Kayla Orlinsky Algebra Exam Spring 2016

Problem 1. Let R be a Noetherian commutative ring with 1 and $I \neq 0$ an ideal of R. Show that there exist finitely many nonzero prime ideals P_{i} of R (not necessarily distinct) so that $\prod_{i} P_{i} \subset I$ (Hint: consider the set of ideals which are not of that form).

Solution. Let

$$
S=\{J \mid J \text { does not contain a finite product of nonzero prime ideals }\}
$$

the set of ideals of R not of the form described.
If S is empty, then we are done, so assume not.
Then S is partially ordered by inclusion. Furthermore, any ordered chain of elements of S contains a maximal element in S, namely the union of all ideals in the chain. Since a union (including infinite union) of ideals is an ideal, and since none of the ideals in the chain contain a finite product of primes, their union won't either.

Therefore, by Zorn's Lemma, S contains a maximal element J.
Now, let $x y \in J$. If $x \notin J$, then $J+x R$ is an ideal strictly larger than J.
If $J+x R=R$ then

$$
y R=y J+y x R=J+x y R \subset J
$$

since $x y \in J$ so $x y r \in J$ for all $r \in R$.
However, then $y \in J$ and this implies J is prime, clearly a contradiction.
Assume $J+x R \neq R$. Similarly, $J+y R \neq R$. Now, because $J \subset J+x R$ and $J \subset J+y R$, $J+x R$ and $J+y R$ must both contain a finite product of nonzero prime ideals. If not, then this contradicts the maximality of J.

Therefore,

$$
(J+x R)(J+y R)=J+x y R \subset J
$$

and so J again contains a finite product of nonzero prime ideals.
This is again a contradiction, and so J cannot exit. Namely, S must be empty.

Problem 2. Describe all groups of order 130: show that every such group is isomorphic to a direct sum of dihedral and cyclic groups of suitable orders.

Solution. Let G be a group of order 130. Note that $130=2 \cdot 5 \cdot 13$. This gives one abelian group

$$
\mathbb{Z}_{130}
$$

By the Sylow theorem, $n_{13}=1$ the number of Sylow 13 subgroups. This is because $n_{13} \mid 2 \cdot 5$ and $n_{13} \equiv 1 \bmod 13$ by the Sylow Theorems and so $n_{13} \neq 2,5,10$. Thus, $n_{13}=1$.

So G has a normal Sylow 13-subgroup, P_{13}.
Therefore, $P_{5} P_{13}$ is a subgroup of G and since it has index 2, it is normal.
However, by Fall 2011: Problem 5 Claim 3, P_{5} is normal in $P_{5} P_{13}$ so P_{5} is normal in G.

$$
\varphi: P_{2} P_{5} \rightarrow \operatorname{Aut}\left(P_{13}\right) \varphi: P_{2} P_{5} \rightarrow \operatorname{Aut}\left(P_{13}\right) \cong \mathbb{Z}_{12} . \text { If } P_{2} \cong\langle a\rangle, P_{5} \cong\langle b\rangle, \text { and } P_{13} \cong\langle c\rangle,
$$ then the only possible non-trivial homomorphism sends $(a, 0) \mapsto 6$ since this is the only element of \mathbb{Z}_{12} of order 2 , the inversion map. Namely, we get multiplication relation, $a c a^{-1}=\varphi(a)(c)=c^{-1}$.

This gives a possible group

$$
G \cong\left\langle a, b, c \mid a^{2}=b^{5}=c^{13}=1, a b=b a, b c=c b, a c=c^{-1} a\right\rangle .
$$

$\varphi: P_{2} P_{13} \rightarrow \operatorname{Aut}\left(P_{5}\right) \varphi: P_{2} P 13 \rightarrow \mathbb{Z}_{4}$. This gives one possible homomorphisms, again, inversion $\varphi(a, 0)=2$.

This gives multiplication $a b a^{-1}=\varphi(a)(b)=b^{-1}$ so we get

$$
\left\langle a, b, c \mid a^{2}=b^{5}=c^{13}, a c=c a, b c=c b, a b=b^{-1} a\right\rangle
$$

$\varphi: P_{2} \rightarrow \operatorname{Aut}\left(P_{5} P_{13}\right) \quad \varphi: P_{2} \rightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{12}$. Then there are now three possible homomorphisms, $\varphi(a)=(2,0),(0,6),(2,6)$. Clearly the first two we will have already seen before since they define the relations $a b a^{-1}=b^{-1}, a c a^{-1}=c$, and $a b a^{-1}=b, a c a^{-1}=c^{-1}$ respectively.

