

However, M/PM is cyclic for all P, and $(R/P)^n \cong R/(a)$ for some a forces n = 1. Namely, M is cyclic. (b) As written, the problem is true regardless of whether or not M is finitely generated. Since R is a PID, it is a domain, so P = (0) is a prime ideal. However, then PM = (0)M = 0 so $M/PM \cong M$ is cyclic.

However, with the assumption that we may use only *nonzero* prime ideals, let $R = \mathbb{Z}$ which is a PID and $M = \mathbb{Q}$. Then M is infinitely generated.

The *nonzero* prime ideals of R are exactly ideals generated by (p) where p is a prime and (p)M = M.

Therefore,

$$M/(p)M \cong M/M \cong (0)$$

which is certainly cyclic.

However, M is not cyclic.

Problem 2. Prove that a power of the polynomial $(x + y)(x^2 + y^4 - 2)$ belongs to the ideal $(x^3 + y^2, x^3 + xy)$ in $\mathbb{C}[x, y]$.

Solution. It suffices to show that $(x + y)(x^2 + y^4 - 2)$ is satisfied by all zeros in $V(x^3 + y^2, x^3 + xy)$.

By Nullstellenzatz, if g(x, y) is a polynomial such that g(a, b) = 0 for all $(a, b) \in V(I)$, then there exists an n such that $g^n(x, y) \in I$.

Let $g(x,y) = (x+y)(x^2 + y^4 - 2)$

Now, we examine $V(x^3 + y^2, x^3 + xy)$.

Clearly $(0,0) \in V(x^3 + y^2, x^3 + xy)$. If $x^3 + y^2 = 0$ and $x^3 + xy = 0$ then $y^2 - xy = 0$, so y(y - x) = 0.

If y = 0 then x = 0, and if y = x, then $x^2(x + 1) = 0$, so x = -1.

Thus, the only elements of $V(x^3 + y^2, x^3 + xy)$ are (0, 0), (-1, -1).

Since g(0,0) = 0 and g(-1,-1) = 0, we have that there exists an n such that $g^n(x,y) \in (x^3 + y^2, x^3 + xy)$.

Problem 3. Let G be a finite group with a cyclic Sylow 2-subgroup S.

- (a) Show that $N_G(S) = C_G(S)$.
- (b) Show that if $S \neq 1$, then G contains a normal subgroup of index 2. (hint: suppose that n = [G : S], consider an appropriate homomorphism from $G \to S_n$).
- (c) Show that G has a normal subgroup N of odd order such that G = NS.

Solution. This problem is very similar to Spring 2011: Problem 1.

(a) We will prove the stronger version of this problem using Spring 2011: Problem 1, (a).

Claim 1. If p is the smallest prime dividing |G| and P is a cyclic Sylow p-subgroup, then $N_G(P) = C_G(P)$.

Proof. Let p be the smallest prime dividing |G|. Then, since

$$P \trianglelefteq C_G(P) \trianglelefteq N_G(P)$$

we have that

$$[N_G(P):C_G(P)] = n \qquad \gcd(n,p) = 1.$$

Furthermore, because p is the smallest prime dividing |G|, n is only divisible by primes q with q > p.

Now, let

$$\varphi: N_G(P) \to \operatorname{Aut}(P)$$
$$a \mapsto \sigma_a$$

be the map of the conjugation action of $N_G(P)$ on P.

Then $C_G(P)$ is clearly the kernel of this action and so by the first isomorphism theorem,

$$N_G(P)/C_G(P) \cong A \subset \operatorname{Aut}(P).$$

Finally, because $P = \langle x \rangle$ is cyclic, we have that the automorphisms of P are exactly the maps $x \mapsto x^k$ for gcd(k, p) = 1. Namely,

 $|\operatorname{Aut}(P)| = p^{l-1}(p-1)$ by the Euler Totient Function

H

assuming that $|P| = p^l$. Since the divisors of this are not greater than p, and $|N_G(P)/C_G(P)|$ has only divisors greater than p, it must be that $|N_G(P)/C_G(P)| = 1$. Namely,

$$N_G(P) = C_G(P)$$

(b) Assume $S \neq 1$. Then let n = |G|/|S|. Note that n is odd. Let

$$\varphi: G \to S_{|G|}$$
$$a \mapsto \tau_a$$

where $\tau_a(g) = ag$ is the left multiplication map.

