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Problem 1. If R := C[x, y]/(y2 − x3 − 1), then describe all the maximal ideals in R.

Solution. By the correspondence theorem, there is a 1-to-1 correspondence between maximal
ideals of R and maximal ideals of C[x, y] containing (y2 − x3 − 1).

By Nullstellensatz, maximal ideals of C[x, y] are of the form (x − a, y − b) for some
a, b ∈ C.

Now, again by Nullstellensatz, a, b ∈ C must be such that (a, b) ∈ V (y2−x3−1). Namely,
the maximal ideals of R correspond exactly to (a,±

√
a3 + 1) where a ∈ C. �
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Problem 2. Suppose F is a field, and bn(F ) is the F -algebra of upper-triangular
matrices, i.e., the subalgebra of Mn(F ) consisting of matrices X such that Xij = 0 when
i > j. Describe the Jacobson radical of bn(F ), the simple modules, and the maximal
semi-simple quotient.

Solution. Let A = bn(F ).

J(A) Note that A is finite dimensional over F and so J(A) is nilpotent.

Now, if X ∈ J(A) then X is noninvertible, however, because J(A) is quasi-regular, I−X
has a left inverse in A.

Namely, X has a 0 eigenvalue while I − X does not. Since the eigenvalues of upper
triangular matrices are exactly the values down the main diagonal, we get that 1 is not an
eigenvalue of X, else I −X has a 0 eigenvalue.

However, aX ∈ J(A) for a ∈ F , and so if X has any non-zero eigenvalue λ then
λ−1X ∈ J(A) has 1 as an eigenvalue. This contradicts that I − λ−1X is invertible since this
matrix will have a 0 down the main diagonal.

Namely, X cannot have any non-zero eigenvalues.
Therefore, every matrix in J(A) has zeros down the main diagonal.
Now, if Y is a matrix that has zeros down the main diagonal, then Y has only 0s as an

Eigenvalue so Y n = 0 by Cayley Hamilton. Thus, Y is nilpotent.
Since all nilpotent ideals are contained in J(A), we have that Y ∈ J(A).
Namely, J(A) is exactly the set of strictly upper triangular matrices, or upper triangular

matrices with zeros down the main diagonal.
Simple modules A simple module of A is a simple left A-module, namely a quotient of

A by a maximal left ideal.
Since maximal left ideals are exactly

Ii = {X ∈ A | (X)ij = 0, j = 1, ..., n}

namely, the matrices in A with the ith column zeros, we have that A/Ii
∼= F i where i = 1, ..., n.

Maximal Semi-simple Quotient I believe that we are being asked to find is an ideal
I ⊂ A such that the quotient A/I is semi-simple and A/I is the largest of these quotients.

This will clearly be A/J(A).
Since A is artinian A/I is artinian for all ideals I (quotients of artinian rings are artinian).
Now, A/I is semi-simple if and only if A/I artinian and J(A/I) = 0 by Artin Wedderburn.
Since there is a 1-to-1 correspondence between maximal ideals of A containing I and

maximal ideals of A/I, we see that J(A/I) = 0 implies that the intersection of every maximal
ideal of A/I is contained in I. Therefore, the intersection of all maximal ideals containing I
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is contained in I and so J(A) ⊂ I. Finally, A/I is isomorphic to a subset of A/J(A) and so
A/J(A) is maximal.

�

3



Kayla Orlinsky
Fall 2016

Problem 3. Let F5 be the finite field with 5 elements, and consider the group G =
PGL2(F5) (i.e., the quotient of the group of invertible 2 × 2 matrices over F5 by the
subgroup of scalar multiple of the identity.

(a) What is the order of G?

(b) Describe NG(P ) where P is a Sylow 5-subgroup of G.

(c) If H ⊂ G is a subgroup, can H have order 15, 20, 30?

Solution.

(a)

|GL2(F5)| = (52 − 1)(52 − 5) = (25− 1) · (25− 5) = 24 · 20 = 8 · 3 · 5 · 4 = 25 · 3 · 5.

Now, scalar multiples of the identity is of course a subgroup of size 5− 1 = 4 so

|PGL2(F5)| = 25 · 3 · 5/22 = 23 · 3 · 5 = 120 = 5!

