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Problem 1. Assume S is a commutative integral domain, and R ⊂ S is a subring.
Assume S is finitely generated as an R-module, i.e., there exists elements s1, ..., sn ∈ S
such that S = s1R + s2R + · · · snR. Show that R is a field if and only if S is a field. Is
the statement true if the assumption that S is an integral domain is dropped?

Solution.

***Note that here, finitely generated as an R-module is far stronger than finitely
generated as an R-algebra.
If S were a finitely generated R-algebra, then S = R[s1, ..., sn], namely, S would consist
of all polynomials in the si with coefficients in R.
To say that S is finitely generated as an R-module, is to say that every element of S is
a finite sum of the si with coefficients in R.

=⇒ Assume R is a field. Since S is commutative and has no zero divisors, to show
that S is a field, we need only show that every s ∈ S× is a unit.

Fix 0 6= s ∈ S

ϕ : S → S

t 7→ st

ϕ is clearly an R-module homomorphism since it is linear.
Furthermore, since S is a domain, ϕ is injective since if ϕ(t) = 0 then st = 0 so either

s = 0 or t = 0, but s 6= 0 so t = 0.
However, since S is a finitely generated module over a field, S is an R-vector space.

Therefore, since S is a finitely generated vector space, it has a finite basis and is finite
dimensional.

Finally, this forces ϕ to also be surjective by rank-nullity theorem.
Thus, 1 ∈ R ⊂ S and so, there exists t ∈ S so ϕ(t) = st = 1. Namely, s has an inverse

in S.
Since s ∈ S× was arbitrary, we have that S is a field.
⇐= Assume S is a field. Since ski ∈ S for all k, (S is a ring), we have that R[si] ⊂ S.

However, since S is finitely generated as an R-module, then R[si] is also finitely generated as
an R-module, and so namely, si is transcendental over R.
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To see this, note that if R[si] is spanned by {1, f1(si), ..., fl(si)} where fj ∈ R[s1, ..., sn],
then if m is the maximal degree of the fj,

sm+1
i = r0 +

n∑
j=1

rjfj(si) rj ∈ R

and so si satisfies a monic polynomial with coefficeints in R.
Therefore, S is an algebraic extension of R.
However, now we are done. Let 0 6= r ∈ R, then r−1 ∈ S since S is a field.
However, r−1 is algebraic over R, meaning that there exists ai ∈ R not all 0 so

(r−1)m + am−1(r−1)m−1 + · · ·+ a1r
−1 + a0 = 0

rm−1((r−1)m + am−1(r−1)m−1 + · · ·+ a1r
−1 + a0) = 0

r−1 + am−1 + am−2r + · · ·+ a1r
m−2 + a0r

m−1 = 0
r−1 = −a0r

m−1 − a1r
m−2 − · · · − am−2r − am−1 ∈ R

Therefore, R is a field.

The statement is false if the assumption that S is an integral domain is dropped.
=⇒ Let R = Z3, S = R[

√
3]. Then S is finitely generated as a Z3 module since

S = Z3 +
√

3Z3. Furthermore, S is not an integral domain since
√

3
√

3 = 3 = 0 ∈ S but√
3 6= 0. Finally, R is a field and S is not a field since

√
3(a+b

√
3) = a

√
3+3b = a

√
3 6= 1

for a = 0, 1, 2.
⇐= The other direction is true, since if we assume that S is a field, then it must be

a commutative integral domain, and so the proof holds.

�
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Problem 2. Suppose R is a commutative unital ring, p ⊂ R is a prime ideal and M is a
finitely generated R-module. Recall that the annihilator ideal R(M) consists of elements
r ∈ R such that rm = 0 for all m ∈M . Show the localized module Mp is nonzero if and
only if R(M) ⊂ p.

Solution. Since M is finitely generated, there exists m1, ...,mn such that

M = m1R +m2R · · ·+mnR.

=⇒ Assume MP is nonzero. Recall that MP = S−1M where S = R\P .
Now, recall that m

s
= 0 ∈MP if and only if there exists t ∈ S so tm = 0 ∈M .

Assume there exists an x ∈R (M) with x /∈ P . Then x ∈ S and since xmi = 0 ∈M for
all i, we have that mi

1 = 0 ∈MP for all i and all s ∈ S. Namely, m
s

= 0 ∈MP for all m ∈M
and all s ∈ S and so MP = 0.

This is a contradiction and so no such x can exist. Namely, R(M) ⊂ P.

⇐= Assume AnnR(M) ⊂ P . Now, assume MP = 0. Then, as stated ealier, for all
m ∈M , there exists s ∈ S so sm = 0.

