Kayla Orlinsky Algebra Exam Fall 2017

Problem 1. Assume S is a commutative integral domain, and $R \subset S$ is a subring. Assume S is finitely generated as an R-module, i.e., there exists elements $s_{1}, \ldots, s_{n} \in S$ such that $S=s_{1} R+s_{2} R+\cdots s_{n} R$. Show that R is a field if and only if S is a field. Is the statement true if the assumption that S is an integral domain is dropped?

Solution.

${ }^{* * *}$ Note that here, finitely generated as an R-module is far stronger than finitely generated as an R-algebra.
If S were a finitely generated R-algebra, then $S=R\left[s_{1}, \ldots, s_{n}\right]$, namely, S would consist of all polynomials in the s_{i} with coefficients in R.
To say that S is finitely generated as an R-module, is to say that every element of S is a finite sum of the s_{i} with coefficients in R.
\Longrightarrow Assume R is a field. Since S is commutative and has no zero divisors, to show that S is a field, we need only show that every $s \in S^{\times}$is a unit.

Fix $0 \neq s \in S$

$$
\begin{aligned}
\varphi: S & \rightarrow S \\
t & \mapsto s t
\end{aligned}
$$

φ is clearly an R-module homomorphism since it is linear.
Furthermore, since S is a domain, φ is injective since if $\varphi(t)=0$ then $s t=0$ so either $s=0$ or $t=0$, but $s \neq 0$ so $t=0$.

However, since S is a finitely generated module over a field, S is an R-vector space. Therefore, since S is a finitely generated vector space, it has a finite basis and is finite dimensional.

Finally, this forces φ to also be surjective by rank-nullity theorem.
Thus, $1 \in R \subset S$ and so, there exists $t \in S$ so $\varphi(t)=s t=1$. Namely, s has an inverse in S.

Since $s \in S^{\times}$was arbitrary, we have that S is a field.
\Longleftarrow Assume S is a field. Since $s_{i}^{k} \in S$ for all $k,\left(S\right.$ is a ring), we have that $R\left[s_{i}\right] \subset S$. However, since S is finitely generated as an R-module, then $R\left[s_{i}\right]$ is also finitely generated as an R-module, and so namely, s_{i} is transcendental over R.

To see this, note that if $R\left[s_{i}\right]$ is spanned by $\left\{1, f_{1}\left(s_{i}\right), \ldots, f_{l}\left(s_{i}\right)\right\}$ where $f_{j} \in R\left[s_{1}, \ldots, s_{n}\right]$, then if m is the maximal degree of the f_{j},

$$
s_{i}^{m+1}=r_{0}+\sum_{j=1}^{n} r_{j} f_{j}\left(s_{i}\right) \quad r_{j} \in R
$$

and so s_{i} satisfies a monic polynomial with coefficeints in R.
Therefore, S is an algebraic extension of R.
However, now we are done. Let $0 \neq r \in R$, then $r^{-1} \in S$ since S is a field.
However, r^{-1} is algebraic over R, meaning that there exists $a_{i} \in R$ not all 0 so

$$
\left(r^{-1}\right)^{m}+a_{m-1}\left(r^{-1}\right)^{m-1}+\cdots+a_{1} r^{-1}+a_{0}=0
$$