(b) Let P be a Sylow 5-subgroup of G.
By Sylow, the number of Sylow 5-subgroups of G, n5 satisfies that n5|23 · 3 and n5 ≡ 1
mod 5. Therefore, n5 = 1, 6.
Now, in G, scalar multiples of the identity are the same. Namely,[

a b
c d

]
=
[
xa xb
xc xd

]
∈ G x ∈ F5.

Thus, [
2 4
0 2

]2

=
[
4 1
0 4

]
[
2 4
0 2

]5

=
[
4 1
0 4

] [
4 1
0 4

] [
2 4
0 2

]

=
[
1 3
0 1

] [
2 4
0 2

]

=
[
2 0
0 2

]
= I

Therefore,

P =
〈[

2 4
0 2

]〉
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is a Sylow 5-subgroup.
Now, [

0 2
3 0

] [
0 2
3 0

]
=
[
1 0
0 1

]

so
[
0 2
3 0

]
is its own inverse. However,

[
0 2
3 0

] [
2 4
0 2

] [
0 2
3 0

]
=
[
0 4
1 2

] [
0 2
3 0

]

=
[
2 0
1 2

]

which is not an element of P . Therefore, NG(P ) 6= G so n5 = 6 and

|NG(P )| = 120/6 = 20.

Since the normalizers will be isomorphic by the conjugation isomoprhism (because
Sylow p-subgroups are all conjugates), it suffices to examine NG(P ) where P is the
Sylow 5-subgroup given above.
Note [

1 0
0 4

] [
2 4
0 2

] [
1 0
0 4

]−1

=
[
1 0
0 4

] [
2 4
0 2

] [
1 0
0 4

]

=
[
2 4
0 3

] [
1 0
0 4

]
=
[
2 1 0 2

]
=
[
1 3 0 1

]
∈ P

so
[
1 0
0 4

]
∈ NG(P ).

Now, [
1 0
0 4

] [
2 4
0 2

]
=
[
2 4
0 3

]
6=
[
2 4
0 2

] [
1 0
0 4

]
=
[
2 1
0 3

]

so NG(P ) is non-abelian.
Now, it is quickly verified that[

1 0
0 3

] [
2 4
0 2

] [
1 0
0 2

]
=
[
2 4
0 1

] [
1 0
0 2

]
=
[
2 3
0 2

]
=
[
4 1
0 4

]
∈ P

so
[
1 0
0 3

]
∈ NG(P ) and has order 4. Therefore, NG(P ) is a non-abelian group of order

20 which Sylow 2-subgroups isomorphic to Z4.
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Therefore, NG(P ) is a semi-direct product.
Let ϕ : Z4 → Aut(Z5). Then if Z4 ∼= 〈a〉 and Z5 ∼= 〈b〉, ϕi(a) = σi i = 1, 2, 3 where
σ1(b) = b2, σ2(b) = b3 and σ3(b) = b4.
Clearly σ3

1 = σ2 so ϕ1(a3) = ϕ2(a). Since a 7→ a3 is an isomorphism of Z4, the following
diagram commutes and so ϕ1 and ϕ2 generate isomorphic semi-direct products.

〈a〉 Aut(Z5)

〈a〉

a7→a3

ϕ2

ϕ1

Now, this gives two possible multiplications for NG(P ), either through ϕ1 or ϕ3. Namely,

NG(P ) ∼= 〈a, b | a4 = b5 = 1, aba−1 = b2〉

NG(P ) ∼= 〈a, b | a4 = b5 = 1, aba−1 = b4〉

Thus, we need only check if an element a of order 4 and a generator b of P satisfy
ab = b2a or ab = b−1a.
Since

ab =
[
1 0
0 3

] [
2 4
0 2

]
=
[
2 4
0 1

]
=
[
4 3
0 2

]
=
[
4 1
0 4

] [
1 0
0 3

]
= b2a

we have at last that

NG(P ) ∼= 〈a, b | a4 = b5 = 1, aba−1 = b2〉

***Note that PGL2(F5) ∼= S5, so perhaps showing such an isomoprhism would
allow us to reach the conclusion of (b) faster.

