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Problem 1. Let R be a Noetherian commutative ring with 1 and I # 0 an ideal of R.
Show that there exist finitely many nonzero prime ideals P; of R (not necessarily distinct)
so that [[; P, C I (Hint: consider the set of ideals which are not of that form).

Solution. Let
S = {J|J does not contain a finite product of nonzero prime ideals}

the set of ideals of R not of the form described.
If S is empty, then we are done, so assume not.

Then S is partially ordered by inclusion. Furthermore, any ordered chain of elements
of S contains a maximal element in S, namely the union of all ideals in the chain. Since a
union (including infinite union) of ideals is an ideal, and since none of the ideals in the chain
contain a finite product of primes, their union won’t either.

Therefore, by Zorn’s Lemma, S contains a maximal element J.
Now, let xy € J. If = ¢ J, then J + 2R is an ideal strictly larger than J.

If J+ xR = R then
yR=yJ +yzR=J+xyRCJ

since zy € J so xyr € J for all r € R.

However, then y € J and this implies J is prime, clearly a contradiction.

Assume J + 2R # R. Similarly, J+yR # R. Now, because J C J+ xR and J C J+yR,
J+ xR and J 4+ yR must both contain a finite product of nonzero prime ideals. If not, then
this contradicts the maximality of .J.

Therefore,
(J+a2R)(J+yR)=J+axyRCJ

and so J again contains a finite product of nonzero prime ideals.

This is again a contradiction, and so J cannot exit. Namely, S must be empty. )
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Problem 2. Describe all groups of order 130: show that every such group is isomorphic
to a direct sum of dihedral and cyclic groups of suitable orders.

Solution. Let G be a group of order 130. Note that 130 = 2 - 5 - 13. This gives one abelian

group
Za30-

By the Sylow theorem, n;3 = 1 the number of Sylow 13 subgroups. This is because
n13|2 -5 and ny3 = 1 mod 13 by the Sylow Theorems and so ni3 # 2,5, 10. Thus, ni3 = 1.

So G has a normal Sylow 13-subgroup, Pi3.

Therefore, P5P;3 is a subgroup of GG and since it has index 2, it is normal.

However, by Fall 2011: Problem 5 Claim 3, P; is normal in P;P3 so P5 is normal
in G.

(,OZPQP5 —>Aut(P13) QOZPQP5 —>Aut(P13) %’Zm. If.PQg (a), P5 = <b>, and Plgg <C>,
then the only possible non-trivial homomorphism sends (a,0) — 6 since this is the only
element of Zi, of order 2, the inversion map. Namely, we get multiplication relation,

aca™ = p(a)(c) = ¢t

This gives a possible group

G = {a,b,c|la* =0 =c"®=1,ab=ba,bc = ch,ac = c 'a).

o PoPi3 — Aut(Ps)| ¢ : PoP13 — Z4. This gives one possible homomorphisms, again,

inversion ¢(a,0) = 2.

This gives multiplication aba™' = p(a)(b) = b~! so we get

{a,b,cla® = b’ = ac = ca,bc = cb,ab = b 'a).

0 : Py — Aut(PsPi3) | ¢ : Po — Zy X Zq3. Then there are now three possible homomor-

phisms, ¢(a) = (2,0),(0,6), (2,6). Clearly the first two we will have already seen before since
they define the relations aba™! = b}, aca™ = ¢, and aba™! = b, aca™ = ¢! respectively.

Thus, the only new relation gives

G = {(a,b,c, |a* =" =c"?® =1,bc=cb,ab=b""a,ac = c 'a).

¢ : Py — Aut(PoPy3) | If PoPy3 is normal in G then we can examine ¢ : Ps — Z; X Zy3 =
Z5. Clearly, all such homomorphisms are trivial.

¢ : P13 — Aut(PyPs) | If P,Ps is normal in G then we can examine ¢ : Pjg — Zy X Zy4 =
Z4. Clearly, all such homomorphisms are trivial.

This concludes all possible groups.
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Finally, we note that

{a,b,cla® =b° = =1,ab = ba,bc = cb,ac = ¢ a) = {(a,c||a® = ¢'® = 1,ac = ¢ 'a)xZs = DogxZs
Where Dqg is the dihedral group of 26 elements. Similarly, we obtain
{a,b,cla® =b° =" ac = ca,bc = cb,ab = b~ 'a) = Dyy x Z3.
Finally, if bc = ¢b, ab = b~ 'a, ac = c¢~'a then bc is an element of order 65 since be = cb
and
abc=b"tac=b"'cla=c'v"'a=(cb) la.

Therefore, this exactly describes

{a,b,c, |a® =b° = =1,bc = cb,ab = b 'a,ac = ¢ 'a) = Dys.

Finally, we have

ZQ XZ5 XZ13

Dog X Zs

D1y X Zy3
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Problem 3. Let f(z) = 2! + 22° — 22° + 2 € Q[z]. Show that f(z) is irreducible. Let
K be the splitting field of f(z) over Q. Determine whether Gal(K/Q) is solvable.

Solution. This problem is very similar to Fall 2015: Problem 7.

f(x) is irreducible over Q by Eisenstein’s criterion with p = 2. Then p does not divide
the leading coefficient, p divides all other coefficients, and p? does not divide the constant
term.