$r^{m-1}\left(\left(r^{-1}\right)^{m}+a_{m-1}\left(r^{-1}\right)^{m-1}+\cdots+a_{1} r^{-1}+a_{0}\right)=0$
$r^{-1}+a_{m-1}+a_{m-2} r+\cdots+a_{1} r^{m-2}+a_{0} r^{m-1}=0$
$r^{-1}=-a_{0} r^{m-1}-a_{1} r^{m-2}-\cdots-a_{m-2} r-a_{m-1} \in R$
Therefore, R is a field.
The statement is false if the assumption that S is an integral domain is dropped.
\Longrightarrow Let $R=\mathbb{Z}_{3}, S=R[\sqrt{3}]$. Then S is finitely generated as a \mathbb{Z}_{3} module since $S=\mathbb{Z}_{3}+\sqrt{3} \mathbb{Z}_{3}$. Furthermore, S is not an integral domain since $\sqrt{3} \sqrt{3}=3=0 \in S$ but $\sqrt{3} \neq 0$. Finally, R is a field and S is not a field since $\sqrt{3}(a+b \sqrt{3})=a \sqrt{3}+3 b=a \sqrt{3} \neq 1$ for $a=0,1,2$.
\Longleftarrow The other direction is true, since if we assume that S is a field, then it must be a commutative integral domain, and so the proof holds.

Problem 2. Suppose R is a commutative unital ring, $\mathfrak{p} \subset R$ is a prime ideal and M is a finitely generated R-module. Recall that the annihilator ideal ${ }_{R}(M)$ consists of elements $r \in R$ such that $r m=0$ for all $m \in M$. Show the localized module M_{p} is nonzero if and only if ${ }_{R}(M) \subset \mathfrak{p}$.

Solution. Since M is finitely generated, there exists m_{1}, \ldots, m_{n} such that

$$
M=m_{1} R+m_{2} R \cdots+m_{n} R .
$$

\LongrightarrowAssume M_{P} is nonzero. Recall that $M_{P}=S^{-1} M$ where $S=R \backslash P$.
Now, recall that $\frac{m}{s}=0 \in M_{P}$ if and only if there exists $t \in S$ so $t m=0 \in M$.
Assume there exists an $x \in_{R}(M)$ with $x \notin P$. Then $x \in S$ and since $x m_{i}=0 \in M$ for all i, we have that $\frac{m_{i}}{1}=0 \in M_{P}$ for all i and all $s \in S$. Namely, $\frac{m}{s}=0 \in M_{P}$ for all $m \in M$ and all $s \in S$ and so $M_{P}=0$.

This is a contradiction and so no such x can exist. Namely, ${ }_{R}(M) \subset P$.
\Longleftarrow Assume $\operatorname{Ann}_{R}(M) \subset P$. Now, assume $M_{P}=0$. Then, as stated ealier, for all $m \in M$, there exists $s \in S$ so $s m=0$.

Namely, for m_{i}, there exists s_{i} so $s_{i} m_{i}=0$ for all $i=1, \ldots, n$.
Let $s=s_{1} \cdots s_{n}$. Then $s m=0$ for all $m \in M$.
This is clear, since $m \in M$ is of the form $a_{1} m_{1}+\cdots+a_{n} m_{n}$ with $a_{i} \in R$, since M is a finitely generated R-module.

Thus,

$$
\begin{aligned}
s m & =s \sum_{i=1}^{n} a_{i} m_{i} \\
& =\sum_{i=1}^{n}\left(s_{1} \cdots s_{n} a_{i} m_{i}\right) \quad=\sum_{i=1}^{n}\left(s_{1} \cdots s_{i-1} s_{i+1} \cdots s_{n} a_{i} s_{i} m_{i}\right) \quad R \text { commutative }=\sum_{i=1}^{n} 0 \\
& =0
\end{aligned}
$$

However, then $s \in \operatorname{Ann}_{R}(M)$ by definition and since we assumed that $\operatorname{Ann}_{R}(M) \subset P$, this is a contradiction because $S=R \backslash P$.

Therefore, $M_{P} \neq 0$.

Problem 3. Let $f(x)=x^{5}+1$. Describe the splitting field K of $f(x)$ over \mathbb{Q} and compute the Galois group $\operatorname{Gal}(K / \mathbb{Q})$.

Solution. The roots z of $f(x)$ all must satisfy that $z^{5}=-1$. Thus, if $z=e^{i \theta}$, then $5 \theta=\pi, 3 \pi, 5 \pi, 7 \pi, 9 \pi$.

