Kayla Orlinsky
 Algebra Exam Spring 2017

Problem 1. Let R be a PID. Let M be an R-module.
(a) Show that if M is finitely generated, then M is cyclic if and only if $M / P M$ is for all prime ideals P of R.
(b) Show that the previous statement is false if M is not finitely generated.

$$
\text { ***Note as written this problem is wrong unless we assume } P \text { is a nonzero prime }
$$ ideal.

Solution.

(a) This is very similar to Fall 2013: Problem 2.

Let M be finitely generated.
\Longrightarrow Assume M is cyclic. Then $M=(x)=x R=\{r x \mid r \in R\}$ for some $x \in X$. However, then $M / P M$ is certainly cyclic since any quotient of a cyclic module must also be cyclic.
This is because we can define $\pi: M \rightarrow M / P M$ to be the quotient map, which is surjective. Then $M / P M \cong \pi((x))=(\pi(x))$ and so is cyclic.

\LongleftarrowAssume $M / P M$ is cyclic for all nonzero prime ideals P.
By the structure theorem, there is a chain of ideals

$$
\left(d_{1}\right) \subset\left(d_{2}\right) \subset \cdots \subset\left(d_{n}\right)
$$

such that

$$
M \cong R /\left(d_{1}\right) \oplus \cdots \oplus R /\left(d_{n}\right)
$$

Note that $d_{i} \mid d_{i-1}$ for all i.
If $\left(d_{n}\right)$ is not maximal, then there is a maximal (prime) ideal P such that $\left(d_{n}\right) \subset P$. Then $P M=P /\left(d_{1}\right) \oplus \cdots \oplus P /\left(d_{n}\right)$ so Then

$$
M / P M \cong\left(R /\left(d_{1}\right)\right) /\left(P /\left(d_{1}\right)\right) \oplus \cdots \oplus\left(R /\left(d_{n}\right)\right) /\left(P /\left(d_{n}\right)\right) \cong(R / P)^{n}
$$

However, $M / P M$ is cyclic for all P, and $(R / P)^{n} \cong R /(a)$ for some a forces $n=1$. Namely, M is cyclic.
(b) As written, the problem is true regardless of whether or not M is finitely generated. Since R is a PID, it is a domain, so $P=(0)$ is a prime ideal. However, then $P M=(0) M=0$ so $M / P M \cong M$ is cyclic.
However, with the assumption that we may use only nonzero prime ideals, let $R=\mathbb{Z}$ which is a PID and $M=\mathbb{Q}$. Then M is infinitely generated.
The nonzero prime ideals of R are exactly ideals generated by (p) where p is a prime and $(p) M=M$.
Therefore,

$$
M /(p) M \cong M / M \cong(0)
$$

which is certainly cyclic.
However, M is not cyclic.

Problem 2. Prove that a power of the polynomial $(x+y)\left(x^{2}+y^{4}-2\right)$ belongs to the ideal $\left(x^{3}+y^{2}, x^{3}+x y\right)$ in $\mathbb{C}[x, y]$.

Solution. It suffices to show that $(x+y)\left(x^{2}+y^{4}-2\right)$ is satisfied by all zeros in $V\left(x^{3}+\right.$ $\left.y^{2}, x^{3}+x y\right)$.

By Nullstellenzatz, if $g(x, y)$ is a polynomial such that $g(a, b)=0$ for all $(a, b) \in V(I)$, then there exists an n such that $g^{n}(x, y) \in I$.

Let $g(x, y)=(x+y)\left(x^{2}+y^{4}-2\right)$
Now, we examine $V\left(x^{3}+y^{2}, x^{3}+x y\right)$.
Clearly $(0,0) \in V\left(x^{3}+y^{2}, x^{3}+x y\right)$. If $x^{3}+y^{2}=0$ and $x^{3}+x y=0$ then $y^{2}-x y=0$, so $y(y-x)=0$.

If $y=0$ then $x=0$, and if $y=x$, then $x^{2}(x+1)=0$, so $x=-1$.
Thus, the only elements of $V\left(x^{3}+y^{2}, x^{3}+x y\right)$ are $(0,0),(-1,-1)$.
Since $g(0,0)=0$ and $g(-1,-1)=0$, we have that there exists an n such that $g^{n}(x, y) \in$ $\left(x^{3}+y^{2}, x^{3}+x y\right)$.

