Kayla Orlinsky
 Algebra Exam Spring 2015

Problem 1. Use Sylow's theorems and other results to describe, up to isomorphism, the possible structures of a group of order 1005.

Solution. Let G be a group of order $1005=3 \cdot 5 \cdot 67$. By Sylow, $n_{67} \mid 15$ and $n_{67} \equiv 1 \bmod 67$ so clearly $n_{67}=1$.

Now, we examine the cases.
Abelian Then $G \cong \mathbb{Z}_{1005}$.
Let P_{67}, P_{5}, P_{3} be Sylow $67,5,3$-subgroups respectively. Now, by the recognizing semidirect products theorem. Since P_{67} is normal, $P_{3} P_{67}$ and $P_{5} P_{67}$ are subgroups of G, and since

$$
\left|P_{3} P_{5} P_{67}\right|=3 \cdot 5 \cdot 67 /\left|P_{3} \cap\left(P_{5} P_{67}\right)\right|=1005=|G|
$$

we have that G is a semi-direct product of its Sylow subgroups.
Since $P_{5} P_{67}$ is a subgroup and has index 3 which is the smallest prime dividing the order of the group (see Spring 2010: Problem 2 Claim 1).

Therefore, $P_{5} P_{67}$ is normal in G. Now, since P_{5} is also a Sylow p-subgroup of $P_{5} P_{67}$ and $n_{5}=1$ in $P_{5} P_{67}$ by Sylow. Therefore, by Fall 2011: Problem 5 Claim 3, P_{5} is also normal in G.

Finally, we have that $P_{3} P_{5}$ is a subgroup of G and so to determine possible structures of G as a semi-direct product, we need only look at three homomorphisms.
$\varphi: P_{3} P_{5} \rightarrow \operatorname{Aut}\left(P_{67}\right)$ Since $P_{3} P_{5}$ is of order $p q$ where $p \nmid(q-1)$, we have that $P_{3} P_{5} \cong$ \mathbb{Z}_{15}.

Furthermore, $\operatorname{Aut}\left(P_{67}\right) \cong \mathbb{Z}_{66}$.
Thus, if $P_{3} \cong\langle a\rangle, P_{5} \cong\langle b\rangle$, and $P_{67} \cong\langle c\rangle$, we have that $\varphi(b)=$ Id since 5 does not divide the order of \mathbb{Z}_{66} and $\varphi(a)=\alpha$ where α has order 3 .

Since \mathbb{Z}_{66} is abelian and $66=2 \cdot 3 \cdot 11$, there are exactly two non-trivial options for α. Note that one will be the square of the other. Namely, if $\varphi_{1}(a)=\alpha$ and $\varphi_{2}(a)=\alpha^{2}$, then $\varphi_{1}\left(a^{2}\right)=\varphi_{2}(a)$ and since $a \mapsto a^{2}$ is an automorphism of \mathbb{Z}_{3}, these will generate isomorphic semi-direct products.

Thus, we need only find one element of order 3 in \mathbb{Z}_{66}.
This element is given by $\alpha: \mathbb{Z}_{67} \rightarrow \mathbb{Z}_{67}$ defined by $\alpha(c)=c^{29}$.
Once can check that

$$
\alpha^{3}(c)=\alpha^{2}\left(c^{29}\right)=\alpha\left(c^{37}\right)=c
$$

Therefore, we obtain a possible multiplication for G given by $b c b^{-1}=\varphi(b)(c)=c$ and $a c a^{-1}=\varphi(a)(c)=c^{29}$ 。

Thus,

$$
G \cong\left\langle a, b, c \mid a^{3}=b^{5}=c^{67}=1, a b=b a, b c=c b, a c=c^{29} a\right\rangle .
$$

