Kayla Orlinsky

Algebra Exam Fall 2016

Problem 1. If $R:=\mathbb{C}[x, y] /\left(y^{2}-x^{3}-1\right)$, then describe all the maximal ideals in R.

Solution. By the correspondence theorem, there is a 1-to- 1 correspondence between maximal ideals of R and maximal ideals of $\mathbb{C}[x, y]$ containing $\left(y^{2}-x^{3}-1\right)$.

By Nullstellensatz, maximal ideals of $\mathbb{C}[x, y]$ are of the form $(x-a, y-b)$ for some $a, b \in \mathbb{C}$.

Now, again by Nullstellensatz, $a, b \in \mathbb{C}$ must be such that $(a, b) \in V\left(y^{2}-x^{3}-1\right)$. Namely, the maximal ideals of R correspond exactly to $\left(a, \pm \sqrt{a^{3}+1}\right)$ where $a \in \mathbb{C}$.

Problem 2. Suppose F is a field, and $\mathfrak{b}_{n}(F)$ is the F-algebra of upper-triangular matrices, i.e., the subalgebra of $M_{n}(F)$ consisting of matrices X such that $X_{i j}=0$ when $i>j$. Describe the Jacobson radical of $\mathfrak{b}_{n}(F)$, the simple modules, and the maximal semi-simple quotient.

Solution. Let $A=\mathfrak{b}_{n}(F)$.
$J(A)$ Note that A is finite dimensional over F and so $J(A)$ is nilpotent.
Now, if $X \in J(A)$ then X is noninvertible, however, because $J(A)$ is quasi-regular, $I-X$ has a left inverse in A.

Namely, X has a 0 eigenvalue while $I-X$ does not. Since the eigenvalues of upper triangular matrices are exactly the values down the main diagonal, we get that 1 is not an eigenvalue of X, else $I-X$ has a 0 eigenvalue.

However, $a X \in J(A)$ for $a \in F$, and so if X has any non-zero eigenvalue λ then $\lambda^{-1} X \in J(A)$ has 1 as an eigenvalue. This contradicts that $I-\lambda^{-1} X$ is invertible since this matrix will have a 0 down the main diagonal.

Namely, X cannot have any non-zero eigenvalues.
Therefore, every matrix in $J(A)$ has zeros down the main diagonal.
Now, if Y is a matrix that has zeros down the main diagonal, then Y has only 0 s as an Eigenvalue so $Y^{n}=0$ by Cayley Hamilton. Thus, Y is nilpotent.

Since all nilpotent ideals are contained in $J(A)$, we have that $Y \in J(A)$.
Namely, $J(A)$ is exactly the set of strictly upper triangular matrices, or upper triangular matrices with zeros down the main diagonal.

Simple modules A simple module of A is a simple left A-module, namely a quotient of A by a maximal left ideal.

Since maximal left ideals are exactly

$$
I_{i}=\left\{X \in A \mid(X)_{i j}=0, j=1, \ldots, n\right\}
$$

namely, the matrices in A with the $i^{\text {th }}$ column zeros, we have that $A / I_{i} \cong F^{i}$ where $i=1, \ldots, n$.
Maximal Semi-simple Quotient I believe that we are being asked to find is an ideal $I \subset A$ such that the quotient A / I is semi-simple and A / I is the largest of these quotients.

This will clearly be $A / J(A)$.
Since A is artinian A / I is artinian for all ideals I (quotients of artinian rings are artinian).
Now, A / I is semi-simple if and only if A / I artinian and $J(A / I)=0$ by Artin Wedderburn.
Since there is a 1 -to- 1 correspondence between maximal ideals of A containing I and maximal ideals of A / I, we see that $J(A / I)=0$ implies that the intersection of every maximal ideal of A / I is contained in I. Therefore, the intersection of all maximal ideals containing I
is contained in I and so $J(A) \subset I$. Finally, A / I is isomorphic to a subset of $A / J(A)$ and so $A / J(A)$ is maximal.

Problem 3. Let \mathbb{F}_{5} be the finite field with 5 elements, and consider the group $G=$ $P G L_{2}\left(\mathbb{F}_{5}\right)$ (i.e., the quotient of the group of invertible 2×2 matrices over \mathbb{F}_{5} by the subgroup of scalar multiple of the identity.
(a) What is the order of G ?
(b) Describe $N_{G}(P)$ where P is a Sylow 5-subgroup of G.
(c) If $H \subset G$ is a subgroup, can H have order $15,20,30$?