Problem 3. Let G be a finite group with a cyclic Sylow 2-subgroup S.
(a) Show that $N_{G}(S)=C_{G}(S)$.
(b) Show that if $S \neq 1$, then G contains a normal subgroup of index 2. (hint: suppose that $n=[G: S]$, consider an appropriate homomorphism from $\left.G \rightarrow S_{n}\right)$.
(c) Show that G has a normal subgroup N of odd order such that $G=N S$.

Solution. This problem is very similar to Spring 2011: Problem 1.
(a) We will prove the stronger version of this problem using Spring 2011: Problem 1, (a).

Claim 1. If p is the smallest prime dividing $|G|$ and P is a cyclic Sylow p-subgroup, then $N_{G}(P)=C_{G}(P)$.

Proof. Let p be the smallest prime dividng $|G|$. Then, since

$$
P \unlhd C_{G}(P) \unlhd N_{G}(P)
$$

we have that

$$
\left[N_{G}(P): C_{G}(P)\right]=n \quad \operatorname{gcd}(n, p)=1
$$

Furthermore, because p is the smallest prime dividing $|G|, n$ is only divisible by primes q with $q>p$.
Now, let

$$
\begin{aligned}
\varphi: N_{G}(P) & \rightarrow \operatorname{Aut}(P) \\
a & \mapsto \sigma_{a}
\end{aligned}
$$

be the map of the conjugation action of $N_{G}(P)$ on P.
Then $C_{G}(P)$ is clearly the kernel of this action and so by the first isomorphism theorem,

$$
N_{G}(P) / C_{G}(P) \cong A \subset \operatorname{Aut}(P)
$$

Finally, because $P=\langle x\rangle$ is cyclic, we have that the automorphisms of P are exactly the maps $x \mapsto x^{k}$ for $\operatorname{gcd}(k, p)=1$. Namely,

$$
|\operatorname{Aut}(P)|=p^{l-1}(p-1) \quad \text { by the Euler Totient Function }
$$

assuming that $|P|=p^{l}$. Since the divisors of this are not greater than p, and $\left|N_{G}(P) / C_{G}(P)\right|$ has only divisors greater than p, it must be that $\left|N_{G}(P) / C_{G}(P)\right|=1$.
Namely,

$$
N_{G}(P)=C_{G}(P)
$$

(b) Assume $S \neq 1$. Then let $n=|G| /|S|$. Note that n is odd. Let

$$
\begin{aligned}
\varphi: G & \rightarrow S_{|G|} \\
a & \mapsto \tau_{a}
\end{aligned}
$$

where $\tau_{a}(g)=a g$ is the left multiplication map.
Then φ is certainly injective since $\tau_{a}=$ Id if and only if $a=e$.
Now, if $S=\langle a\rangle$, then $\varphi(a)=\tau_{a}$ is a cycle of order $|S|$ which is even. Now, let $g \in G$, then $\tau_{a}(g)=a g$ and $\tau_{a}(a g)=a^{2} g$ so $\varphi(a)$ has a cycle of the form $\left(g, a g, a^{2} g, \ldots, a^{|S|-1} g\right)$. Since

$$
\tau_{a}\left(a^{k}\right)=a^{k+1}=\tau_{a^{k+1}}(e)=\left(\tau_{a}\right)^{k+1}(e)
$$

we see that

$$
\varphi(a)=\left(a, a^{2}, \ldots, a^{|S|-1}\right) \prod_{g \in G \backslash S}\left(g, a g, a^{2} g, \ldots, a^{|S|-1} g\right)
$$

Namely, $\varphi(a)$ is a product of n cycles of even length, so $\varphi(a)$ is an odd permutation. Finally, let

$$
\operatorname{sgn}: S_{|G|} \rightarrow\{1,-1\}
$$

be the sign map. Then since $\operatorname{sgn}(\mathrm{Id})=1$, and $\operatorname{sgn}(\varphi(a))=-1$, we have that

$$
\operatorname{sgn} \circ \varphi: G \rightarrow\{1,-1\}
$$

is surjective.
Therefore, $G / \operatorname{ker}(\operatorname{sgn} \circ \varphi) \cong \mathbb{Z}_{2}$ so G has a normal (because it is a kernel) subgroup, $H=\operatorname{ker}(\operatorname{sgn} \circ \varphi)$ of index 2 .
(c) Let $|G|=2^{r} n$. Then we proceed by induction on r.