$\varphi: P_{3} P_{67} \rightarrow \operatorname{Aut}\left(P_{5}\right)$ Since P_{5} is normal, we can check $\varphi: P_{3} P_{67} \rightarrow P_{5}$, however $\operatorname{Aut}\left(P_{5}\right) \cong \mathbb{Z}_{4}$ and $P_{3} P_{67}$ have no elements of order 2 or 4 , so only the trivial homomorphism is possible.
$\varphi: P_{3} \rightarrow \operatorname{Aut}\left(P_{5} P_{67}\right)$ since 5 and 67 are coprime, $\operatorname{Aut}\left(P_{5} P_{67}\right) \cong \mathbb{Z}_{4} \times \mathbb{Z}_{66}$. However, since there are no elements in \mathbb{Z}_{4} of order 3, the only possible non-trivial homomorphisms will generate the same multiplication as the first case.

Therefore, there are only two groups of order 1005.

$$
\left\langle a, b, c \mid a^{3}=b^{5}=c^{67}=1, a b=b a, b c=c b, a c=c^{29} a\right\rangle \cong \mathbb{Z}_{3} \rtimes_{\varphi} \mathbb{Z}_{67} \times \mathbb{Z}_{5}
$$

Problem 2. Let R be a commutative ring with 1 . Let M, N and V be R-modules.
(a) Show that if M and N are projective, then so is $M \otimes_{R} N$.
(b) Let $\operatorname{tr}(V)=\left\{\sum_{i} \varphi_{i}\left(v_{i}\right) \mid \varphi \in \operatorname{Hom}_{R}(V, R), v_{i} \in V\right\} \subset R$. If $1 \in \operatorname{tr}(V)$, show that up to isomorphism, R is a direct summand of V^{k} for some k.

Solution.

(a) Since M and N are projective, there exists A, B, R-modules such that

$$
M \oplus A \cong R^{m} \quad N \oplus B \cong R^{n}
$$

where $R^{m} \cong \bigoplus_{i=1}^{m} R_{i}$ and R^{n} are free modules of dimension m and n respectively. Thus,

$$
\begin{align*}
\left(M \otimes_{R} N\right) \oplus\left[\left(A \otimes_{R} N\right) \oplus B^{m}\right] & =\left[(M \oplus A) \otimes_{R} N\right] \oplus B^{m} \\
& =\left[R^{m} \otimes_{R} N\right] \oplus B^{m} \\
& =\left[(R \oplus R \oplus \cdots \oplus R) \otimes_{R} N\right] \oplus B^{m} \\
& =[N \oplus N \oplus \cdots \oplus N] \oplus B^{m} \tag{1}\\
& =(N \oplus B) \oplus(N \oplus B) \oplus \cdots \oplus(N \oplus B) \\
& =R^{n} \oplus R^{n} \oplus \cdots \oplus R^{n} \\
& =R^{n m}
\end{align*}
$$

with (1) because $R \otimes_{R} N=N$. Therefore, $M \otimes_{R} N$ is the summand of a free module so it is projective.
(b) Let

$$
\operatorname{tr}(V)=\left\{\sum_{i} \varphi_{i}\left(v_{i}\right) \mid \varphi \in \operatorname{Hom}_{R}(V, R), v_{i} \in V\right\} \subset R
$$

Now, we note that $\operatorname{tr}(V)=\sum \varphi(V)$ where the sum is taken over all $\varphi \in \operatorname{hom}_{R}(V, R)$. Furthermore, because φ is homomorphism, it is easily verified that $\varphi(V)$ is an ideal of R for all φ.
Now, $\operatorname{tr}(V)$ is an ideal of R since it is clearly closed under addition and for any $r \in R$,

$$
r \sum_{i} \varphi_{i}\left(v_{i}\right)=\sum_{i} \varphi_{i}\left(r v_{i}\right) \in \operatorname{tr}(V)
$$

since the φ are homomorphisms and $r v_{i} \in V$ since V is an R-modules. This gives that $\operatorname{tr}(V)$ is a left ideal and since R is commutative it will be a right ideal as well.
Therefore, if $1 \in \operatorname{tr}(V)$ then $\operatorname{tr}(V)=R$. Thus, there exists finitely many $\varphi_{i} \in$ $\operatorname{Hom}_{R}(V, R)$ and $v_{i} \in V$ such that

$$
1=\varphi_{1}\left(v_{1}\right)+\cdots+\varphi_{k}\left(v_{k}\right) \quad k \text { minimal. }
$$