Then φ is certainly injective since $\tau_a = \text{Id}$ if and only if a = e.

Now, if $S = \langle a \rangle$, then $\varphi(a) = \tau_a$ is a cycle of order |S| which is even. Now, let $g \in G$, then $\tau_a(g) = ag$ and $\tau_a(ag) = a^2g$ so $\varphi(a)$ has a cycle of the form $(g, ag, a^2g, ..., a^{|S|-1}g)$. Since

$$\tau_a(a^k) = a^{k+1} = \tau_{a^{k+1}}(e) = (\tau_a)^{k+1}(e),$$

we see that

$$\varphi(a) = (a, a^2, ..., a^{|S|-1}) \prod_{g \in G \setminus S} (g, ag, a^2g, ..., a^{|S|-1}g)$$

Namely, $\varphi(a)$ is a product of *n* cycles of even length, so $\varphi(a)$ is an odd permutation. Finally, let

$$sgn: S_{|G|} \to \{1, -1\}$$

be the sign map. Then since sgn(Id) = 1, and $sgn(\varphi(a)) = -1$, we have that

$$\operatorname{sgn} \circ \varphi : G \to \{1, -1\}$$

is surjective.

Therefore, $G/\ker(\operatorname{sgn}\circ\varphi)\cong\mathbb{Z}_2$ so G has a normal (because it is a kernel) subgroup, $H=\ker(\operatorname{sgn}\circ\varphi)$ of index 2.

(c) Let $|G| = 2^r n$. Then we proceed by induction on r.

For r = 1, we are done since by (b), G has a normal subgroup H of index 2. Namely, |H| = n. Therefore,

$$|SH| = |S||H|/|S \cap H| = |S||H|/1 = 2n = |G|$$

and since H is normal, SH is a subgroup of G so SH = G.

Now, assume the statement holds for all $1 \le k \le r$. Then let $|G| = 2^{r+1}n$ and have a cylic Sylow 2-subgroup S.

From (b), G has a normal subgroup H of order $2^r n$. Now, $S \cap H$ will also be cyclic subgroup. Now, H is normal so SH is a subgroup of G. Since $S \not\subset H$, it must be that |SH| > H so SH = G.

Finally

$$|S \cap H| = |S||H|/|SH| = 2^{r+1}2^r n/2^{r+1}n = 2^r$$

so H has a cyclic Sylow 2-subgroup $S \cap H$.

Therefore, by the inductive hypothesis, there exists an N normal subgroup of H of order n such that $H = (S \cap H)N$. Now, N is also a subgroup of G so it suffices to show that N is normal.

However, clearly any element $g \in G$ normalizes n. Since N is exactly all the elements in G of odd order. Therefore, gng^{-1} has odd order and so it is in N.

Thus, N is normal in G so

$$G = SN.$$

Ŵ	
ð	

Problem 4. Show that $\mathbb{Z}[\sqrt{5}]$ is not integrally closed in its quotient field.

Solution. First, we note that if $a + b\sqrt{5} \in \mathbb{Q}[\sqrt{5}]$, then $a + b\sqrt{5}$ satisfies

$$(x - a - b\sqrt{5})(x - a + b\sqrt{5}) = x^2 - 2ax + a^2 - 5b^2 \in \mathbb{Q}[x].$$

And this polynomial is minimal over $\mathbb{Q}[x]$, since $a + b\sqrt{5} \notin \mathbb{Q}$.

Now, clearly $\frac{1+\sqrt{5}}{2}$ is in the field of fractions of $\mathbb{Z}[\sqrt{5}]$. Furthermore, it has minimal polynomial

$$x^{2} - \frac{2}{2}x + \frac{1}{4} - \frac{5}{4} = x^{2} - x - 1 \in \mathbb{Z}[x].$$

Therefore, $\frac{1+\sqrt{5}}{2}$ is integral over \mathbb{Z} and so it is integral over $\mathbb{Z}[\sqrt{5}]$. However, clearly $\frac{1+\sqrt{5}}{2} \notin \mathbb{Z}[\sqrt{5}]$ so $\mathbb{Z}[\sqrt{5}]$ is not integrally closed.