Namely, for mi, there exists si so simi = 0 for all i = 1, ..., n.
Let s = s1 · · · sn. Then sm = 0 for all m ∈M .
This is clear, since m ∈M is of the form a1m1 + · · ·+ anmn with ai ∈ R, since M is a

finitely generated R-module.
Thus,

sm = s
n∑
i=1

aimi

=
n∑
i=1

(s1 · · · snaimi) =
n∑
i=1

(s1 · · · si−1si+1 · · · snaisimi) R commutative =
n∑
i=1

0

= 0

However, then s ∈ AnnR(M) by definition and since we assumed that AnnR(M) ⊂ P ,
this is a contradiction because S = R\P .

Therefore, MP 6= 0.
�
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Problem 3. Let f(x) = x5 + 1. Describe the splitting field K of f(x) over Q and
compute the Galois group Gal(K/Q).

Solution. The roots z of f(x) all must satisfy that z5 = −1. Thus, if z = eiθ, then
5θ = π, 3π, 5π, 7π, 9π.

Clearly ξ = eiπ/5 is a primitive root, since it generates the others, and so K = Q(ξ).
Now, we note that −1 is a root of f(x) and dividing out, we see that

x5 + 1x+ 1

and so
x5 + 1 = (x+ 1)(x4 − x3 + x2 − x+ 1).

Claim 1. If A polynomial f(x) is irreducible over Zp for any p which does not
divide the leading coefficient of f , then f(x) is irreducible over Q.

Proof. First, since f is irreducible over Q if and only if it is irreducible over Z,
it suffices to consider f(x) a polynomial over Z.

Now, if f is reducible in Z, then f(x) = g(x)h(x) in Z. However, both g
and h have the same degree over Zp as they do over Z since p does not divide
the leading coefficient of f , so it cannot divide the leading coefficient of g or h.

Namely, f(x) = g′(x)h′(x) in Zp where neither g′ nor h′ are constant, and
so f is reducible over Zp. �

From the claim, over Z2, x4− x3 + x2− x+ 1 becomes x4 + x3 + x2 + x+ 1. Now, if this
factors into two quadratics, then we would have (x2 +ax+ b)(x2 + cx+d), with a, b, c, d = 0, 1.

Then
1 = a+ c = b+ d+ ac = ad+ cb = bd.

So b = d = 1 and either a = 0 or c = 0. However, then 1 = 1 + 1 + 0 = 0 which is a
contradiction.

Therefore, the polynomial cannot factor into two quadratics, and since all the roots are
complex, it cannot factor into linear terms, so the polynomial is irreducible over Z2 and hence
over Q.

Finally, we have that
[K : Q] = 4.

Since K is the splitting field of a separable polynomial (all roots are distinct) K/Q is
Galois, and there are only two groups of order 4, so G = Gal(K/Q) is either Z4 or Z2 × Z2.

Now, we note that the roots are exactly, ξ, ξ3, ξ5, ξ7, ξ9. Since ξ10 = 1, we can rewrite
this as ξ, ξ3,−1,−ξ2,−ξ4.
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Now, σ : K → K defined by σ(ξ) = ξ3, defines a map in G.
Furthermore,

σ4(ξ) = σ3(ξ3) = σ2(ξ9) = σ2(−ξ4) = σ(−ξ12) = σ(−ξ2) = −ξ6 = ξ

and so σ has order 4 and therefore, G ∼= Z4.

�
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Problem 4. Let α be the real positive 16th root of 3 and consider the field F = Q(α)
generated by α over the field of rational numbers. Observe that there is a chain of
indeterminate fields

Q ⊂ Q(α8) ⊂ Q(α4) ⊂ Q(α2) ⊂ Q(α) = F.

Compute the degrees of these intermediate field extensions and conclude they are
all distinct. Show that every intermediate field K between Q and F is one of the above
(hint: consider the constant term of the minimal polynomial of α over K).

Solution. The chain is clear. Now,

[F : Q(α2)] = 2

since α clearly satisfies f(x) = x2−α2 ∈ Q(α2)[x]. Note that since α is real, it is not possible
that α = a+ bα2 for any a, b ∈ Q. Otherwise, α would be a root of g(x) = bx2 − x+ a which
is not possible, since α has minimal polynomial x16 − 3 over Q. Namely, f(x) is the minimal
polynomial α satisfies over Q(α2).

Similarly,
[Q(α2) : Q(α4)] = [Q(α4) : Q(α8)] = 2

and since α16 = 3, α8 satisfies f(x) = x2 − 3 so

[Q(α8) : Q] = 2

as well.
Therefore, each field in the chain as a proper subfield of the next.
Now, let Q ( K ( F . If K contains no powers of α, then K = Q.
Let α2k+1 ∈ K for some 0 < k < 8. Then

(α2k+1)8 = α16k+8 = 3kα8 ∈ K

so α8 ∈ K. Therefore,
(α2k+1)2k+1α8 = α4k2+4k+8α = α

since 4k2 + 4k + 8 = 4(k2 + k + 2) = 16l because k2 + k + 2 is an even integer strictly greater
than 2 for all non-zero positive integers k.