For $r=1$, we are done since by (b), G has a normal subgroup H of index 2. Namely, $|H|=n$. Therefore,

$$
|S H|=|S||H| /|S \cap H|=|S||H| / 1=2 n=|G|
$$

and since H is normal, $S H$ is a subgroup of G so $S H=G$.
Now, assume the statement holds for all $1 \leq k \leq r$. Then let $|G|=2^{r+1} n$ and have a cylic Sylow 2-subgroup S.
From (b), G has a normal subgroup H of order $2^{r} n$. Now, $S \cap H$ will also be cyclic subgroup. Now, H is normal so $S H$ is a subgroup of G. Since $S \not \subset H$, it must be that $|S H|>H$ so $S H=G$.

Finally

$$
|S \cap H|=|S||H| /|S H|=2^{r+1} 2^{r} n / 2^{r+1} n=2^{r}
$$

so H has a cyclic Sylow 2-subgroup $S \cap H$.
Therefore, by the inductive hypothesis, there exists an N normal subgroup of H of order n such that $H=(S \cap H) N$. Now, N is also a subgroup of G so it suffices to show that N is normal.
However, clearly any element $g \in G$ normalizes n. Since N is exactly all the elements in G of odd order. Therefore, $g n g^{-1}$ has odd order and so it is in N.
Thus, N is normal in G so

$$
G=S N
$$

Problem 4. Show that $\mathbb{Z}[\sqrt{5}]$ is not integrally closed in its quotient field.

Solution. First, we note that if $a+b \sqrt{5} \in \mathbb{Q}[\sqrt{5}]$, then $a+b \sqrt{5}$ satisfies

$$
(x-a-b \sqrt{5})(x-a+b \sqrt{5})=x^{2}-2 a x+a^{2}-5 b^{2} \in \mathbb{Q}[x] .
$$

And this polynomial is minimal over $\mathbb{Q}[x]$, since $a+b \sqrt{5} \notin \mathbb{Q}$.
Now, clearly $\frac{1+\sqrt{5}}{2}$ is in the field of fractions of $\mathbb{Z}[\sqrt{5}]$. Furthermore, it has minimal polynomial

$$
x^{2}-\frac{2}{2} x+\frac{1}{4}-\frac{5}{4}=x^{2}-x-1 \in \mathbb{Z}[x]
$$

Therefore, $\frac{1+\sqrt{5}}{2}$ is integral over \mathbb{Z} and so it is integral over $\mathbb{Z}[\sqrt{5}]$. However, clearly $\frac{1+\sqrt{5}}{2} \notin \mathbb{Z}[\sqrt{5}]$ so $\mathbb{Z}[\sqrt{5}]$ is not integrally closed.

Problem 5. Let $f(x)=x^{11}-5 \in \mathbb{Q}[x]$.
(a) Show that f is irreducible in $\mathbb{Q}[x]$.
(b) Let K be the splitting field of f over \mathbb{Q}. What is the Galois group of K / \mathbb{Q}.
(c) How many subfields L of K are there such that $[K: L]=11$.

Solution.

(a) We will apply Eisenstein's with $p=5$. Then p does not divide the leading coefficient of f, p does divide every other coefficient, and p^{2} does not divide the constant term.
Therefore, by Eisenstein's Criteion, $f(x)$ is irreducible over $\mathbb{Q}[x]$.
(b) Let K be the splitting field of f over \mathbb{Q}.

