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Problem 1. Let R be a PID. Let M be an R-module.

(a) Show that if M is finitely generated, then M is cyclic if and only if M/PM is for
all prime ideals P of R.

(b) Show that the previous statement is false if M is not finitely generated.

‘ ***Note as written this problem is wrong unless we assume P is a nonzero prime \
ideal.

Solution.

(a) This is very similar to Fall 2013: Problem 2.
Let M be finitely generated.

Assume M is cyclic. Then M = (z) = 2R = {rz|r € R} for some z € X.
However, then M/PM is certainly cyclic since any quotient of a cyclic module must
also be cyclic.

This is because we can define m : M — M/PM to be the quotient map, which is
surjective. Then M/PM = 7((x)) = (w(x)) and so is cyclic.

Assume M/PM is cyclic for all nonzero prime ideals P.

By the structure theorem, there is a chain of ideals
(d1) C (d2) C -+ C (dn)

such that
MZR/(dy)&®---P® R/(d,).
Note that d;|d;_; for all i.
If (d,,) is not maximal, then there is a maximal (prime) ideal P such that (d,) C P.
Then PM = P/(dy) & --- & P/(d,) so Then

M/PM = (R/(d1))/(P/(d1)) @ ---© (R/(dn))/(P/(dn)) = (R/P)"

However, M/PM is cyclic for all P, and (R/P)" = R/(a) for some a forces n = 1.
Namely, M is cyclic.
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(b) As written, the problem is true regardless of whether or not M is finitely generated. Since
R is a PID, it is a domain, so P = (0) is a prime ideal. However, then PM = (0)M =0
so M/PM = M is cyclic.

However, with the assumption that we may use only nonzero prime ideals, let R = Z
which is a PID and M = Q. Then M is infinitely generated.

The nonzero prime ideals of R are exactly ideals generated by (p) where p is a prime
and (p)M = M.

Therefore,
M/(p)M = M/M = (0)

which is certainly cyclic.

However, M is not cyclic.
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Problem 2. Prove that a power of the polynomial (z + y)(z? + y* — 2) belongs to the
ideal (z® + 32, 2% + zy) in Clz, y].

Solution. It suffices to show that (z + y)(z* + y* — 2) is satisfied by all zeros in V(23 +
y*,2® + ay).

By Nullstellenzatz, if g(x,y) is a polynomial such that g(a,b) = 0 for all (a,b) € V(I),
then there exists an n such that ¢"(x,y) € I.

Let g(x,y) = (z +y)(2* + y* - 2)

Now, we examine V (z® + 32, 23 + zy).

Clearly (0,0) € V(23 +y* 2® + zy). If 23 +y? = 0 and 23 + 2y = 0 then y*> — 2y = 0, so
yly —x) = 0.

If y =0 then x = 0, and if y = z, then 2?(x + 1) =0, s0o x = —1.

Thus, the only elements of V(23 + 42, 2% + zy) are (0,0), (=1, —1).

Since g(0,0) = 0 and g(—1,—1) = 0, we have that there exists an n such that ¢"(z,y) €
(2% + y?, 2 + zy). ¥
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Problem 3. Let G be a finite group with a cyclic Sylow 2-subgroup S.

(a) Show that Ng(S) = Cg(S).

(b) Show that if S # 1, then G contains a normal subgroup of index 2. (hint: suppose
that n = [G : S], consider an appropriate homomorphism from G — S,,).

(c) Show that G has a normal subgroup N of odd order such that G = NS.

Solution. This problem is very similar to Spring 2011: Problem 1.

(a) We will prove the stronger version of this problem using Spring 2011: Problem 1,

(a).

Claim 1. If p is the smallest prime dividing |G| and P is a cyclic Sylow
p-subgroup, then Ng(P) = Cq(P).

Proof. Let p be the smallest prime dividng |G|. Then, since
P < Cq(P) 4 Na(P)
we have that
[No(P) : Ca(P)]=n  ged(n,p) = 1.

Furthermore, because p is the smallest prime dividing |G|, n is only divisible
by primes ¢ with g > p.

Now, let

Q. Ng(P> — Aut(P)

av o,

be the map of the conjugation action of Ng(P) on P.

Then Cg(P) is clearly the kernel of this action and so by the first isomor-
phism theorem,
Ng(P)/Cq(P) = A C Aut(P).