Clearly $\xi=e^{i \pi / 5}$ is a primitive root, since it generates the others, and so $K=\mathbb{Q}(\xi)$.
Now, we note that -1 is a root of $f(x)$ and dividing out, we see that

$$
x^{5}+1 x+1
$$

and so

$$
x^{5}+1=(x+1)\left(x^{4}-x^{3}+x^{2}-x+1\right) .
$$

Claim 1. If A polynomial $f(x)$ is irreducible over \mathbb{Z}_{p} for any p which does not divide the leading coefficient of f, then $f(x)$ is irreducible over \mathbb{Q}.

Proof. First, since f is irreducible over \mathbb{Q} if and only if it is irreducible over \mathbb{Z}, it suffices to consider $f(x)$ a polynomial over \mathbb{Z}.

Now, if f is reducible in \mathbb{Z}, then $f(x)=g(x) h(x)$ in \mathbb{Z}. However, both g and h have the same degree over \mathbb{Z}_{p} as they do over \mathbb{Z} since p does not divide the leading coefficient of f, so it cannot divide the leading coefficient of g or h.

Namely, $f(x)=g^{\prime}(x) h^{\prime}(x)$ in \mathbb{Z}_{p} where neither g^{\prime} nor h^{\prime} are constant, and so f is reducible over \mathbb{Z}_{p}.

From the claim, over $\mathbb{Z}_{2}, x^{4}-x^{3}+x^{2}-x+1$ becomes $x^{4}+x^{3}+x^{2}+x+1$. Now, if this factors into two quadratics, then we would have $\left(x^{2}+a x+b\right)\left(x^{2}+c x+d\right)$, with $a, b, c, d=0,1$.

Then

$$
1=a+c=b+d+a c=a d+c b=b d
$$

So $b=d=1$ and either $a=0$ or $c=0$. However, then $1=1+1+0=0$ which is a contradiction.

Therefore, the polynomial cannot factor into two quadratics, and since all the roots are complex, it cannot factor into linear terms, so the polynomial is irreducible over \mathbb{Z}_{2} and hence over \mathbb{Q}.

Finally, we have that

$$
[K: \mathbb{Q}]=4
$$

Since K is the splitting field of a separable polynomial (all roots are distinct) K / \mathbb{Q} is Galois, and there are only two groups of order 4 , so $G=\operatorname{Gal}(K / \mathbb{Q})$ is either \mathbb{Z}_{4} or $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$.

Now, we note that the roots are exactly, $\xi, \xi^{3}, \xi^{5}, \xi^{7}, \xi^{9}$. Since $\xi^{10}=1$, we can rewrite this as $\xi, \xi^{3},-1,-\xi^{2},-\xi^{4}$.

Now, $\sigma: K \rightarrow K$ defined by $\sigma(\xi)=\xi^{3}$, defines a map in G.
Furthermore,

$$
\sigma^{4}(\xi)=\sigma^{3}\left(\xi^{3}\right)=\sigma^{2}\left(\xi^{9}\right)=\sigma^{2}\left(-\xi^{4}\right)=\sigma\left(-\xi^{12}\right)=\sigma\left(-\xi^{2}\right)=-\xi^{6}=\xi
$$

and so σ has order 4 and therefore, $G \cong \mathbb{Z}_{4}$.

Problem 4. Let α be the real positive $16^{\text {th }}$ root of 3 and consider the field $F=\mathbb{Q}(\alpha)$ generated by α over the field of rational numbers. Observe that there is a chain of indeterminate fields

$$
\mathbb{Q} \subset \mathbb{Q}\left(\alpha^{8}\right) \subset \mathbb{Q}\left(\alpha^{4}\right) \subset \mathbb{Q}\left(\alpha^{2}\right) \subset \mathbb{Q}(\alpha)=F .
$$

Compute the degrees of these intermediate field extensions and conclude they are all distinct. Show that every intermediate field K between \mathbb{Q} and F is one of the above (hint: consider the constant term of the minimal polynomial of α over K).