This is a contradiction, and so K can contain no odd powers of α.
However, now we are basically done. Since K 6= Q, K must contain some even power of

α. Let α2k ∈ K where 0 < k < 8 is minimal. Then k = 1, 2, 4. If k = 3, then

(α6)3 = α2 = α2·1
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so the minimality of k is contradicted. Similarly, if k = 5, then (α10)2 = α4 = α2·2, and if
k = 6, then (α12)2 = α8 = α2·4, and if k = 7, then (α14)2 = α12 = α2·6 all of which contradict
our choice of k.

Therefore, K can only contain powers of α of the form α2, α4, α8 and so any intermediate
K must be one of the three fields Q(α2),Q(α4),Q(α8).

�
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Problem 5. A finite group is said to be perfect if it has nontrivial abelian homomorphic
image. Show that a perfect group has no nontrival solvable homomorphac image. Next,
suppose that H ⊂ G is a normal subgroup with G/H perfect. If θ : G → S is a
homomorphism from G to a solvable group S and if N = ker θ, show that G = NH and
deduce that θ(H) = θ(G).

Solution. Assume G is perfect. Let ϕ : G→ S be some group homomorphism such that
ϕ(G) ⊂ S is solvable.

Let K be the kernel of ϕ. Then G/K ∼= ϕ(G) and so G/K is solvable.
Namely, Since ϕ(G) is not abelian, there exists a normal subgroup N/K ⊂ G/K such

that
(G/K)/(N/K) ∼= G/N is abelian.

However, then the quotient map π : G→ G/N is certainly a surjective homomorphism
into an abelian group, which contradicts that G is perfect.

Thus, G can have no solvable homomorphic image.
Now, suppose that G has a normal subgroup H and that G/H is perfect.
Let θ : G→ S be a homomorphism with S solvable and N = ker θ. If θ is trivial, then

we are done since N = NH = G. Assume θ is non-trivial.
Then G/N ∼= θ(G) which is solvable since subgroups of solvable groups are also solvable.
Now, let f : G/H → θ(G) defined by f(gH) = θ(g). Then f is well defined since if

gH = g′H, then g = g′h for some h ∈ H so f(gH) = f(g′hH) = f(g′H).
Now, since G/H is perfect, f must be the zero map. Namely, θ(g) = 0 for all gH ∈ G/H.
Thus, θ(g) = 0 for all g /∈ H. Therefore, if g /∈ H, then g ∈ N .
Since N is normal, NH is a subgroup of G and since any g /∈ H implies g ∈ N , and G

is finite, G = NH. �
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Problem 6. Let A be a finite dimensional C-algebra. Given a ∈ A, write La for the
left multiplication operatire, i.e., La(b) = ab. Define a map (−,−) : A×A→ C by means
of the formula (a, b) := tr(LaLb).

(a) Show that (−,−) is a symmetric bilinear form on A.

(b) If one defines the radical Rad(−,−) as {a ∈ A | (a, b) = 0∀b ∈ A}, then show that
Rad(−,−) is a two-sided ideal in A.

(c) Show that Rad(−,−) coincides with the Jacobson radical of A.

Solution.

(a) First, we note that
Lab(x) = abx = aLb(x)

for all a, b, x ∈ A and

La+b(x) = (a+ b)x = ax+ bx = La(x) + Lb(x)

Therefore, since the trace is a linear operation, for a ∈ C and x, y, z ∈ A, we have that

(ax+ ay, z) = tr(Lax+ayLz)
= tr((Lax + Lay)Lz)
= tr((aLx + aLy)Lz)
= atr(LxLz) + atr(LyLz)
= a(x, z) + a(y, z)

and similarly
(z, ax+ ay) = a(z, x) + a(z, y).

Therefore, (−,−) is bilinear. It is symmetric, since tr(AB) = tr(BA) so

(x, y) = tr(LxLy) = tr(LyLx) = (y, x).

(b) Let x, y ∈ Rad(−,−). Then

(x− y, b) = (x, b)− (y, b) = 0− 0 = 0

for all b ∈ A so x− y ∈ Rad(−,−).
Similarly, if r ∈ A then (rx, b) = (x, rb) = 0 for all b ∈ A so rx ∈ Rad(−,−) and
(xr, b) = (x, rb) = 0 for all r ∈ A.
Therefore, Rad(−,−) defines an ideal in A.
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(c) Since A is finite dimensional, it is Artinian, so J(A) is nilpotent.
let x ∈ J(A). Then for all b ∈ A, xb ∈ J(A) since J(A) is a 2-sided ideal. Now, there
exists an n so (xb)n = 0 since J(A) is nilpotent so

L(xb)n = (Lxb)n = 0.