Solution.

(a)

$$
\left|G L_{2}\left(\mathbb{F}_{5}\right)\right|=\left(5^{2}-1\right)\left(5^{2}-5\right)=(25-1) \cdot(25-5)=24 \cdot 20=8 \cdot 3 \cdot 5 \cdot 4=2^{5} \cdot 3 \cdot 5
$$

Now, scalar multiples of the identity is of course a subgroup of size $5-1=4$ so

$$
\left|P G L_{2}\left(\mathbb{F}_{5}\right)\right|=2^{5} \cdot 3 \cdot 5 / 2^{2}=2^{3} \cdot 3 \cdot 5=120=5!
$$

(b) Let P be a Sylow 5 -subgroup of G.

By Sylow, the number of Sylow 5 -subgroups of G, n_{5} satisfies that $n_{5} \mid 2^{3} \cdot 3$ and $n_{5} \equiv 1$ $\bmod 5$. Therefore, $n_{5}=1,6$.
Now, in G, scalar multiples of the identity are the same. Namely,

$$
\left[\begin{array}{cc}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
x a & x b \\
x c & x d
\end{array}\right] \in G \quad x \in \mathbb{F}_{5}
$$

Thus,

$$
\begin{aligned}
{\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]^{2} } & =\left[\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right] \\
{\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]^{5} } & =\left[\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right] \\
& =I
\end{aligned}
$$

Therefore,

$$
P=\left\langle\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]\right\rangle
$$

is a Sylow 5 -subgroup.
Now,

$$
\left[\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

so $\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]$ is its own inverse. However,

$$
\begin{aligned}
{\left[\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right] } & =\left[\begin{array}{ll}
0 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
3 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 0 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

which is not an element of P. Therefore, $N_{G}(P) \neq G$ so $n_{5}=6$ and

$$
\left|N_{G}(P)\right|=120 / 6=20
$$

Since the normalizers will be isomorphic by the conjugation isomoprhism (because Sylow p-subgroups are all conjugates), it suffices to examine $N_{G}(P)$ where P is the Sylow 5-subgroup given above.
Note

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]^{-1} } & =\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right] \\
& =\left[\begin{array}{ll}
2 & 4 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right] \\
& =\left[\begin{array}{lll}
2 & 1 & 0 \\
2
\end{array}\right] \\
& =\left[\begin{array}{llll}
1 & 3 & 0 & 1
\end{array}\right] \in P
\end{aligned}
$$

so $\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right] \in N_{G}(P)$.
Now,

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
0 & 3
\end{array}\right] \neq\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]
$$

so $N_{G}(P)$ is non-abelian.
Now, it is quickly verified that

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 3 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right] \in P
$$

so $\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right] \in N_{G}(P)$ and has order 4. Therefore, $N_{G}(P)$ is a non-abelian group of order 20 which Sylow 2-subgroups isomorphic to \mathbb{Z}_{4}.

Therefore, $N_{G}(P)$ is a semi-direct product.
Let $\varphi: \mathbb{Z}_{4} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{5}\right)$. Then if $\mathbb{Z}_{4} \cong\langle a\rangle$ and $\mathbb{Z}_{5} \cong\langle b\rangle, \varphi_{i}(a)=\sigma_{i} i=1,2,3$ where $\sigma_{1}(b)=b^{2}, \sigma_{2}(b)=b^{3}$ and $\sigma_{3}(b)=b^{4}$.
Clearly $\sigma_{1}^{3}=\sigma_{2}$ so $\varphi_{1}\left(a^{3}\right)=\varphi_{2}(a)$. Since $a \mapsto a^{3}$ is an isomorphism of \mathbb{Z}_{4}, the following diagram commutes and so φ_{1} and φ_{2} generate isomorphic semi-direct products.