Problem 5. Let $f(x) = x^{11} - 5 \in \mathbb{Q}[x]$.

- (a) Show that f is irreducible in $\mathbb{Q}[x]$.
- (b) Let K be the splitting field of f over \mathbb{Q} . What is the Galois group of K/\mathbb{Q} .
- (c) How many subfields L of K are there such that [K:L] = 11.

Solution.

(a) We will apply Eisenstein's with p = 5. Then p does not divide the leading coefficient of f, p does divide every other coefficient, and p^2 does not divide the constant term.

Therefore, by Eisenstein's Criteion, f(x) is irreducible over $\mathbb{Q}[x]$.

(b) Let K be the splitting field of f over \mathbb{Q} .

Let $z^{11} = 5$ and $z = re^{i\theta}$. Then $r = \sqrt[11]{5}$ and $11\theta = 2k\pi$ for k = 1, ..., 11. Clearly, $\sqrt[11]{5}\xi$ where $\xi = e^{2i\pi/11}$ is a primitive root of f(x).

Therefore,

$$K = \mathbb{Q}(\sqrt[11]{5}, \xi).$$

Now, since ξ^{11} is primitive, it satisfies $g(x) = x^{10} + x^9 + \dots + x + 1$. Therefore,

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\sqrt[11]{5})][\mathbb{Q}(\sqrt[11]{5}):\mathbb{Q}] = [K:\mathbb{Q}(\sqrt[11]{5})]11$$

and

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\xi)][\mathbb{Q}(\xi):\mathbb{Q}] = [K:\mathbb{Q}(\xi)]10.$$

Thus, 110 divides $[K : \mathbb{Q}]$ and since $[K : \mathbb{Q}] \leq 10$, we have that $[K : \mathbb{Q}] = 110$. Now, since K is the splitting field of a separable (no repeated roots) polynomial, K/\mathbb{Q} is Galois so $G = \operatorname{Gal}(K/\mathbb{Q})$ exists and $|G| = 110 = 2 \cdot 5 \cdot 11$.

Now, let $\sigma: K \to K$ be an element of G. Then $\sigma(\sqrt[11]{5}) = \sqrt[11]{5}\xi^i$ and $\sigma(\xi) = \xi^j$ for some i, j = 1, ..., 11.

Note that if $\sigma(\sqrt[11]{5}) = \sqrt[11]{5}$ and $\sigma(\xi) = \xi^i$ and $\tau(\sqrt[11]{5}) = \sqrt[11]{5}\xi^j$ and $\tau(\xi) = \xi$, then

$$\sigma\tau(\sqrt[11]{5}\xi) = \sigma(\sqrt[11]{5}\xi^{j+1}) = \sqrt[11]{5}\xi^{(j+1)i}$$

and

$$\tau\sigma(\sqrt[11]{5}\xi) = \tau(\sqrt[11]{5}\xi^i) = \sqrt[11]{5}\xi^{j+i}$$

Namely, we obtain immediately that G is non-abelian.

Finally, if $\sigma: K \to K$ is defined by $\sigma(\sqrt[11]{5}) = \sqrt[11]{5}\xi$ and $\sigma(\xi) = \xi^2$, then one can check that σ has order 10.

Namely, G has a subgroup $H = \langle \sigma \rangle$ of order 10.

Now, if P_{11} is a Sylow 11-subgroups, and since n_{11} the number of Sylow 11-subgroups must divide |G|/11 = 10 by the Sylow theorems, $n_{11} = 1$. Note that $\rho : K \to K$ defined by $\rho(\sqrt[11]{5}) = \sqrt[11]{5}\xi^2$ and $\rho(\xi) = \xi$ has order 11. Thus, $P_{11} = \langle \rho \rangle$.

So $P_{11} \cong \mathbb{Z}_{11}$ is normal in G. Therefore, $P_{11}H$ is a subgroup of G and since $|P_{11}H| = |G|$, we have that G must be a semi-direct product of P_{11} and H.