Namely, for every $r \in R$, there exists $w_{j} \in V$ such that

$$
r=\varphi_{1}\left(w_{1}\right)+\cdots+\varphi_{k}\left(w_{k}\right)
$$

Now, because k is minimal, if

$$
r \in \varphi_{i}(V) \cap \bigoplus_{j \neq i} \varphi_{j}(V)
$$

then

$$
r=\varphi_{i}\left(w_{i}\right)=\sum_{j \neq i} \varphi_{j}\left(w_{j}\right)
$$

Thus, we can define

$$
\begin{aligned}
f: V^{k} & \rightarrow R \\
\left(w_{1}, \ldots, w_{k}\right) & \mapsto \sum_{i=1}^{k} \varphi_{i}\left(w_{i}\right)
\end{aligned}
$$

which we have already found to be surjective.
Therefore, we have a short exact sequence

$$
0 \longrightarrow \operatorname{ker}(f) \longrightarrow V^{k} \longrightarrow R \longrightarrow 0
$$

However, R is a free module over itself, so R is projective. Therefore, the above short exact sequence is split and so by the splitting lemma,

$$
V^{k} \cong R \oplus \operatorname{ker}(f)
$$

Therefore, R is a direct summand of V^{k}.

Problem 3. Let F be a field and M a maximal ideal of $F\left[x_{1}, \ldots, x_{n}\right]$. Let K be an algebraic closure of F. Show that M is contained in at least 1 and in only finitely many maximal ideals of $K\left[x_{1}, \ldots, x_{n}\right]$.

Solution. First, by generalized Nullstellensatz, $V(M) \neq \varnothing$ as a subset of K^{n}, since M is maximal in $F\left[x_{1}, \ldots, x_{n}\right]$ so $1 \notin M$.

Namely, there exists $\left(a_{1}, \ldots, a_{n}\right) \in K^{n}$ such that $\left(a_{1}, \ldots, a_{n}\right) \in V(M)$.
Therefore, again by Nullstellensatz, for every $f \in M$, there exists m such that $f^{m} \in$ $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ which is a maximal ideal of $K\left[x_{1}, \ldots, x_{n}\right]$.

However, maximal ideals are prime, and so inductively, we get that $f \in\left(x_{1}-a_{1}, \ldots, x_{n}-\right.$ $\left.a_{n}\right)$. Therefore, $M \subset\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ so M is contained in at least one maximal ideal.

Next, we prove a claim about $L=F\left[x_{1}, \ldots, x_{n}\right] / M$.
Claim 1. If $L=F\left[x_{1}, \ldots, x_{n}\right] / M$ is a field, then it is a finite field extension of F.

Proof. We proceed by induction on n.
Basecase: let $L=F\left[a_{1}\right]$ be a field. Then for $f\left(a_{1}\right) \in L$ there exists $g\left(a_{1}\right) \in L$ such that $f\left(a_{1}\right) g\left(a_{1}\right)=1 \in L$ and so a_{1} satisfies $h(x)=f(x) g(x)-1$. Namely, a_{1} is algebraic over F and so L is a finite field extension of F.