$\langle a\rangle$
Now, this gives two possible multiplications for $N_{G}(P)$, either through φ_{1} or φ_{3}. Namely,

$$
\begin{aligned}
& N_{G}(P) \cong\left\langle a, b \mid a^{4}=b^{5}=1, a b a^{-1}=b^{2}\right\rangle \\
& N_{G}(P) \cong\left\langle a, b \mid a^{4}=b^{5}=1, a b a^{-1}=b^{4}\right\rangle
\end{aligned}
$$

Thus, we need only check if an element a of order 4 and a generator b of P satisfy $a b=b^{2} a$ or $a b=b^{-1} a$.
Since

$$
a b=\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 4 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
4 & 3 \\
0 & 2
\end{array}\right]=\left[\begin{array}{ll}
4 & 1 \\
0 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 3
\end{array}\right]=b^{2} a
$$

we have at last that

$$
N_{G}(P) \cong\left\langle a, b \mid a^{4}=b^{5}=1, a b a^{-1}=b^{2}\right\rangle
$$

***Note that $P G L_{2}\left(\mathbb{F}_{5}\right) \cong S_{5}$, so perhaps showing such an isomoprhism would allow us to reach the conclusion of (b) faster.
(c) 20 Let $H \subset G$ be a subgroup. First, $\left|N_{G}(P)\right|=20$ so $|H|=20$ is fine.

15 Now, assume that H has order 15 . Then H necessarily contains a Sylow 5 -subgroup P. However, $|H|=15$ so $n_{5} \mid 3$ and $n_{5} \equiv 1 \bmod 5$ implies that $n_{5}=1$ where n_{5} here is the number of Sylow 5 -subgroups of H. Namely, P is normal in H.

However, if $g \in G$ normalizes P, then $g \in N_{G}(P)$ by definition, thus $H \subset N_{G}(P)$. However, $\left|N_{G}(P)\right|=20$ and so it does not have any elements of order 3 , namely H cannot be a subset of $N_{G}(P)$.
Thus, H does not exist.
30 Now, let H have order 30. By the same argument as before, H cannot have only one normal Sylow 5 subgroup, and so it must contain all 6 Sylow 5 subgroups since by Sylow, $n_{5}\left|6=|H| / 5\right.$ and $n_{5} \equiv 1 \bmod 5$.
Now, we note that in $H, n_{3} \equiv 1 \bmod 3$ and $n_{3} \mid 10$. Thus, $n_{3}=1,10$. Since H contains all the Sylow 5 subgroups of G, it cannot contain 10 Sylow 3 -subgroups. Since every

Sylow 5-subgroup has order 5 and every Sylow 3-subgroup has order 3, and since by the Sylow theorems, Sylow p-subgroups are all conjugates of each other, for each p, this would force H to have $4 \cdot 6$ non-trivial elements of order 5 and $2 \cdot 10$ non-trivial elements of order 3 . Since this is $4 \cdot 6+2 \cdot 10=24+20=44$ distinct non-trivial elements and H has order 30 , we reach a contradiction.
Thus, H has one normal Sylow 3 -subgroup Q. However, then for any Sylow 5 -subgroup P of $H, P Q$ will be a subgroup of H of order 15 .
Namely, then G will have a subgroup of order 15 . Since this is not possible we are done.

Problem 4. Let A be an $n \times n$ matrix over \mathbb{Z}. Let V be the \mathbb{Z}-module of column vectors of size n over \mathbb{Z}.
(a) Prove that the size of $V / A V$ is equal to the absolute value of $\operatorname{det}(A)$ if $\operatorname{det}(A) \neq 0$.
(b) Prove that $V / A V$ is infinite if $\operatorname{det}(A)=0$.
(hint: use the theory of finitely generated modules \mathbb{Z}-modules)

Solution.

(a) We use that A has a smith normal form (since \mathbb{Z} is a PID). Namely, there exists invertible matrices P, Q so $A=P D Q$ and D is diagonal. Since P, Q are inverible over $\mathbb{Z}, \operatorname{det}(P)= \pm 1$ and $\operatorname{det}(Q)= \pm 1$.
Namely, $\operatorname{det}(A)= \pm \operatorname{det}(D)$.
Now, $V=\mathbb{Z} e_{1} \oplus \cdot \oplus \mathbb{Z} e_{n}$ where e_{i} is the standard basis vector with 1 in the $i^{\text {th }}$ position. Now, because P, Q are invertible, $Q V=V$ and $P V=V$ so