Thus, the only new relation gives

$$
G \cong\left\langle a, b, c, \mid a^{2}=b^{5}=c^{13}=1, b c=c b, a b=b^{-1} a, a c=c^{-1} a\right\rangle
$$

$\varphi: P_{5} \rightarrow \operatorname{Aut}\left(P_{2} P_{13}\right)$ If $P_{2} P_{13}$ is normal in G then we can examine $\varphi: P_{5} \rightarrow \mathbb{Z}_{1} \times \mathbb{Z}_{12} \cong$ \mathbb{Z}_{12}. Clearly, all such homomorphisms are trivial.
$\varphi: P_{13} \rightarrow \operatorname{Aut}\left(P_{2} P_{5}\right)$ If $P_{2} P_{5}$ is normal in G then we can examine $\varphi: P_{13} \rightarrow \mathbb{Z}_{1} \times \mathbb{Z}_{4} \cong$ \mathbb{Z}_{4}. Clearly, all such homomorphisms are trivial.

This concludes all possible groups.

Finally, we note that
$\left\langle a, b, c \mid a^{2}=b^{5}=c^{13}=1, a b=b a, b c=c b, a c=c^{-1} a\right\rangle \cong\left\langle a, c \| a^{2}=c^{13}=1, a c=c^{-1} a\right\rangle \times \mathbb{Z}_{5} \cong D_{26} \times \mathbb{Z}_{5}$.
Where D_{26} is the dihedral group of 26 elements. Similarly, we obtain

$$
\left\langle a, b, c \mid a^{2}=b^{5}=c^{13}, a c=c a, b c=c b, a b=b^{-1} a\right\rangle \cong D_{10} \times \mathbb{Z}_{13}
$$

Finally, if $b c=c b, a b=b^{-1} a, a c=c^{-1} a$ then $b c$ is an element of order 65 since $b c=c b$ and

$$
a b c=b^{-1} a c=b^{-1} c^{-1} a=c^{-1} b^{-1} a=(c b)^{-1} a .
$$

Therefore, this exactly describes

$$
\left\langle a, b, c, \mid a^{2}=b^{5}=c^{13}=1, b c=c b, a b=b^{-1} a, a c=c^{-1} a\right\rangle \cong D_{130}
$$

Finally, we have

| $\mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{13}$ |
| :---: | :---: |
| $D_{26} \times \mathbb{Z}_{5}$ |
| |
| $D_{10} \times \mathbb{Z}_{13}$ |
| D_{130} |

Problem 3. Let $f(x)=x^{12}+2 x^{6}-2 x^{3}+2 \in \mathbb{Q}[x]$. Show that $f(x)$ is irreducible. Let K be the splitting field of $f(x)$ over \mathbb{Q}. Determine whether $\operatorname{Gal}(K / \mathbb{Q})$ is solvable.

Solution. This problem is very similar to Fall 2015: Problem 7.
$f(x)$ is irreducible over \mathbb{Q} by Eisenstein's criterion with $p=2$. Then p does not divide the leading coefficient, p divides all other coefficients, and p^{2} does not divide the constant term.

Since irreducible implies separable in fields of characteristic 0 , we have that K is the splitting field of a separable polynomial so it is a Galois extension.

Let a, b, c, d be the roots of $u^{4}+2 u^{2}-2 u+2$. Then letting $u=x^{3}$ we see that the roots of $f(x)$ are the third roots of a, b, c, d.

Namely, if L is the splitting field of $u^{4}+2 u^{2}-2 u+2$, then K / L is clearly a radical extension of L, so it suffices to check if L is a radical extension of \mathbb{Q}.

Now, since $4 u^{3}+4 u-2$ is negative for all $u<\alpha$ where $\alpha \in(0,1)$ and positive for all $u>\alpha$, we have that $u^{4}+2 u^{2}-2 u+2$ has a single minimum for some value between 0 and 1 .

Since $u^{4}+2 u^{2}+2>2>2 u$ for any value in $(0,1)$, we have that $u^{4}+2 u^{2}-2 u+2>0$ and so this polynomial has no real roots.

Therefore, it has two sets of complex conjugate roots, a, \bar{a} and b, \bar{b}.
Since $u^{4}+2 u^{2}-2 u+2$ is irreducible by Eisenstein with $p=2$, we have that $L=$ $\mathbb{Q}(a, \bar{a}, b, \bar{b})$ is also Galois over \mathbb{Q}. Thus, $H=\operatorname{Gal}(K / L)$ is normal in $G=\operatorname{Gal}(K / \mathbb{Q})$ and $\operatorname{Gal}(L / \mathbb{Q})=G / H$.

Now, each third rood in K clearly has minimal polynomial $x^{3}-a, x^{3}-b, x^{3}-\bar{a}, x^{3}-\bar{b}$ over L. These are irreducible since factoring would force a linear term to appear over L, and L does not contain any third roots of a, b, \bar{a}, \bar{b}.

So $[K: L] \leq 3^{12}$. Specifically, since each of these is irreducible over $L,[K: L]=3^{r}$ for some $r \leq 12$.