Solution. The chain is clear. Now,

$$
\left[F: \mathbb{Q}\left(\alpha^{2}\right)\right]=2
$$

since α clearly satisfies $f(x)=x^{2}-\alpha^{2} \in \mathbb{Q}\left(\alpha^{2}\right)[x]$. Note that since α is real, it is not possible that $\alpha=a+b \alpha^{2}$ for any $a, b \in \mathbb{Q}$. Otherwise, α would be a root of $g(x)=b x^{2}-x+a$ which is not possible, since α has minimal polynomial $x^{16}-3$ over \mathbb{Q}. Namely, $f(x)$ is the minimal polynomial α satisfies over $\mathbb{Q}\left(\alpha^{2}\right)$.

Similarly,

$$
\left[\mathbb{Q}\left(\alpha^{2}\right): \mathbb{Q}\left(\alpha^{4}\right)\right]=\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\left(\alpha^{8}\right)\right]=2
$$

and since $\alpha^{16}=3, \alpha^{8}$ satisfies $f(x)=x^{2}-3$ so

$$
\left[\mathbb{Q}\left(\alpha^{8}\right): \mathbb{Q}\right]=2
$$

as well.
Therefore, each field in the chain as a proper subfield of the next.
Now, let $\mathbb{Q} \subsetneq K \subsetneq F$. If K contains no powers of α, then $K=\mathbb{Q}$.
Let $\alpha^{2 k+1} \in K$ for some $0<k<8$. Then

$$
\left(\alpha^{2 k+1}\right)^{8}=\alpha^{16 k+8}=3^{k} \alpha^{8} \in K
$$

so $\alpha^{8} \in K$. Therefore,

$$
\left(\alpha^{2 k+1}\right)^{2 k+1} \alpha^{8}=\alpha^{4 k^{2}+4 k+8} \alpha=\alpha
$$

since $4 k^{2}+4 k+8=4\left(k^{2}+k+2\right)=16 l$ because $k^{2}+k+2$ is an even integer strictly greater than 2 for all non-zero positive integers k.

This is a contradiction, and so K can contain no odd powers of α.
However, now we are basically done. Since $K \neq \mathbb{Q}, K$ must contain some even power of α. Let $\alpha^{2 k} \in K$ where $0<k<8$ is minimal. Then $k=1,2,4$. If $k=3$, then

$$
\left(\alpha^{6}\right)^{3}=\alpha^{2}=\alpha^{2 \cdot 1}
$$

so the minimality of k is contradicted. Similarly, if $k=5$, then $\left(\alpha^{10}\right)^{2}=\alpha^{4}=\alpha^{2 \cdot 2}$, and if $k=6$, then $\left(\alpha^{12}\right)^{2}=\alpha^{8}=\alpha^{2 \cdot 4}$, and if $k=7$, then $\left(\alpha^{14}\right)^{2}=\alpha^{12}=\alpha^{2 \cdot 6}$ all of which contradict our choice of k.

Therefore, K can only contain powers of α of the form $\alpha^{2}, \alpha^{4}, \alpha^{8}$ and so any intermediate K must be one of the three fields $\mathbb{Q}\left(\alpha^{2}\right), \mathbb{Q}\left(\alpha^{4}\right), \mathbb{Q}\left(\alpha^{8}\right)$.

Problem 5. A finite group is said to be perfect if it has nontrivial abelian homomorphic image. Show that a perfect group has no nontrival solvable homomorphac image. Next, suppose that $H \subset G$ is a normal subgroup with G / H perfect. If $\theta: G \rightarrow S$ is a homomorphism from G to a solvable group S and if $N=\operatorname{ker} \theta$, show that $G=N H$ and deduce that $\theta(H)=\theta(G)$.

Solution. Assume G is perfect. Let $\varphi: G \rightarrow S$ be some group homomorphism such that $\varphi(G) \subset S$ is solvable.