Assume $L=F\left[a_{1}, \ldots, a_{k}\right]$ is a finite field extension of F for all $k \leq n$.
Then let $L=F\left[a_{1}, \ldots, a_{n}\right]\left[a_{n+1}\right]$. Since L is a field, by the same reasoning as the basecase, L is algebraic over $F\left[a_{1}, \ldots, a_{n}\right]$. However, by the inductive hypothesis, $F\left[a_{1}, \ldots, a_{n}\right]$ is a finite field extension of F and so

$$
[L: F]=\left[L: F\left[a_{1}, \ldots, a_{n}\right]\right]\left[F\left[a_{1}, \ldots, a_{n}\right]: F\right]<\infty
$$

Now, if N is a maximal ideal of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $M \subset N$, then we will clearly have an embedding

$$
L \hookrightarrow K\left[x_{1}, \ldots, x_{n}\right] / N \cong K
$$

induced by the embedding $M \hookrightarrow N$. Note that since $K\left[x_{1}, \ldots, x_{n}\right] / N$ is a finite field extension of K which is algebraically closed, it must be isomorphic to K.

Namely, each embedding of L is associated to exactly one maximal ideal N of $K\left[x_{1}, \ldots, x_{n}\right]$ such that $M \subset N$.

Claim 2. If L is a finite field extension of F, then there exists only finitely many embeddings of L into K the algebraic closure of F.

Proof. We proceed by induction.
Basecase: let $L=F\left(a_{1}\right)$. Because a_{1} is algebraic over F, it has minimal (irreducible) polynomial

$$
f(x)=x^{n}+\alpha_{n-1} x^{n-1}+\cdots+\alpha_{1} x+\alpha_{0} \in F[x] .
$$

Now, if $\varphi: L \hookrightarrow K$, because $\varphi(1)=1, \varphi$ is F-linear and so

$$
\varphi\left(f\left(a_{1}\right)\right)=\varphi\left(a_{1}\right)^{n}+\alpha_{n-1} \varphi\left(a_{1}\right)^{n-1}+\cdots+\alpha_{1} \varphi\left(a_{1}\right)+\alpha_{0}=0
$$

so φ permutes the roots of $f(x)$. Note that K is the algebraic closure of F and so contains all such roots.

Thus, there are only finitely many possible choices of φ since there are only finitely many roots of $f(x)$.

Now, assume there are only finitely many injections of $L=F\left(a_{1}, \ldots, a_{k}\right)$ to K for $k \leq n$.

Then we examine $L=F\left(a_{1}, \ldots, a_{n}, a_{n+1}\right)=F\left(a_{1}, \ldots, a_{n}\right)\left(a_{n+1}\right)$. Then there are only finitely many $F\left(a_{1}, \ldots, a_{n}\right)$-linear injections from $L \hookrightarrow K$ by the same reasoning as the basecase, and by the induction hypothesis, only finitely many F-linear injections from $F\left(a_{1}, \ldots, a_{n}\right) \hookrightarrow K$.

Since any injection $L \hookrightarrow K$ will be defined by where it sends the a_{i}, and since there are only finitely many choices for where to send a_{1}, \ldots, a_{n} and only finitely many choices for where to send a_{n+1}, we have only finitely many possible injections of L into K.

Finally, since there are only finitely many possible embeddings of $F\left[x_{1}, \ldots, x_{n}\right] / M$ to $K\left[x_{1}, \ldots, x_{n}\right] / N$ there can be only finitely many maximal ideals $M \subset N$.

Problem 4. Let F be a finite field.
(a) Show that there are irreducible polynomials over F of every positive degree.
(b) Show that $x^{4}+1$ is irreducible over $\mathbb{Q}[x]$ but is reducible over $\mathbb{F}_{p}[x]$ for every prime p (hint: show there is a root in $\mathbb{F}_{p^{2}}[x]$).

Solution.

(a) Let F be a finite field of $q=p^{k}$ elements. Fix a positive integer n.