(c) 20 Let H ⊂ G be a subgroup. First, |NG(P )| = 20 so |H| = 20 is fine.
15 Now, assume that H has order 15. Then H necessarily contains a Sylow 5-subgroup
P. However, |H| = 15 so n5|3 and n5 ≡ 1 mod 5 implies that n5 = 1 where n5 here is
the number of Sylow 5-subgroups of H. Namely, P is normal in H.
However, if g ∈ G normalizes P, then g ∈ NG(P ) by definition, thus H ⊂ NG(P ).
However, |NG(P )| = 20 and so it does not have any elements of order 3, namely H
cannot be a subset of NG(P ).
Thus, H does not exist.
30 Now, let H have order 30. By the same argument as before, H cannot have only
one normal Sylow 5 subgroup, and so it must contain all 6 Sylow 5 subgroups since by
Sylow, n5|6 = |H|/5 and n5 ≡ 1 mod 5.
Now, we note that in H, n3 ≡ 1 mod 3 and n3|10. Thus, n3 = 1, 10. Since H contains
all the Sylow 5 subgroups of G, it cannot contain 10 Sylow 3-subgroups. Since every
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Sylow 5-subgroup has order 5 and every Sylow 3-subgroup has order 3, and since by
the Sylow theorems, Sylow p-subgroups are all conjugates of each other, for each p, this
would force H to have 4 · 6 non-trivial elements of order 5 and 2 · 10 non-trivial elements
of order 3. Since this is 4 · 6 + 2 · 10 = 24 + 20 = 44 distinct non-trivial elements and H
has order 30, we reach a contradiction.
Thus, H has one normal Sylow 3-subgroup Q. However, then for any Sylow 5-subgroup
P of H, PQ will be a subgroup of H of order 15.
Namely, then G will have a subgroup of order 15. Since this is not possible we are done.

�
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Problem 4. Let A be an n × n matrix over Z. Let V be the Z-module of column
vectors of size n over Z.

(a) Prove that the size of V/AV is equal to the absolute value of det(A) if det(A) 6= 0.

(b) Prove that V/AV is infinite if det(A) = 0.

(hint: use the theory of finitely generated modules Z-modules)

Solution.

(a) We use that A has a smith normal form (since Z is a PID). Namely, there exists
invertible matrices P,Q so A = PDQ and D is diagonal. Since P,Q are inverible over
Z, det(P ) = ±1 and det(Q) = ±1.
Namely, det(A) = ± det(D).
Now, V = Ze1 ⊕ ·⊕Zen where ei is the standard basis vector with 1 in the ith position.
Now, because P,Q are invertible, QV = V and PV = V so

AV = PDQV = PDV = DV.

If

D =



d1 0 · · · 0 0
0 d2 · · · 0 0

... · · · ...
0 0 · · · dn−1 0
0 0 · · · 0 dn


then

V/DV = Z/(d1)e1 ⊕ · · · ⊕ Z/(dn)en
∼= Zd1e1 ⊕ · · · ⊕ Zdnen.

Namely, |V/DV | = |d1 · d2 · · · · · dn| = | det(D)| = | det(A)|.

(b) Note that Z is a PID. Thus, by the structure theorem of finitely generated modules
over a PID,

V = Zn ⊕ T (V )

where T (V ) is the torsion part of V.
Note that the rank of the free part of V has size n since there are n linearly independent
vectors of length n over Z, namely the standard basis vectors.
If det(A) = 0, then the columns of A cannot span Zn.
Therefore,

AV = Zm ⊕ T (AV )
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where m < n and T (AV ) is the torsion part of AV. Namely, V/AV will have at least
one copy of Z in its decomposition. Namely, it will be infinite.
Again, this follows since rank(V/AV ) =rank(V )−rank(AV ) > 0.

�
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Problem 5. Let V be a finite dimensional right module over a division ring D. Let W
be a D-submodule of V .

(a) Let I(W ) = {f ∈ EndD(V ) | f(W ) = 0}. Prove that I(W ) is a left ideal of End(V ).

(b) Prove that any left ideal of EndD(V ) is I(W ) for some submodule W .

Solution.

(a) I(W ) is nonempty, it contains the 0 map. Let f, g ∈ I(W ) then by linearity, (f −
g)(W ) = f(W ) − g(W ) = 0 + 0 = 0 so f − g ∈ I(W ). Thus, I(W ) is closed as an
additive abelian group.
Now, let h ∈ End(V ). Then “multiplication” is actually composition in End(V ) so if
f ∈ I(W ) then

(hf)(W ) = (h ◦ f)(W ) = h(f(W )) = h(0) = 0

because h is an endomorphism and so preserves the origin.
Thus, hf ∈ I(W ) so I(W ) is a left ideal.