Let $z^{11}=5$ and $z=r e^{i \theta}$. Then $r=\sqrt[11]{5}$ and $11 \theta=2 k \pi$ for $k=1, \ldots, 11$. Clearly, $\sqrt[11]{5} \xi$ where $\xi=e^{2 i \pi / 11}$ is a primitive root of $f(x)$.
Therefore,

$$
K=\mathbb{Q}(\sqrt[11]{5}, \xi)
$$

Now, since ξ^{11} is primitive, it satisfies $g(x)=x^{10}+x^{9}+\cdots+x+1$.
Therefore,

$$
[K: \mathbb{Q}]=[K: \mathbb{Q}(\sqrt[11]{5})][\mathbb{Q}(\sqrt[11]{5}): \mathbb{Q}]=[K: \mathbb{Q}(\sqrt[11]{5})] 11
$$

and

$$
[K: \mathbb{Q}]=[K: \mathbb{Q}(\xi)][\mathbb{Q}(\xi): \mathbb{Q}]=[K: \mathbb{Q}(\xi)] 10
$$

Thus, 110 divides $[K: \mathbb{Q}]$ and since $[K: \mathbb{Q}] \leq 10$, we have that $[K: \mathbb{Q}]=110$. Now, since K is the splitting field of a separable (no repeated roots) polynomial, K / \mathbb{Q} is Galois so $G=\operatorname{Gal}(K / \mathbb{Q})$ exists and $|G|=110=2 \cdot 5 \cdot 11$.
Now, let $\sigma: K \rightarrow K$ be an element of G. Then $\sigma(\sqrt[11]{5})=\sqrt[11]{5} \xi^{i}$ and $\sigma(\xi)=\xi^{j}$ for some $i, j=1, \ldots, 11$.
Note that if $\sigma(\sqrt[11]{5})=\sqrt[11]{5}$ and $\sigma(\xi)=\xi^{i}$ and $\tau(\sqrt[11]{5})=\sqrt[11]{5} \xi^{j}$ and $\tau(\xi)=\xi$, then

$$
\sigma \tau(\sqrt[11]{5} \xi)=\sigma\left(\sqrt[11]{5} \xi^{j+1}\right)=\sqrt[11]{5} \xi^{(j+1) i}
$$

and

$$
\tau \sigma(\sqrt[11]{5} \xi)=\tau\left(\sqrt[11]{5} \xi^{i}\right)=\sqrt[11]{5} \xi^{j+i}
$$

Namely, we obtain immediately that G is non-abelian.
Finally, if $\sigma: K \rightarrow K$ is defined by $\sigma(\sqrt[11]{5})=\sqrt[11]{5} \xi$ and $\sigma(\xi)=\xi^{2}$, then one can check that σ has order 10 .

Namely, G has a subgroup $H=\langle\sigma\rangle$ of order 10 .

Now, if P_{11} is a Sylow 11-subgroups, and since n_{11} the number of Sylow 11-subgroups must divide $|G| / 11=10$ by the Sylow theorems, $n_{11}=1$. Note that $\rho: K \rightarrow K$ defined by $\rho(\sqrt[11]{5})=\sqrt[11]{5} \xi^{2}$ and $\rho(\xi)=\xi$ has order 11. Thus, $P_{11}=\langle\rho\rangle$.
So $P_{11} \cong \mathbb{Z}_{11}$ is normal in G. Therefore, $P_{11} H$ is a subgroup of G and since $\left|P_{11} H\right|=|G|$, we have that G must be a semi-direct product of P_{11} and H.
Now, we must identify the multiplication on G. Since

$$
G \cong\langle\rho\rangle \rtimes_{\varphi}\langle\sigma\rangle
$$

where $\varphi:\langle\sigma\rangle \rightarrow \mathbb{Z}_{10}$ and multiplication on G is defined by $\varphi(\sigma)(\rho)=\sigma \rho \sigma^{-1}=\rho^{t}$ for some t such that $\rho \mapsto \rho^{t}$ is an automorphism of P_{11}.
Since $\sigma\left(\sqrt[11]{5} \xi^{5}\right)=\sqrt[11]{5} \xi \xi^{10}=\sqrt[11]{5}$, we have that $\sigma^{-1}(\sqrt[11]{5})=\sqrt[11]{5} \xi^{5}$ and $\sigma\left(\xi^{6}\right)=\xi$ so