Finally, because P = (z) is cyclic, we have that the automorphisms of P
are exactly the maps x — 2* for ged(k,p) = 1. Namely,

|Aut(P)| = p'H(p—1) by the Euler Totient Function
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(b)

assuming that |P| = p!. Since the divisors of this are not greater than
p, and |Ng(P)/Cs(P)| has only divisors greater than p, it must be that
[Na(P)/Ca(P)| = 1.

Namely,
Ng(P) = Cg(P).
Y
Assume S # 1. Then let n = |G|/|S|. Note that n is odd. Let
0:G = S
a‘— Ty

where 7,(g) = ag is the left multiplication map.
Then ¢ is certainly injective since 7, = Id if and only if a = e.

Now, if S = (a), then p(a) = 7, is a cycle of order |S| which is even. Now, let g € G,
then 7,(g) = ag and 7,(ag) = a®g so p(a) has a cycle of the form (g, ag, a®g, ...,a’*I "1 g).
Since

Ta(a¥) = " = 1 (e) = (12)" (o),

we see that

@(a) = (a,a2, ...,aIS\fl) H (g,ag,a2g, _“’a\S\Ag).
geG\S

Namely, ¢(a) is a product of n cycles of even length, so ¢(a) is an odd permutation.
Finally, let

sgn : Sjg) — {1, -1}
be the sign map. Then since sgn(Id) = 1, and sgn(p(a)) = —1, we have that

sgnow:G—{1,—-1}

is surjective.
Therefore, G/ ker(sgn o ¢) = Zs so G has a normal (because it is a kernel) subgroup,
H = ker(sgn o ) of index 2.
Let |G| = 2"n. Then we proceed by induction on 7.
For r = 1, we are done since by (b), G has a normal subgroup H of index 2. Namely,
|H| = n. Therefore,

|SH| = |S|[H|/|SN H| = |S[|[H|/1=2n=|G]|

and since H is normal, SH is a subgroup of G so SH = G.
Now, assume the statement holds for all 1 < k < r. Then let |G| = 2""'n and have a
cylic Sylow 2-subgroup S.

From (b), G has a normal subgroup H of order 2'n. Now, S N H will also be cyclic
subgroup. Now, H is normal so SH is a subgroup of G. Since S ¢ H, it must be that
|ISH| > H so SH = G.
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Finally
ISNH| = |S||H|/|SH| =2""'2"n/2"n =2

so H has a cyclic Sylow 2-subgroup SN H.

Therefore, by the inductive hypothesis, there exists an N normal subgroup of H of
order n such that H = (SN H)N. Now, N is also a subgroup of G so it suffices to show
that N is normal.

However, clearly any element g € G normalizes n. Since N is exactly all the elements
in G of odd order. Therefore, gng=* has odd order and so it is in N.

Thus, N is normal in G so
G =SN.
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Problem 4. Show that Z[/5] is not integrally closed in its quotient field.

Solution. First, we note that if a + bv/5 € Q[v/5], then a + by/5 satisfies
(z —a—bV5)(z — a+ bV5) = 22 — 2az + a® — 5b* € Q[z].

And this polynomial is minimal over Q[x], since a + bv/5 ¢ Q.

Now, clearly ”2—‘/5 is in the field of fractions of Z[+/5]. Furthermore, it has minimal

polynomial
2 1 5
x2—§x+1—1:x2—x—162[x].

Therefore, 1+2\/5 is integral over Z and so it is integral over Z[/5]. However, clearly

% ¢ 7Z[\/5] so Z[/5] is not integrally closed. ¥
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Problem 5. Let f(z) = 2'! — 5 € Q[z].

(a) Show that f is irreducible in Q[x].
(b) Let K be the splitting field of f over Q. What is the Galois group of K/Q.
(c) How many subfields L of K are there such that [K : L] = 11.

Solution.

(a)

(b)

We will apply Eisenstein’s with p = 5. Then p does not divide the leading coefficient of
f, p does divide every other coefficient, and p? does not divide the constant term.

Therefore, by Eisenstein’s Criteion, f(x) is irreducible over Q[z].