Let K be the kernel of φ. Then $G / K \cong \varphi(G)$ and so G / K is solvable.
Namely, Since $\varphi(G)$ is not abelian, there exists a normal subgroup $N / K \subset G / K$ such that

$$
(G / K) /(N / K) \cong G / N \quad \text { is abelian. }
$$

However, then the quotient map $\pi: G \rightarrow G / N$ is certainly a surjective homomorphism into an abelian group, which contradicts that G is perfect.

Thus, G can have no solvable homomorphic image.
Now, suppose that G has a normal subgroup H and that G / H is perfect.
Let $\theta: G \rightarrow S$ be a homomorphism with S solvable and $N=\operatorname{ker} \theta$. If θ is trivial, then we are done since $N=N H=G$. Assume θ is non-trivial.

Then $G / N \cong \theta(G)$ which is solvable since subgroups of solvable groups are also solvable.
Now, let $f: G / H \rightarrow \theta(G)$ defined by $f(g H)=\theta(g)$. Then f is well defined since if $g H=g^{\prime} H$, then $g=g^{\prime} h$ for some $h \in H$ so $f(g H)=f\left(g^{\prime} h H\right)=f\left(g^{\prime} H\right)$.

Now, since G / H is perfect, f must be the zero map. Namely, $\theta(g)=0$ for all $g H \in G / H$.
Thus, $\theta(g)=0$ for all $g \notin H$. Therefore, if $g \notin H$, then $g \in N$.
Since N is normal, $N H$ is a subgroup of G and since any $g \notin H$ implies $g \in N$, and G is finite, $G=N H$.

Problem 6. Let A be a finite dimensional \mathbb{C}-algebra. Given $a \in A$, write L_{a} for the left multiplication operatire, i.e., $L_{a}(b)=a b$. Define a map $(-,-): A \times A \rightarrow \mathbb{C}$ by means of the formula $(a, b):=\operatorname{tr}\left(L_{a} L_{b}\right)$.
(a) Show that $(-,-)$ is a symmetric bilinear form on A.
(b) If one defines the radical $\operatorname{Rad}(-,-)$ as $\{a \in A \mid(a, b)=0 \forall b \in A\}$, then show that $\operatorname{Rad}(-,-)$ is a two-sided ideal in A.
(c) Show that $\operatorname{Rad}(-,-)$ coincides with the Jacobson radical of A.

Solution.

(a) First, we note that

$$
L_{a b}(x)=a b x=a L_{b}(x)
$$

for all $a, b, x \in A$ and

$$
L_{a+b}(x)=(a+b) x=a x+b x=L_{a}(x)+L_{b}(x)
$$

Therefore, since the trace is a linear operation, for $a \in \mathbb{C}$ and $x, y, z \in A$, we have that

$$
\begin{aligned}
(a x+a y, z) & =\operatorname{tr}\left(L_{a x+a y} L_{z}\right) \\
& =\operatorname{tr}\left(\left(L_{a x}+L_{a y}\right) L_{z}\right) \\
& =\operatorname{tr}\left(\left(a L_{x}+a L_{y}\right) L_{z}\right) \\
& =a \operatorname{tr}\left(L_{x} L_{z}\right)+a \operatorname{tr}\left(L_{y} L_{z}\right) \\
& =a(x, z)+a(y, z)
\end{aligned}
$$

and similarly

$$
(z, a x+a y)=a(z, x)+a(z, y)
$$

Therefore, $(-,-)$ is bilinear. It is symmetric, since $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ so

$$
(x, y)=\operatorname{tr}\left(L_{x} L_{y}\right)=\operatorname{tr}\left(L_{y} L_{x}\right)=(y, x)
$$

