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Problem 1. Let R be a Noetherian commutative ring with 1 and I 6= 0 an ideal of R.
Show that there exist finitely many nonzero prime ideals Pi of R (not necessarily distinct)
so that ∏

i Pi ⊂ I (Hint: consider the set of ideals which are not of that form).

Solution. Let

S = {J | J does not contain a finite product of nonzero prime ideals}

the set of ideals of R not of the form described.
If S is empty, then we are done, so assume not.
Then S is partially ordered by inclusion. Furthermore, any ordered chain of elements

of S contains a maximal element in S, namely the union of all ideals in the chain. Since a
union (including infinite union) of ideals is an ideal, and since none of the ideals in the chain
contain a finite product of primes, their union won’t either.

Therefore, by Zorn’s Lemma, S contains a maximal element J .
Now, let xy ∈ J . If x /∈ J , then J + xR is an ideal strictly larger than J .
If J + xR = R then

yR = yJ + yxR = J + xyR ⊂ J

since xy ∈ J so xyr ∈ J for all r ∈ R.
However, then y ∈ J and this implies J is prime, clearly a contradiction.
Assume J +xR 6= R. Similarly, J +yR 6= R. Now, because J ⊂ J +xR and J ⊂ J +yR,

J + xR and J + yR must both contain a finite product of nonzero prime ideals. If not, then
this contradicts the maximality of J .

Therefore,
(J + xR)(J + yR) = J + xyR ⊂ J

and so J again contains a finite product of nonzero prime ideals.
This is again a contradiction, and so J cannot exit. Namely, S must be empty. �
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Problem 2. Describe all groups of order 130: show that every such group is isomorphic
to a direct sum of dihedral and cyclic groups of suitable orders.

Solution. Let G be a group of order 130. Note that 130 = 2 · 5 · 13. This gives one abelian
group

Z130.

By the Sylow theorem, n13 = 1 the number of Sylow 13 subgroups. This is because
n13|2 · 5 and n13 ≡ 1 mod 13 by the Sylow Theorems and so n13 6= 2, 5, 10. Thus, n13 = 1.

So G has a normal Sylow 13-subgroup, P13.
Therefore, P5P13 is a subgroup of G and since it has index 2, it is normal.
However, by Fall 2011: Problem 5 Claim 3, P5 is normal in P5P13 so P5 is normal

in G.
ϕ : P2P5 → Aut(P13) ϕ : P2P5 → Aut(P13) ∼= Z12. If P2 ∼= 〈a〉, P5 ∼= 〈b〉, and P13 ∼= 〈c〉,

then the only possible non-trivial homomorphism sends (a, 0) 7→ 6 since this is the only
element of Z12 of order 2, the inversion map. Namely, we get multiplication relation,
aca−1 = ϕ(a)(c) = c−1.

This gives a possible group

G ∼= 〈a, b, c | a2 = b5 = c13 = 1, ab = ba, bc = cb, ac = c−1a〉.

ϕ : P2P13 → Aut(P5) ϕ : P2P13→ Z4. This gives one possible homomorphisms, again,
inversion ϕ(a, 0) = 2.

This gives multiplication aba−1 = ϕ(a)(b) = b−1 so we get

〈a, b, c | a2 = b5 = c13, ac = ca, bc = cb, ab = b−1a〉.

ϕ : P2 → Aut(P5P13) ϕ : P2 → Z4 × Z12. Then there are now three possible homomor-
phisms, ϕ(a) = (2, 0), (0, 6), (2, 6). Clearly the first two we will have already seen before since
they define the relations aba−1 = b−1, aca−1 = c, and aba−1 = b, aca−1 = c−1 respectively.

Thus, the only new relation gives

G ∼= 〈a, b, c, | a2 = b5 = c13 = 1, bc = cb, ab = b−1a, ac = c−1a〉.

ϕ : P5 → Aut(P2P13) If P2P13 is normal in G then we can examine ϕ : P5 → Z1×Z12 ∼=
Z12. Clearly, all such homomorphisms are trivial.

ϕ : P13 → Aut(P2P5) If P2P5 is normal in G then we can examine ϕ : P13 → Z1×Z4 ∼=
Z4. Clearly, all such homomorphisms are trivial.

This concludes all possible groups.
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Finally, we note that

〈a, b, c | a2 = b5 = c13 = 1, ab = ba, bc = cb, ac = c−1a〉 ∼= 〈a, c‖ a2 = c13 = 1, ac = c−1a〉×Z5 ∼= D26×Z5.

Where D26 is the dihedral group of 26 elements. Similarly, we obtain

〈a, b, c | a2 = b5 = c13, ac = ca, bc = cb, ab = b−1a〉 ∼= D10 × Z13.

Finally, if bc = cb, ab = b−1a, ac = c−1a then bc is an element of order 65 since bc = cb
and

abc = b−1ac = b−1c−1a = c−1b−1a = (cb)−1a.

Therefore, this exactly describes

〈a, b, c, | a2 = b5 = c13 = 1, bc = cb, ab = b−1a, ac = c−1a〉 ∼= D130.

Finally, we have

Z2 × Z5 × Z13

D26 × Z5

D10 × Z13

D130

�
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Problem 3. Let f(x) = x12 + 2x6 − 2x3 + 2 ∈ Q[x]. Show that f(x) is irreducible. Let
K be the splitting field of f(x) over Q. Determine whether Gal(K/Q) is solvable.

Solution. This problem is very similar to Fall 2015: Problem 7.
f(x) is irreducible over Q by Eisenstein’s criterion with p = 2. Then p does not divide

the leading coefficient, p divides all other coefficients, and p2 does not divide the constant
term.