$$
A V=P D Q V=P D V=D V
$$

If

$$
D=\left[\begin{array}{ccccc}
d_{1} & 0 & \cdots & 0 & 0 \\
0 & d_{2} & \cdots & 0 & 0 \\
& \vdots & \cdots & \vdots & \\
0 & 0 & \cdots & d_{n-1} & 0 \\
0 & 0 & \cdots & 0 & d_{n}
\end{array}\right]
$$

then

$$
V / D V=\mathbb{Z} /\left(d_{1}\right) e_{1} \oplus \cdots \oplus \mathbb{Z} /\left(d_{n}\right) e_{n} \cong \mathbb{Z}_{d_{1}} e_{1} \oplus \cdots \oplus \mathbb{Z}_{d_{n}} e_{n}
$$

Namely, $|V / D V|=\left|d_{1} \cdot d_{2} \cdots \cdot d_{n}\right|=|\operatorname{det}(D)|=|\operatorname{det}(A)|$.
(b) Note that \mathbb{Z} is a PID. Thus, by the structure theorem of finitely generated modules over a PID,

$$
V=\mathbb{Z}^{n} \oplus T(V)
$$

where $T(V)$ is the torsion part of V.
Note that the rank of the free part of V has size n since there are n linearly independent vectors of length n over \mathbb{Z}, namely the standard basis vectors.
If $\operatorname{det}(A)=0$, then the columns of A cannot span \mathbb{Z}^{n}.
Therefore,

$$
A V=\mathbb{Z}^{m} \oplus T(A V)
$$

where $m<n$ and $T(A V)$ is the torsion part of $A V$. Namely, $V / A V$ will have at least one copy of \mathbb{Z} in its decomposition. Namely, it will be infinite.
Again, this follows since $\operatorname{rank}(V / A V)=\operatorname{rank}(V)-\operatorname{rank}(A V)>0$.

Problem 5. Let V be a finite dimensional right module over a division ring D. Let W be a D-submodule of V.
(a) Let $I(W)=\left\{f \in \operatorname{End}_{D}(V) \mid f(W)=0\right\}$. Prove that $I(W)$ is a left ideal of $\operatorname{End}(V)$.
(b) Prove that any left ideal of $\operatorname{End}_{D}(V)$ is $I(W)$ for some submodule W.

Solution.

(a) $I(W)$ is nonempty, it contains the 0 map. Let $f, g \in I(W)$ then by linearity, $(f-$ $g)(W)=f(W)-g(W)=0+0=0$ so $f-g \in I(W)$. Thus, $I(W)$ is closed as an additive abelian group.
Now, let $h \in \operatorname{End}(V)$. Then "multiplication" is actually composition in $\operatorname{End}(V)$ so if $f \in I(W)$ then

$$
(h f)(W)=(h \circ f)(W)=h(f(W))=h(0)=0
$$

because h is an endomorphism and so preserves the origin.
Thus, $h f \in I(W)$ so $I(W)$ is a left ideal.
(b) Let J be any left ideal of $\operatorname{End}_{D}(V)$. Note that V is finite dimensional so there exists $v_{i} \in V$ so

$$
V=v_{1} D+\cdots v_{n} D
$$

Let

$$
W=\bigcap_{f \in J} \operatorname{ker}(f)
$$

Note that $0 \in W$ so W is nonempty. Then, $W \subset V$. If $x, y \in W$ and $f \in J$ then

$$
f(x-y)=f(x)-f(y)=0-0=0
$$

so $x-y \in W$.
If $a \in D$ then

$$
f(a x)=a f(x)=0
$$

so $a x \in W$.
Now, clearly $J \subset I(W)$ since every $f \in J$ satisfies that $f(W)=0$.
Let $g \in I(W)$.
Let $f_{i} \in J$ such that $f_{i}\left(v_{i}\right) \neq 0$. Note that if $f\left(v_{i}\right)=0$ for all $f \in J$, then $v_{i} \in W$ so $g\left(v_{i}\right)=0$.
Now, let $h_{i} \in \operatorname{End}(V)$ such that $h_{i}\left(f\left(v_{i}\right)\right)=g\left(v_{i}\right)$ and $h_{i}\left(f\left(v_{j}\right)\right)=0$ for all $j \neq i$. If $g\left(v_{i}\right)=0$ then take $h_{i} \equiv 0$.