(b) Let $x, y \in \operatorname{Rad}(-,-)$. Then

$$
(x-y, b)=(x, b)-(y, b)=0-0=0
$$

for all $b \in A$ so $x-y \in \operatorname{Rad}(-,-)$.
Similarly, if $r \in A$ then $(r x, b)=(x, r b)=0$ for all $b \in A$ so $r x \in \operatorname{Rad}(-,-)$ and $(x r, b)=(x, r b)=0$ for all $r \in A$.
Therefore, $\operatorname{Rad}(-,-)$ defines an ideal in A.
(c) Since A is finite dimensional, it is Artinian, so $J(A)$ is nilpotent.
let $x \in J(A)$. Then for all $b \in A, x b \in J(A)$ since $J(A)$ is a 2-sided ideal. Now, there exists an n so $(x b)^{n}=0$ since $J(A)$ is nilpotent so

$$
L_{(x b)^{n}}=\left(L_{x b}\right)^{n}=0 .
$$

So $L_{x b}$ is nilpotent. Since nilpotent matrices always have zero-trace,

$$
(x, b)=(x b, 1)=\operatorname{tr}\left(L_{x b}\right)=0
$$

And since $b \in A$ was arbitrary, then $x \in \operatorname{Rad}(-,-)$.
Recall: If a matrix M is nilpotent, then $M^{n}=0$ for some n. Let λ be an eigenvalue of M and v a non-zero eigenvector. Then $M^{n} v=\lambda^{n} v=0$ so $\lambda=0$.
Thus, M has only zero eigenvalues, and since $\operatorname{tr}(M)$ is the sum of the eigenvalues, $\operatorname{tr}(M)=0$.

Let $a \in \operatorname{Rad}(-,-)$. Then, we note that $\left(a^{n}, 1\right)=\operatorname{tr}\left(L_{a^{n}}\right)=\operatorname{tr}\left(L_{a}^{n}\right)=0$ for all n, so $\sum_{i=1}^{n} \lambda_{i}^{n}=0$ for all n, where λ_{i} are the (not necessarily distinct) eigenvalues of L_{a}.
Now, we note that if characteristic polynomial of L_{a} is $p(x)$, then $p(x)=\prod_{i=1}^{n}\left(x-\lambda_{i}\right)$ and by Cayley Hamilton, L_{a} satisfies $p(x)$.
Since $p(x)$ is a polynomial with coefficeints that are symmetric in λ_{i} and since $\sum_{i=1}^{n} \lambda_{i}^{n}=$ 0 for all n implies that all the symmetric polynomials in the λ_{i} are 0 , we have that $p(x)=x^{n}$.
Namely, L_{a} has only 0 as an eigenvalue and so it is nilpotent.
Thus, there exists an n such that $L_{a^{n}}=L_{a}^{n}=0$. Therefore, $a^{n} 1=a^{n}=0$ so a is nilpotent.
Since all nilpotent elements are quasi-regular and since $J(R)$ is the largest quasi-regular 2 -sided ideal, it must be that $\operatorname{Rad}(-,-) \subset J(R)$.

Problem 7. Suppose F is an algebraically closed field, V is a finite-dimensional F-vector space, and $A \in \operatorname{End}_{F}(V)$. Show that there exists polynomial $f, g \in F[x]$ such that
(i) $A=f(A)+g(A)$
(ii) $f(A)$ is diagonalizable and $g(A)$ is nilpotent
(iii) f and g both vanish at 0 .

Solution. Let

$$
p_{A}(x)=\prod_{i=1}^{m}\left(x-\lambda_{i}\right)^{k_{i}}
$$

be the minimal polynomial of A. If x divides $p(x)$, then let $p(x)=p_{A}(x)$ else we let $p(x)=x p_{A}(x)$ and WLOG, let $\lambda_{0}=0$.