Since irreducible implies separable in fields of characteristic 0, we have that K is the
splitting field of a separable polynomial so it is a Galois extension.

Let a, b, c, d be the roots of u4 + 2u2 − 2u+ 2. Then letting u = x3 we see that the roots
of f(x) are the third roots of a, b, c, d.

Namely, if L is the splitting field of u4 + 2u2 − 2u + 2, then K/L is clearly a radical
extension of L, so it suffices to check if L is a radical extension of Q.

Now, since 4u3 + 4u− 2 is negative for all u < α where α ∈ (0, 1) and positive for all
u > α, we have that u4 + 2u2 − 2u+ 2 has a single minimum for some value between 0 and 1.

Since u4 + 2u2 + 2 > 2 > 2u for any value in (0, 1), we have that u4 + 2u2 − 2u+ 2 > 0
and so this polynomial has no real roots.

Therefore, it has two sets of complex conjugate roots, a, a and b, b.
Since u4 + 2u2 − 2u + 2 is irreducible by Eisenstein with p = 2, we have that L =

Q(a, a, b, b) is also Galois over Q. Thus, H = Gal(K/L) is normal in G = Gal(K/Q) and
Gal(L/Q) = G/H.

Now, each third rood in K clearly has minimal polynomial x3 − a, x3 − b, x3 − a, x3 − b
over L. These are irreducible since factoring would force a linear term to appear over L, and
L does not contain any third roots of a, b, a, b.

So [K : L] ≤ 312. Specifically, since each of these is irreducible over L, [K : L] = 3r for
some r ≤ 12.

However, then clearly H has order 3r and so it must be solvable. This is because p-groups
have non-trivial centers, and so recursively, we could obtain a chain by examining H/Z(H),
H/Z(H)/Z(H/Z(H)), etc.

Finally, a, b, a, b all have minimal polynomial of degree 4 over Q, so [G : H] ≤ 44, so
G/H is solvable.

Therefore, since H is normal in G, and H is solvable and G/H is solvable, then G is
solvable. �

4



Kayla Orlinsky
Spring 2016

Problem 4. Determine up to isomorphism the algebra structure of C[G] where G = S3
is the symmetric group of degree 3. (Recall that C[G] is the group algebra of G which
has basis G and the multiplication comes from the multiplication on G).

Solution. By Artin Wedderburn, C[S3] is semi-simple of dimension 6 so

C[S3] ∼= Ca ⊕ (M2(D))b

where D is a division ring over C.
Note that Mn(D) cannot appear for n > 2 since the dimension of the algebra is 6 and

M3(D) has dimension 32 = 9. For the same reason, there can be only one copy of M2(D).
Namely, b = 0, 1.

Furthermore, by Frobenius, the only division ring over C is H, and since C ⊂ Z(C[S3]) is
contained in the center of the algebra (definition of algebra), we have that H cannot appear
in the decomposition. Also, D = C since any central division ring over an algebraically closed
field is the base field.

Finally, since S3 is non commutative, b = 1 and so

C[S3] ∼= C2 ⊕M2(D).

Note that this follows, since S3 has 3 conjugacy classes and so it has 3 simple components.

�
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Problem 5. If F is a field and n > 1 show that for any nonconstant g ∈ F [x1, ..., xn]
the ideal gF [x1, ..., xn] is not a maximal ideal of F [x1, ..., xn].

Solution. Let R = F [x1, ..., xn] and I = (g) = gR. Then if R/I is a field, we have that
f + I has an inverse in R/I for all f ∈ R.

Namely, there exists h+ I such that (f + I)(h+ I) = fh+ I = 1 + I. Thus, there exists
r ∈ R so

fh+ gr = 1 ∈ R.

Thus, for all f ∈ R, there exists h, r ∈ R so fh+ gr = 1 in R.
However, then I + fR = R for any f ∈ R.
Let K be the algebraic closure of F and J = I + fR be an ideal of R. Then by

Nullsetellensatz, 1 ∈ J if and only if V (J) is empty as a subset of Kn.
Since we have already seen that I + fR = R for any f ∈ R, we have that 1 ∈ J for any

f ∈ R.
However, then V (J) = ∅ in Kn for any f ∈ R. That is, g and f share no zeros, where f

is any polynomial.
This forces g to be a nonzero constant. �
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Problem 6. Let F be a field and let P be a submodule of F [x]n. Suppose that the
quotient module M : F [x]n/P is Artinian. Show that M is finite dimensional over F.

Solution. Note that if M is finite dimensional as a module over F , then M is an F -vector
space.

Now, let (0, ..., 0, x, 0, ..., 0) +P be an element of M , where x is in the ith position. Then
we have a decreasing chain,

(0, ..., 0, x, 0, ..., 0) + P ⊃ (0, ..., 0, x2, 0, ..., 0) + P ⊃ (0, ..., 0, x3, 0, ..., 0) + P ⊃ · · ·

that, since M is artinian, must terminate after a finite number of steps.
Namely, (0, ..., 0, xmi , 0, ..., 0) ∈ P for some mi.
Since this holds for every position of the tuple, we get that

n⋃
i=1
{(0, ..., 0, x, 0, ..., 0), (0, ..., 0, x2, 0, ..., 0), ..., (0, ..., 0, xmi−1, 0, ..., 0)}

forms an F -basis for M . Since this set is clearly finite, we have that M has a finite basis
over F and so M is a finite dimensional F -vector space. �
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