Now, we must identify the multiplication on G. Since

$$G \cong \langle \rho \rangle \rtimes_{\varphi} \langle \sigma \rangle$$

where $\varphi : \langle \sigma \rangle \to \mathbb{Z}_{10}$ and multiplication on G is defined by $\varphi(\sigma)(\rho) = \sigma \rho \sigma^{-1} = \rho^t$ for some t such that $\rho \mapsto \rho^t$ is an automorphism of P_{11} .

Since $\sigma(\sqrt[11]{5}\xi^5) = \sqrt[11]{5}\xi\xi^{10} = \sqrt[11]{5}$, we have that $\sigma^{-1}(\sqrt[11]{5}) = \sqrt[11]{5}\xi^5$ and $\sigma(\xi^6) = \xi$ so

$$\sigma\rho\sigma^{-1}(\sqrt[11]{5}) = \sigma\rho(\sqrt[11]{5}\xi^{5})$$
$$= \sigma(\sqrt[11]{5}\xi^{7})$$
$$= \sqrt[11]{5}\xi^{15}$$
$$= \sqrt[11]{5}\xi^{4}$$
$$\sigma\rho\sigma^{-1}(\xi) = \sigma\rho(\xi^{6})$$
$$= \sigma(\xi^{6})$$
$$= \xi$$

so $\sigma\rho\sigma^{-1} = \rho^2$.

Therefore,

$$G \cong \langle \sigma, \rho \, | \, \sigma^{10} = \rho^{11} = 1, \sigma \rho \sigma^{-1} = \rho^2 \rangle.$$

(c) The subfields L of K such that [K : L] = 11 correspond exactly to the subgroups H of G such that |H| = 11 (namely, so [G : H] = |G|/11 = 10).

Since if H is a subgroup of G of order 11, it is a Sylow 11-subgroup, and since n_{11} the number of Sylow 11-subgroups must divide |G|/11 = 10 by the Sylow theorems, $n_{11} = 1$.

Thus, G has exactly one Sylow 11 subgroup and it is normal.

Thus, K contains one subfield L such that [K:L] = 11 and in fact, L/\mathbb{Q} is Galois.

y

Problem 6. Suppose that R is a finite ring with 1 such that every unit of R has order dividing 24. Classify all such R.

Solution. Since R is finite, it is trivially artinian. Now, R' = R/J(R) has trivial Jacobson and is also artinian. Thus, by Artin Wedderburn, $R' \cong M_{n_1}(D_1) \oplus \cdots \oplus M_{n_k}(D_k)$ where D_i are division rings.

Since R is finite, each D_i is finite, and so each must be a finite field. Note that if $|D_i| = p_i^m$ then $|D_i^{\times}| = p_i^{m-1}(p_i - 1)$. Furthermore, D_i^{\times} is the group of units of D_i and so since each unit of R' divides 24, we have that $p_i^{m-1}(p_i - 1)|_{24}$. Namely, we have the following options for pairs,

$$(p,m) = (2,1), (2,2), (2,3), (2,4), (3,1), (3,2), (5,1), (7,1), (13,1).$$

Alternatively,

$$|D_i| = 2, 4, 8, 16, 3, 9, 5, 7, 13.$$

Now, units in $M_{n_i}(D_i)$ are exactly elements in $GL_{n_i}(D_i)$. Since

$$|GL_{n_i}(D_i)| = (|D_i|^{n_i} - 1)(|D_i|^{n_i} - |D_i|) \cdots (|D_i|^{n_i} - |D_i|^{n_i-1}),$$

we now have that $(|D_i|^{n_i} - 1)(|D_i|^{n_i} - |D_i|) \cdots (|D_i|^{n_i} - |D_i|^{n_i-1})$ must divide 24. If $n_i = 1$, then we simply hav a copy of D_i which we have already found.

Now, this gives the following possible pairs

$$(n_i, |D_i|) = (2, 2).$$

Everything else grows past 24.

Therefore, R' is a direct sum of copies of D_i , which can be any of the finite fields previously described and some number of copies of $M_2(\mathbb{Z}_2)$.

Finally, since R/J(R) is finite, it is finitely generated as an *R*-module.

Write $R/J(R) = \overline{x_1}R + \cdots + \overline{x_n}R$ for some $\overline{x_i} = x_i + J(R) \in R/J(R)$.

Then, by Nakayama's Lemma, $R \cong x_1 R + \cdots + x_n R$.

This fully describes R.

H