$$
\begin{aligned}
\sigma \rho \sigma^{-1}(\sqrt[11]{5}) & =\sigma \rho\left(\sqrt[11]{5} \xi^{5}\right) \\
& =\sigma\left(\sqrt[11]{5} \xi^{7}\right) \\
& =\sqrt[11]{5} \xi^{15} \\
& =\sqrt[11]{5} \xi^{4} \\
\sigma \rho \sigma^{-1}(\xi) & =\sigma \rho\left(\xi^{6}\right) \\
& =\sigma\left(\xi^{6}\right) \\
& =\xi
\end{aligned}
$$

so $\sigma \rho \sigma^{-1}=\rho^{2}$.
Therefore,

$$
G \cong\left\langle\sigma, \rho \mid \sigma^{10}=\rho^{11}=1, \sigma \rho \sigma^{-1}=\rho^{2}\right\rangle
$$

(c) The subfields L of K such that $[K: L]=11$ correspond exactly to the subgroups H of G such that $|H|=11$ (namely, so $[G: H]=|G| / 11=10$).
Since if H is a subgroup of G of order 11, it is a Sylow 11-subgroup, and since n_{11} the number of Sylow 11-subgroups must divide $|G| / 11=10$ by the Sylow theorems, $n_{11}=1$.

Thus, G has exactly one Sylow 11 subgroup and it is normal.
Thus, K contains one subfield L such that $[K: L]=11$ and in fact, L / \mathbb{Q} is Galois.

Problem 6. Suppose that R is a finite ring with 1 such that every unit of R has order dividing 24. Classify all such R.

Solution. Since R is finite, it is trivially artinian. Now, $R^{\prime}=R / J(R)$ has trivial Jacobson and is also artinian. Thus, by Artin Wedderburn, $R^{\prime} \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)$ where D_{i} are division rings.

Since R is finite, each D_{i} is finite, and so each must be a finite field. Note that if $\left|D_{i}\right|=p_{i}^{m}$ then $\left|D_{i}^{\times}\right|=p_{i}^{m-1}\left(p_{i}-1\right)$. Furthermore, D_{i}^{\times}is the group of units of D_{i} and so since each unit of R^{\prime} divides 24 , we have that $p_{i}^{m-1}\left(p_{i}-1\right) \mid 24$. Namely, we have the follwing options for pairs,

$$
(p, m)=(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(5,1),(7,1),(13,1)
$$

Alternatively,

$$
\left|D_{i}\right|=2,4,8,16,3,9,5,7,13
$$

Now, units in $M_{n_{i}}\left(D_{i}\right)$ are exactly elements in $G L_{n_{i}}\left(D_{i}\right)$. Since

$$
\left|G L_{n_{i}}\left(D_{i}\right)\right|=\left(\left|D_{i}\right|^{n_{i}}-1\right)\left(\left|D_{i}\right|^{n_{i}}-\left|D_{i}\right|\right) \cdots\left(\left|D_{i}\right|^{n_{i}}-\left|D_{i}\right|^{n_{i}-1}\right),
$$

we now have that $\left(\left|D_{i}\right|^{n_{i}}-1\right)\left(\left|D_{i}\right|^{n_{i}}-\left|D_{i}\right|\right) \cdots\left(\left|D_{i}\right|^{n_{i}}-\left|D_{i}\right|^{n_{i}-1}\right)$ must divide 24 . If $n_{i}=1$, then we simply hav a copy of D_{i} which we have already found.

Now, this gives the following possible pairs

$$
\left(n_{i},\left|D_{i}\right|\right)=(2,2)
$$

Everything else grows past 24.
Therefore, R^{\prime} is a direct sum of copies of D_{i}, which can be any of the finite fields previously described and some number of copies of $M_{2}\left(\mathbb{Z}_{2}\right)$.

Finally, since $R / J(R)$ is finite, it is finitely generated as an R-module.
Write $R / J(R)=\overline{x_{1}} R+\cdots+\overline{x_{n}} R$ for some $\overline{x_{i}}=x_{i}+J(R) \in R / J(R)$.
Then, by Nakayama's Lemma, $R \cong x_{1} R+\cdots+x_{n} R$.
This fully describes R.