Let

$$
q_{i}(x)=\frac{p(x)}{\left(x-\lambda_{i}\right)^{k_{i}}} \quad i=0, \ldots, m
$$

Note that $q_{i}(A) \neq 0$ since q_{i} has degree strictly smaller than p. Then for all $i \neq j, q_{i}$ and $\left(x-\lambda_{i}\right)^{k_{i}}$ are coprime, and so there exists polynomials $a_{i}(x)$ so

$$
1=\sum_{i=0}^{m} f_{i}(x) \quad f_{i}(x)=a_{i}(x) q_{i}(x)
$$

Now, let

$$
f(x)=\sum_{i=0}^{m} \lambda_{i} f_{i}(x) .
$$

Then,

$$
\lambda_{j} I-f(A)=\lambda_{j} \sum_{i=0}^{m} f_{i}(A)-\sum_{i=0}^{m} \lambda_{i} f_{i}(A)=\sum_{i=0}^{m}\left(\lambda_{j}-\lambda_{i}\right) f_{i}(A) .
$$

Next, since $p_{A}(x)$ divides $q_{i}(x) q_{j}(x)$ for all $i \neq j$, we have that $f_{i}(A) f_{j}(A)=0$ for all $i \neq j$. Namely,

$$
f_{j}(A)=f_{j}(A) \sum_{i=0}^{m} f_{i}(x)=f_{j}(A)^{2}
$$

for all j.
Therefore,

$$
f^{2}(A)=\left(\sum_{i=0}^{m} \lambda_{i} f_{i}(A)\right)^{2}=\sum_{i=0}^{m} \lambda_{i}^{2} f_{i}^{2}(A)
$$

Thus,

$$
\begin{aligned}
\left(\lambda_{j} I-f(A)\right)\left(\lambda_{k} I-f(A)\right) & =\lambda_{j} \lambda_{k} I-\left(\lambda_{j}+\lambda_{j}\right) f(A)+f^{2}(A) \\
& =\lambda_{j} \lambda_{k} \sum_{i=0}^{m} f_{i}(A)-\left(\lambda_{j}+\lambda_{k}\right) \sum_{i=0}^{m} \lambda_{i} f_{i}(A)+\sum_{i=0}^{m} \lambda_{i}^{2} f_{i}^{2}(A) \\
& =\sum_{i=0}^{m}\left(\lambda_{j} \lambda_{k}-\left(\lambda_{j}+\lambda_{k}\right) \lambda_{i}+\lambda_{i}^{2}\right) f_{i}(A) \\
& =\sum_{i=0}^{m}\left(\lambda_{j}-\lambda_{i}\right)\left(\lambda_{k}-\lambda_{i}\right) f_{i}(A)
\end{aligned}
$$

Finally,

$$
\prod_{i=0}^{m}\left(f(A)-\lambda_{j} I\right)=\sum_{i=1}^{m} \prod_{i=0}^{m}\left(\lambda_{j}-\lambda_{i}\right) f_{i}(A)=0
$$

since there is a $\lambda_{j}-\lambda_{j}=0$ term in every product.
Thus, $f(A)$ has minimal polynomial dividing $\prod_{i=0}^{m}\left(x-\lambda_{j}\right)$, and since if v is an eigenvector of A associated to eigenvalue λ_{i}, then $f(A) v=\lambda_{i} v$ by construction. Therefore, $f(A)$ has the same eigenvalues as A and is diagonalizable.

Finally, let $g(x)=x-f(x)$. Then

$$
g(A)=A-f(A)=\sum_{i=1}^{m}\left(A-\lambda_{i} I\right) f_{i}(A)
$$

Then, let

$$
k=\max _{i=0, \ldots, m} k_{i} .
$$

Then

$$
g^{k}(A)=(A-f(A))^{k}=\sum_{i=1}^{m}\left(A-\lambda_{i} I\right)^{k} f_{i}(A)=0
$$

since $p_{A}(x)$ divides $\left(A-\lambda_{i} I\right)^{k} f_{i}(A)$.
At last, we have that

$$
A=f(A)+g(A)
$$

where $f(A)$ is diagonalizable and $g(A)$ is nilpotent, and by construction, f and g both vanish at 0 .