So Lxb is nilpotent. Since nilpotent matrices always have zero-trace,

(x, b) = (xb, 1) = tr(Lxb) = 0.

And since b ∈ A was arbitrary, then x ∈ Rad(−,−).

Recall: If a matrix M is nilpotent, then Mn = 0 for some n. Let λ be an
eigenvalue of M and v a non-zero eigenvector. Then Mnv = λnv = 0 so λ = 0.
Thus, M has only zero eigenvalues, and since tr(M) is the sum of the eigenvalues,
tr(M) = 0.

Let a ∈ Rad(−,−). Then, we note that (an, 1) = tr(Lan) = tr(Lna) = 0 for all n, so∑n
i=1 λ

n
i = 0 for all n, where λi are the (not necessarily distinct) eigenvalues of La.

Now, we note that if characteristic polynomial of La is p(x), then p(x) = ∏n
i=1(x− λi)

and by Cayley Hamilton, La satisfies p(x).
Since p(x) is a polynomial with coefficeints that are symmetric in λi and since∑n

i=1 λ
n
i =

0 for all n implies that all the symmetric polynomials in the λi are 0, we have that
p(x) = xn.
Namely, La has only 0 as an eigenvalue and so it is nilpotent.
Thus, there exists an n such that Lan = Lna = 0. Therefore, an1 = an = 0 so a is
nilpotent.
Since all nilpotent elements are quasi-regular and since J(R) is the largest quasi-regular
2-sided ideal, it must be that Rad(−,−) ⊂ J(R).

�
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Problem 7. Suppose F is an algebraically closed field, V is a finite-dimensional F -vector
space, and A ∈ EndF (V ). Show that there exists polynomial f, g ∈ F [x] such that

(i) A = f(A) + g(A)

(ii) f(A) is diagonalizable and g(A) is nilpotent

(iii) f and g both vanish at 0.

Solution. Let
pA(x) =

m∏
i=1

(x− λi)ki

be the minimal polynomial of A. If x divides p(x), then let p(x) = pA(x) else we let
p(x) = xpA(x) and WLOG, let λ0 = 0.

Let
qi(x) = p(x)

(x− λi)ki
i = 0, ...,m

Note that qi(A) 6= 0 since qi has degree strictly smaller than p. Then for all i 6= j, qi and
(x− λi)ki are coprime, and so there exists polynomials ai(x) so

1 =
m∑
i=0

fi(x) fi(x) = ai(x)qi(x).

Now, let
f(x) =

m∑
i=0

λifi(x).

Then,
λjI − f(A) = λj

m∑
i=0

fi(A)−
m∑
i=0

λifi(A) =
m∑
i=0

(λj − λi)fi(A).

Next, since pA(x) divides qi(x)qj(x) for all i 6= j, we have that fi(A)fj(A) = 0 for all
i 6= j. Namely,

fj(A) = fj(A)
m∑
i=0

fi(x) = fj(A)2

for all j.
Therefore,

f 2(A) =
(

m∑
i=0

λifi(A)
)2

=
m∑
i=0

λ2
i f

2
i (A)
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Thus,

(λjI − f(A))(λkI − f(A)) = λjλkI − (λj + λj)f(A) + f 2(A)

= λjλk
m∑
i=0

fi(A)− (λj + λk)
m∑
i=0

λifi(A) +
m∑
i=0

λ2
i f

2
i (A)

=
m∑
i=0

(λjλk − (λj + λk)λi + λ2
i )fi(A)

=
m∑
i=0

(λj − λi)(λk − λi)fi(A)

Finally,
m∏
i=0

(f(A)− λjI) =
m∑
i=1

m∏
i=0

(λj − λi)fi(A) = 0

since there is a λj − λj = 0 term in every product.
Thus, f(A) has minimal polynomial dividing ∏m

i=0(x−λj), and since if v is an eigenvector
of A associated to eigenvalue λi, then f(A)v = λiv by construction. Therefore, f(A) has the
same eigenvalues as A and is diagonalizable.

Finally, let g(x) = x− f(x). Then

g(A) = A− f(A) =
m∑
i=1

(A− λiI)fi(A).

Then, let
k = max

i=0,...,m
ki.

Then
gk(A) = (A− f(A))k =

m∑
i=1

(A− λiI)kfi(A) = 0

since pA(x) divides (A− λiI)kfi(A).
At last, we have that

A = f(A) + g(A)

where f(A) is diagonalizable and g(A) is nilpotent, and by construction, f and g both vanish
at 0. �
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