Let K be the splitting field of f over Q.
Let z'' =5 and 2z = re®. Then r = ¥/5 and 116 = 2kn for k =1, ...,11. Clearly, V/5¢

where ¢ = ¢¥™/11 is a primitive root of f(z).
Therefore,
K =Q( V5,9).
Now, since £'! is primitive, it satisfies g(z) = 2% + 2% + .-+ + 1.
Therefore,
[ : Q) = [K: Q(VB)Q(V5): Q] = [K : Q( V5|11

and

Thus, 110 divides [K : Q] and since [K : Q] < 10, we have that [K : Q] = 110. Now,
since K is the splitting field of a separable (no repeated roots) polynomial, K/Q is
Galois so G = Gal(K/Q) exists and |G| =110 =2-5-11.

Now, let 0 : K — K be an element of G. Then o( ¥/5) = V5¢" and o(€) = & for some
Q=1 .11,

Note that if o( v/5) = V/5 and o(€) = ¢ and 7( V/5) = V5¢& and 7(€) = €, then
7r(V56) = o V) = Ve
and
ro( ¥/5¢) = ( V5E) = V5™
Namely, we obtain immediately that G is non-abelian.

Finally, if 0 : K — K is defined by o( V/5) = V/5¢ and o (&) = €2, then one can check
that o has order 10.

Namely, G has a subgroup H = (o) of order 10.

8
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Now, if P;; is a Sylow 11-subgroups, and since n;; the number of Sylow 11-subgroups
must divide |G|/11 = 10 by the Sylow theorems, n;; = 1. Note that p : K’ — K defined

by p( V/5) = V52 and p(€) = € has order 11. Thus, Py = (p).
So Py; = Zy; is normal in G. Therefore, Py; H is a subgroup of G and since | P H| = |G|,
we have that G must be a semi-direct product of P;; and H.

Now, we must identify the multiplication on G. Since

G = (p) X (0)

where ¢ : (0) — Z1o and multiplication on G is defined by ¢(c)(p) = opo=t = p' for
some t such that p — p' is an automorphism of P;.

Since o( V/5£°%) = V5E€10 = V/5, we have that o=1( V/5) = V/5£° and o(£5) = € so
opo(V5) = op( V5¢)

= o(V5¢)
— W/Eghs
= /¢!

apo'(§) = ap(€°)
= (&)
=¢

so opo~! = p?.

Therefore,

G={(o,p|lc =p't=1,0p57" = p?).
The subfields L of K such that [K : L] = 11 correspond exactly to the subgroups H of
G such that |H| = 11 (namely, so [G : H] = |G|/11 = 10).
Since if H is a subgroup of G of order 11, it is a Sylow 11-subgroup, and since ni;
the number of Sylow 11-subgroups must divide |G|/11 = 10 by the Sylow theorems,
ni = 1.
Thus, G has exactly one Sylow 11 subgroup and it is normal.

Thus, K contains one subfield L such that [K : L] = 11 and in fact, L/Q is Galois.
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Problem 6. Suppose that R is a finite ring with 1 such that every unit of R has order
dividing 24. Classify all such R.

Solution. Since R is finite, it is trivially artinian. Now, R' = R/J(R) has trivial Jacobson
and is also artinian. Thus, by Artin Wedderburn, R’ = M,,, (D) @ - -- & M, (Dy) where D;
are division rings.

Since R is finite, each D; is finite, and so each must be a finite field. Note that if
|D;| = pi* then |D}| = p" '(p; — 1). Furthermore, D) is the group of units of D; and so
since each unit of R’ divides 24, we have that p"~'(p; — 1)|24. Namely, we have the follwing
options for pairs,

(p,m) = (2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(5,1), (7, 1), (13, 1).

Alternatively,
|D;| =2,4,8,16,3,9,5,7,13.

Now, units in M,,(D;) are exactly elements in G L, (D;). Since

ni—l)’

(2

"= 1)(|D;

|G L, (Ds)] = (| Ds "= D) - (1D

we now have that (|D;|™ — 1)(|D;|"™ — |Dy]) - -+ (|D;|" — |D;|™~') must divide 24. If n; = 1,
then we simply hav a copy of D; which we have already found.

Now, this gives the following possible pairs
(ns, | Dil) = (2,2).

Everything else grows past 24.

Therefore, R is a direct sum of copies of D;, which can be any of the finite fields
previously described and some number of copies of My (Zs).

Finally, since R/J(R) is finite, it is finitely generated as an R-module.

Write R/J(R) = TR + - - - + T, R for some 7; = x; + J(R) € R/J(R).

Then, by Nakayama’s Lemma, R = x1R+ -+ z,R.

This fully describes R. ¥
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