Since irreducible implies separable in fields of characteristic 0, we have that K is the
splitting field of a separable polynomial so it is a Galois extension.

Let a, b, ¢, d be the roots of u* + 2u? — 2u + 2. Then letting © = 2® we see that the roots
of f(z) are the third roots of a, b, ¢, d.

Namely, if L is the splitting field of u* 4+ 2u? — 2u + 2, then K/L is clearly a radical
extension of L, so it suffices to check if L is a radical extension of Q.

Now, since 4u® + 4u — 2 is negative for all u < o where « € (0,1) and positive for all
u > «a, we have that u? + 2u? — 2u + 2 has a single minimum for some value between 0 and 1.

Since u? 4 2u® + 2 > 2 > 2u for any value in (0, 1), we have that u? 4+ 2u* —2u+2 >0
and so this polynomial has no real roots.

Therefore, it has two sets of complex conjugate roots, a, @ and b, b.

Since u* + 2u? — 2u + 2 is irreducible by Eisenstein with p = 2, we have that L =
Q(a,@,b,b) is also Galois over Q. Thus, H = Gal(K/L) is normal in G = Gal(K/Q) and
Gal(L/Q) = G/H.

Now, each third rood in K clearly has minimal polynomial 23 — a, 2% — b, 2® —@, 2® — b
over L. These are irreducible since factoring would force a linear term to appear over L, and
L does not contain any third roots of a, b, @, b.

So [K : L] < 3'2. Specifically, since each of these is irreducible over L, [K : L] = 3" for
some r < 12.

However, then clearly H has order 3" and so it must be solvable. This is because p-groups
have non-trivial centers, and so recursively, we could obtain a chain by examining H/Z(H),

H/Z(H)/Z(H/Z(H)), etc.

Finally, a,b, @, b all have minimal polynomial of degree 4 over Q, so [G : H] < 4%, so
G/H is solvable.

Therefore, since H is normal in G, and H is solvable and G/H is solvable, then G is
solvable. Y



Kayla Orlinsky
Spring 2016

Problem 4. Determine up to isomorphism the algebra structure of C[G] where G = S3
is the symmetric group of degree 3. (Recall that C[G] is the group algebra of G which
has basis G’ and the multiplication comes from the multiplication on G).

Solution. By Artin Wedderburn, C[S;] is semi-simple of dimension 6 so
C[Ss] = C" & (My(D))’

where D is a division ring over C.

Note that M, (D) cannot appear for n > 2 since the dimension of the algebra is 6 and
M3(D) has dimension 3% = 9. For the same reason, there can be only one copy of My (D).
Namely, b =0, 1.

Furthermore, by Frobenius, the only division ring over C is H, and since C C Z(C[S3)) is
contained in the center of the algebra (definition of algebra), we have that H cannot appear
in the decomposition. Also, D = C since any central division ring over an algebraically closed

field is the base field.

Finally, since S5 is non commutative, b = 1 and so

C[S;] = C* @ My(D).

‘ Note that this follows, since S5 has 3 conjugacy classes and so it has 3 simple components. \

Y
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Problem 5. If F'is a field and n > 1 show that for any nonconstant g € Flzy, ..., x,]
the ideal gF[z1, ..., x,] is not a maximal ideal of F[zy, ..., x,].

Solution. Let R = Flzy,...,z,] and I = (¢g) = gR. Then if R/I is a field, we have that
f + I has an inverse in R/I for all f € R.

Namely, there exists h + I such that (f +1)(h+1) = fh+1 =1+ I. Thus, there exists
r € R so
fh+gr=1¢€R.
Thus, for all f € R, there exists h,r € Rso fh+gr =1in R.
However, then I + fR = R for any f € R.

Let K be the algebraic closure of F' and J = I + fR be an ideal of R. Then by
Nullsetellensatz, 1 € J if and only if V'(J) is empty as a subset of K™.

Since we have already seen that [ + fR = R for any f € R, we have that 1 € J for any
f eR.

However, then V(J) = @ in K™ for any f € R. That is, g and f share no zeros, where f
is any polynomial.

This forces g to be a nonzero constant. ¥
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Problem 6. Let F' be a field and let P be a submodule of F[z]™. Suppose that the
quotient module M : F[z|"/P is Artinian. Show that M is finite dimensional over F.

Solution. Note that if M is finite dimensional as a module over F', then M is an F-vector
space.

Now, let (0, ...,0, 2,0, ...,0) + P be an element of M, where z is in the i** position. Then
we have a decreasing chain,

0,...,0,2,0,...,0) + P D (0,...,0,2%,0,...,0) + P > (0, ...,0,2°,0,...,0) + P D - - -

that, since M is artinian, must terminate after a finite number of steps.
Namely, (0,...,0,2™,0,...,0) € P for some m,.
Since this holds for every position of the tuple, we get that

J{(,...,0,2,0,...,0), (0, ...,0,2°,0, ..., 0), ..., (0, ..., 0, 2™ ,0, ..., 0)}

i=1

forms an F-basis for M. Since this set is clearly finite, we have that M has a finite basis
over I and so M is a finite dimensional F-vector space. ¥