Let $x \in V$, then

$$
x=\sum_{i=1}^{n} a_{i} v_{i} \quad a_{i} \in D .
$$

Thus,

$$
\begin{aligned}
\sum_{j=1}^{n}\left(h_{j} \circ f_{j}\right)(x) & =\sum_{j=1}^{n}\left(h_{j} \circ f_{j}\right)\left(\sum_{i=1}^{n} a_{i} v_{i}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n}\left(h_{j} \circ f_{j}\right)\left(a_{i} v_{i}\right) \\
& =\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i} h_{j}\left(f_{j}\left(v_{i}\right)\right) \\
& =\sum_{j=1}^{n} a_{j} h_{j}\left(f_{j}\left(v_{j}\right)\right) \\
& =\sum_{j=1}^{n} a_{j} g\left(v_{j}\right) \\
& =g\left(\sum_{j=1}^{n} a_{j} v_{j}\right) \\
& =g(x)
\end{aligned}
$$

Therefore,

$$
g=\sum_{j=1}^{n}\left(h_{j} \circ f_{j}\right) \in J
$$

so $I(W) \subset J$.

Problem 6. Let p and q be distinct primes. Let F be the subfield of \mathbb{C} generated by the $p q$-roots of unity. Let a, b be squarefree integers all greater than 1 . Let $c, d \in \mathbb{C}$ with $c^{p}=a$ and $d^{q}=b$. Let $K=F(c, d)$.
(a) Show that K / \mathbb{Q} is a Galois extension.
(b) Describe the Galois group K / F
(c) Show that any intermediate field $F \subset L \subset K$ satisfies $L=F(S)$ where S is some subset of $\{c, d\}$.

Solution.

(a) Let ξ be a primitive $p q^{\text {th }}$-root of unity in F. Then

$$
\xi^{p q}=\left(\xi^{p}\right)^{q}=1
$$

so F contains a primitive $p^{\text {th }}$-root of unity as well. Similarly, it contains a primitive $q^{\text {th }}$ root of unity.

We claim that K is the splitting field of $f(x)=\left(x^{p}-a\right)\left(x^{q}-b\right)$. Clearly c, d satisfy these polynomials. Now, if α is a root of $f(x)$, then $\alpha^{p}=a$, or $\alpha^{q}=b$. Thus, $\alpha=c\left(\xi^{q}\right)^{t}$ or $d\left(\xi^{p}\right)^{s}$ for some t or some s so $\alpha \in K$.
Thus, $f(x)$ splits completely over K so K is the splitting field of a separable polynomial over \mathbb{Q} so K / \mathbb{Q} is Galois.
(b) Since $[K: \mathbb{Q}] \leq p q$, and

$$
[K: \mathbb{Q}]=[K: F(c)][F(c): \mathbb{Q}]=[K: F(c)] p
$$

and

$$
[K: \mathbb{Q}]=[K: F(d)][F(d): \mathbb{Q}]=[K: F(d)] q
$$

we have that $[K: \mathbb{Q}]=p q$.
Thus, $G=\operatorname{Gal}(K / \mathbb{Q})$ has order $p q$. WLOG, take $p<q$.
Now, let $\sigma, \tau \in G$ be defined by $\sigma(c)=c \xi^{q}$ and $\sigma(d)=d$, and $\tau(c)=c$ and $\tau(d)=d \xi^{p}$. Then σ clearly has order p and τ has order q.
Furthermore, σ and τ commute so any permutation of the roots of $f(x)$ will be given by some power of σ and τ.
Specifically, the map $c \mapsto c\left(\xi^{q}\right)^{i}$ and $d \mapsto d\left(\xi^{p}\right)^{j}$ is given by $\sigma^{i} \tau^{j}$.
Therefore, G is abelian and so it is isomoprhic to $\mathbb{Z}_{p q}$.
(c) By the Galois correspondence theorem, each intermediate field $F \subset L \subset K$ corresponds to a subgroup H of G where $|H|=[K: L]$. Since if $H \neq G,\{e\}$, we have that $|H|=p, q$, we have that $[K: L]=p, q$.
Since G is abelian, there are exactly two nontrivial proper subgroups H of order p and q. Therefore, there are two field extensions of F contained strictly in K. Since $F(c)$ and $F(d)$ are two such extensions, these must be the only two.