Then let K be the field of $q^{n}=p^{n k}$ elements. Then K^{\times}is a cyclic multiplicative group. Now, because finite fields of the same order are isomoprhic, K is isomorphic to a field extension of F.
Therefore,

$$
[K: F]=\frac{\left[K: F_{p}\right]}{\left[F: F_{p}\right]}=\frac{n k}{k}=n
$$

where F_{p} is the field of p elements. Thus, there exists an element $\alpha \in K$ such that α has minimal polynomial of degree n over F.
By definition, the minimal polynomial is irreducible and has degree n over F.
(b) First, $x^{4}+1$ has no roots in \mathbb{Q} so if it reduces it has no linear terms. Namely, it can only reduce into a product of two quadratic polynomials. However, $x^{4}+1=\left(x^{2}-i\right)\left(x^{2}+i\right)$ over $\mathbb{C}[x]$ and since $i \notin \mathbb{Q}$, we have that $x^{4}+1$ is irreducible.
Now, we examine $x^{4}+1$ as a polynomial over $\mathbb{F}_{p}[x]$.
If $p=2$, then

$$
x^{4}+1=\left(x^{2}\right)^{2}+1^{2}=\left(x^{2}+1\right)^{2}
$$

and so it is reducible.
If p is odd, then $p=2 k+1$ and $k \geq 1$.

$$
p^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1=4\left(k^{2}+k\right)+1=8 r+1
$$

since if k is even, $k^{2}+k$ is also even, and if k is odd, then $k^{2}+k$ is a sum of two odds and so it is also even.
Namely, $p^{2} \equiv 1 \bmod 8$ for any odd p. Therefore,

$$
\left(x^{8}-1\right) \mid\left(x^{p^{2}-1}-1\right) .
$$

However, then if α is a root of $x^{4}+1$, then α is a root of $\left(x^{4}+1\right)\left(x^{4}-1\right)=x^{8}-1$ and so it is a root of $x^{p^{2}-1}-1$. Finally, we have that

$$
\alpha^{p^{2}-1}=1 \Longrightarrow \alpha^{p^{2}}=\alpha
$$

and so $\alpha \in \mathbb{F}_{p^{2}}$.
Now, if $x^{4}+1$ is irreducible over $\mathbb{F}_{p}[x]$ and α is a root of $x^{4}+1$, then $\left[\mathbb{F}_{p}(\alpha): \mathbb{F}_{p}\right]=4$.
However, $\alpha \in \mathbb{F}_{p^{2}}$ and so

$$
2=\left[\mathbb{F}_{p^{2}}: \mathbb{F}_{p}\right]=\left[\mathbb{F}_{p^{2}}: \mathbb{F}_{p}(\alpha)\right]\left[\mathbb{F}_{p}(\alpha): \mathbb{F}_{p}\right]=\left[\mathbb{F}_{p^{2}}: \mathbb{F}_{p}(\alpha)\right] 4
$$

which is clearly a contradiction.
Thus, $x^{4}+1$ is reducible over \mathbb{F}_{p}.

Problem 5. Let F be a field and M a finitely generated $F[x]$-module. Show that M is artinian if and only if $\operatorname{dim}_{F} M$ is finite.

Solution.

\Longrightarrow Assume M is artinian. Because M is finitely generated,

$$
M=F[x] m_{1}+\cdots+F[x] m_{n}
$$

for some $m_{i} \in M$.
We proceed by induction on n.
Assume $M=F[x] m_{1}$ for some $m_{1} \in M$.
Then let

$$
\begin{aligned}
\varphi: F[x] & \rightarrow M \\
f(x) & \mapsto f(x) m_{1}
\end{aligned}
$$

The $\operatorname{ker}(\varphi)=\operatorname{Ann}\left(m_{1}\right)$ by definition. Therefore,

$$
F[x] / \operatorname{Ann}\left(m_{1}\right) \cong M
$$

which is Artinian. Namely, $F[x] / \operatorname{Ann}\left(m_{1}\right)$ must be a field extension of F since the only artinian domains are fields.

Claim 3. An artinian integral domain F is a field.

Proof. Let $a \in F$ be nonzero. Then we have a decreasing chain of ideals

$$
(a) \supset\left(a^{2}\right) \supset\left(a^{3}\right) \supset \cdots
$$

which must terminate after a finite number of steps. Thus, $\left(a^{l}\right)=\left(a^{k}\right)$ for all $l \geq k$ for some k.