(b) Let J be any left ideal of EndD(V ). Note that V is finite dimensional so there exists
vi ∈ V so

V = v1D + · · · vnD.

Let
W =

⋂
f∈J

ker(f).

Note that 0 ∈ W so W is nonempty. Then, W ⊂ V. If x, y ∈ W and f ∈ J then

f(x− y) = f(x)− f(y) = 0− 0 = 0

so x− y ∈ W.
If a ∈ D then

f(ax) = af(x) = 0

so ax ∈ W.
Now, clearly J ⊂ I(W ) since every f ∈ J satisfies that f(W ) = 0.
Let g ∈ I(W ).
Let fi ∈ J such that fi(vi) 6= 0. Note that if f(vi) = 0 for all f ∈ J , then vi ∈ W so
g(vi) = 0.
Now, let hi ∈ End(V ) such that hi(f(vi)) = g(vi) and hi(f(vj)) = 0 for all j 6= i. If
g(vi) = 0 then take hi ≡ 0.
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Let x ∈ V , then
x =

n∑
i=1

aivi ai ∈ D.

Thus,
n∑

j=1
(hj ◦ fj)(x) =

n∑
j=1

(hj ◦ fj)
(

n∑
i=1

aivi

)

=
n∑

j=1

n∑
i=1

(hj ◦ fj)(aivi)

=
n∑

j=1

n∑
i=1

aihj(fj(vi))

=
n∑

j=1
ajhj(fj(vj))

=
n∑

j=1
ajg(vj)

= g

 n∑
j=1

ajvj


= g(x)

Therefore,
g =

n∑
j=1

(hj ◦ fj) ∈ J

so I(W ) ⊂ J.

�
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Problem 6. Let p and q be distinct primes. Let F be the subfield of C generated by
the pq-roots of unity. Let a, b be squarefree integers all greater than 1. Let c, d ∈ C with
cp = a and dq = b. Let K = F (c, d).

(a) Show that K/Q is a Galois extension.

(b) Describe the Galois group K/F

(c) Show that any intermediate field F ⊂ L ⊂ K satisfies L = F (S) where S is some
subset of {c, d}.

Solution.

(a) Let ξ be a primitive pqth-root of unity in F . Then

ξpq = (ξp)q = 1

so F contains a primitive pth-root of unity as well. Similarly, it contains a primitive qth

root of unity.
We claim that K is the splitting field of f(x) = (xp − a)(xq − b). Clearly c, d satisfy
these polynomials. Now, if α is a root of f(x), then αp = a, or αq = b. Thus, α = c(ξq)t

or d(ξp)s for some t or some s so α ∈ K.
Thus, f(x) splits completely over K so K is the splitting field of a separable polynomial
over Q so K/Q is Galois.

(b) Since [K : Q] ≤ pq, and

[K : Q] = [K : F (c)][F (c) : Q] = [K : F (c)]p

and
[K : Q] = [K : F (d)][F (d) : Q] = [K : F (d)]q

we have that [K : Q] = pq.

Thus, G = Gal(K/Q) has order pq. WLOG, take p < q.
Now, let σ, τ ∈ G be defined by σ(c) = cξq and σ(d) = d, and τ(c) = c and τ(d) = dξp.
Then σ clearly has order p and τ has order q.
Furthermore, σ and τ commute so any permutation of the roots of f(x) will be given
by some power of σ and τ.
Specifically, the map c 7→ c(ξq)i and d 7→ d(ξp)j is given by σiτ j.

Therefore, G is abelian and so it is isomoprhic to Zpq.
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(c) By the Galois correspondence theorem, each intermediate field F ⊂ L ⊂ K corresponds
to a subgroup H of G where |H| = [K : L]. Since if H 6= G, {e}, we have that |H| = p, q,
we have that [K : L] = p, q.

Since G is abelian, there are exactly two nontrivial proper subgroups H of order p and
q. Therefore, there are two field extensions of F contained strictly in K. Since F (c)
and F (d) are two such extensions, these must be the only two.

�
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