However, then clearly H has order 3^{r} and so it must be solvable. This is because p-groups have non-trivial centers, and so recursively, we could obtain a chain by examining $H / Z(H)$, $H / Z(H) / Z(H / Z(H))$, etc.

Finally, a, b, \bar{a}, \bar{b} all have minimal polynomial of degree 4 over \mathbb{Q}, so $[G: H] \leq 4^{4}$, so G / H is solvable.

Therefore, since H is normal in G, and H is solvable and G / H is solvable, then G is solvable.

Problem 4. Determine up to isomorphism the algebra structure of $\mathbb{C}[G]$ where $G=S_{3}$ is the symmetric group of degree 3 . (Recall that $\mathbb{C}[G]$ is the group algebra of G which has basis G and the multiplication comes from the multiplication on G).

Solution. By Artin Wedderburn, $\mathbb{C}\left[S_{3}\right]$ is semi-simple of dimension 6 so

$$
\mathbb{C}\left[S_{3}\right] \cong \mathbb{C}^{a} \oplus\left(M_{2}(D)\right)^{b}
$$

where D is a division ring over \mathbb{C}.
Note that $M_{n}(D)$ cannot appear for $n>2$ since the dimension of the algebra is 6 and $M_{3}(D)$ has dimension $3^{2}=9$. For the same reason, there can be only one copy of $M_{2}(D)$. Namely, $b=0,1$.

Furthermore, by Frobenius, the only division ring over \mathbb{C} is \mathbb{H}, and since $\mathbb{C} \subset Z\left(\mathbb{C}\left[S_{3}\right]\right)$ is contained in the center of the algebra (definition of algebra), we have that \mathbb{H} cannot appear in the decomposition. Also, $D=\mathbb{C}$ since any central division ring over an algebraically closed field is the base field.

Finally, since S_{3} is non commutative, $b=1$ and so

$$
\mathbb{C}\left[S_{3}\right] \cong \mathbb{C}^{2} \oplus M_{2}(D)
$$

Note that this follows, since S_{3} has 3 conjugacy classes and so it has 3 simple components.

Problem 5. If F is a field and $n>1$ show that for any nonconstant $g \in F\left[x_{1}, \ldots, x_{n}\right]$ the ideal $g F\left[x_{1}, \ldots, x_{n}\right]$ is not a maximal ideal of $F\left[x_{1}, \ldots, x_{n}\right]$.

Solution. Let $R=F\left[x_{1}, \ldots, x_{n}\right]$ and $I=(g)=g R$. Then if R / I is a field, we have that $f+I$ has an inverse in R / I for all $f \in R$.

Namely, there exists $h+I$ such that $(f+I)(h+I)=f h+I=1+I$. Thus, there exists $r \in R$ so

$$
f h+g r=1 \in R .
$$

Thus, for all $f \in R$, there exists $h, r \in R$ so $f h+g r=1$ in R.
However, then $I+f R=R$ for any $f \in R$.
Let K be the algebraic closure of F and $J=I+f R$ be an ideal of R. Then by Nullsetellensatz, $1 \in J$ if and only if $V(J)$ is empty as a subset of K^{n}.

Since we have already seen that $I+f R=R$ for any $f \in R$, we have that $1 \in J$ for any $f \in R$.

However, then $V(J)=\varnothing$ in K^{n} for any $f \in R$. That is, g and f share no zeros, where f is any polynomial.

This forces g to be a nonzero constant.

Problem 6. Let F be a field and let P be a submodule of $F[x]^{n}$. Suppose that the quotient module $M: F[x]^{n} / P$ is Artinian. Show that M is finite dimensional over F.

Solution. Note that if M is finite dimensional as a module over F, then M is an F-vector space.

Now, let $(0, \ldots, 0, x, 0, \ldots, 0)+P$ be an element of M, where x is in the $i^{t h}$ position. Then we have a decreasing chain,

$$
(0, \ldots, 0, x, 0, \ldots, 0)+P \supset\left(0, \ldots, 0, x^{2}, 0, \ldots, 0\right)+P \supset\left(0, \ldots, 0, x^{3}, 0, \ldots, 0\right)+P \supset \cdots
$$

that, since M is artinian, must terminate after a finite number of steps.
Namely, $\left(0, \ldots, 0, x^{m_{i}}, 0, \ldots, 0\right) \in P$ for some m_{i}.
Since this holds for every position of the tuple, we get that

$$
\bigcup_{i=1}^{n}\left\{(0, \ldots, 0, x, 0, \ldots, 0),\left(0, \ldots, 0, x^{2}, 0, \ldots, 0\right), \ldots,\left(0, \ldots, 0, x^{m_{i}-1}, 0, \ldots, 0\right)\right\}
$$

forms an F-basis for M. Since this set is clearly finite, we have that M has a finite basis over F and so M is a finite dimensional F-vector space.