Namely, $a^{k+1} b=a^{k}$ for some $b \in F$.
However, then $a^{k}(a b-1)=0$ and since F is a domain, $a \neq 0$ implies that $a^{k} \neq 0$ and so $a b=1$. Thus, a has a right inverse.

Similarly, a has a left inverse so a is invertible. Therefore, F is a field. B
Now, since $F[x] / \operatorname{Ann}\left(m_{1}\right)$ is a field extension of F, and since $F[x]$ is a PID, $\operatorname{Ann}\left(m_{1}\right)$ must be generated by an irreducble polynomial. Therefore, $\left[F[x] / \operatorname{Ann}\left(m_{1}\right): F\right]<\infty$ since it is an algebraic extension of F, and so $M \cong F[x] / \operatorname{Ann}\left(m_{1}\right)$ is a finite dimensional F-vector space.

Now, assume

$$
M=F[x] m_{1}+\cdots+F[x] m_{k}
$$

is a finite dimensional F-vector space for all $k \leq n$.
Then assume

$$
M=F[x] m_{1}+\cdots+F[x] m_{n}+F[x] m_{n+1} .
$$

Then $N=F[x] m_{1}+\cdots+F[x] m_{n}$ is a submodule of M which a finite dimensional F-vector space by the inductive hypothesis.

Thus, $M / N \cong F[x] m_{n+1}$ is an artinian $F[x]$-module and so it is finite dimensional F-vector space by the same reasoning as the basecase. Thus, M / N and N are both finite dimensional over F and so M must be finite dimensional over F.
\Longleftarrow Because M is finitely generated as an $F[x]$-module

$$
M=F[x] m_{1}+\cdots+F[x] m_{n}
$$

for some $m_{i} \in M$. However, because M is a finite dimensional vector space over $F, M=$ $x_{1} F+\cdots+x_{m} F$ for $x_{1}, \ldots, x_{m} \in M$ linearly independent. Thus, $f(x) m_{i}$ can be written as a unique linear combination of the x_{i}, and so any $F[x]$-submodule of M will be an F-subspace of M.

Therefore, any decreasing chain of submodules of M is a decreasing chain of finite dimensional subspaces which must terminate after a finite number of steps. Thus, M is artiniain as an $F[x]$-module.

Problem 6. Let R be a right Artinian ring with a faithful irreducible right R-module. If $x, y \in R$, set $[x, y]:=x y-y x$. Show that if $[[x, y], z]=0$ for all $x, y, z \in R$, then R has no nilpotent elements.

Solution. A faithful right R-module is a right R-module where $\operatorname{Ann}(M)=0$.
An irreducible R-module is equivalent to a simple R-module.
Since $J(R)$ is also defined as the intersection of the annihilators of all simple right R-modules, $J(R)=0$ since R has a simple right-module with trivial annihilator.

Therefore, by Artin-Wedderburn, R is semi-simple and so

$$
R \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)
$$

as a right R-module where D_{k} are division rings over R.
Let $n_{i}>1$ for some i. Then we define the following matrices:
Let

$$
x=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right] \quad y=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 1 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 1 & \cdots & 0 & 0 \\
1 & 0 & \cdots & 0 & 0
\end{array}\right] \quad z=x
$$

Then

$$
x^{2}=0
$$

and

$$
x y x=\left[\begin{array}{ccccc}
1 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]=x
$$

Therefore,

$$
\begin{aligned}
{[[x, y], x] } & =[(x y-y x), x] \\
& =(x y-y x) x-x(x y-y x) \\
& =x y x-y x^{2}-x^{2} y+x y x \\
& =2 x y x \\
& =2 x \\
& =0
\end{aligned}
$$

however, $2 x \neq 0$ and this contradicts the assumption that $[[x, y], z]=0$ for all $x, y, z \in R$ and so $n_{i}=1$ for all i.

Namely, R is a direct sum of division rings and so has no nilpotent elements.

