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Problem 1. Use Sylow’s theorems and other results to describe, up to isomorphism,
the possible structures of a group of order 1005.

Solution. Let G be a group of order 1005 = 3-5-67. By Sylow, ng;|15 and ng; =1 mod 67
so clearly ng; = 1.

Now, we examine the cases.

Then G = Z1005.

Let Py, Ps, P3 be Sylow 67,5, 3-subgroups respectively. Now, by the recognizing semi-
direct products theorem. Since Fgy; is normal, P3FPys; and PsFPs; are subgroups of G, and
since

|P3Ps Por| = 3-5-67/| P3N (P5F7)| = 1005 = |G
we have that GG is a semi-direct product of its Sylow subgroups.

Since P5Fg7 is a subgroup and has index 3 which is the smallest prime dividing the order
of the group (see Spring 2010: Problem 2 Claim 1).

Therefore, P5FPgs; is normal in G. Now, since Pj is also a Sylow p-subgroup of P;Fs;
and ns; = 1 in P5Ps7 by Sylow. Therefore, by Fall 2011: Problem 5 Claim 3, F; is also
normal in G.

Finally, we have that P;P5 is a subgroup of G and so to determine possible structures of
G as a semi-direct product, we need only look at three homomorphisms.

¢ : PyPs — Aut(Ps7) | Since P3Ps is of order pg where pt (¢ — 1), we have that P3Ps =

Z15.
Furthermore, Aut(Ps7) = Zgg.

Thus, if P3 = (a), Ps = (b), and Pg; = (c), we have that ¢(b) = Id since 5 does not
divide the order of Zgs and ¢(a) = a where a has order 3.

Since Zgg is abelian and 66 = 2 - 3 - 11, there are exactly two non-trivial options for a.
Note that one will be the square of the other. Namely, if ¢;(a) = o and @y(a) = o?, then
©1(a®) = pa(a) and since a — a? is an automorphism of Zs, these will generate isomorphic
semi-direct products.

Thus, we need only find one element of order 3 in Zgg.

This element is given by « : Zg; — Zg; defined by a(c) = .

Once can check that

a?(c) = a?(c?) = a(d®) =c.
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Therefore, we obtain a possible multiplication for G given by bcb™! = ¢(b)(c) = ¢ and

aca™! = p(a)(c) = *.

Thus,
G2 {a,b,c|la® =1 = =1,ab = ba,bc = cb,ac = *a).

¢ : P3Ps; — Aut(Ps)| Since Ps is normal, we can check ¢ : P3Pg; — Ps, however
Aut(Ps) = Z, and P3Pg; have no elements of order 2 or 4, so only the trivial homomorphism
is possible.

¢ 1 Py — Aut(PsPy7) | since 5 and 67 are coprime, Aut(PsPy7) = Zy4 X Zgs. However,
since there are no elements in Z,4 of order 3, the only possible non-trivial homomorphisms
will generate the same multiplication as the first case.

Therefore, there are only two groups of order 1005.

Z'1005

{a,b,c|a® =1 = =1,ab = ba,bc = cb,ac = ¢*a) = 73 ¥, Lgr X Ls
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Problem 2. Let R be a commutative ring with 1. Let M, N and V be R-modules.

(a) Show that if M and N are projective, then so is M ®@g N.

(b) Let tr(V) = {3 ¢i(vs) | ¢ € Homg(V, R),v; € V} C R. If 1 € tr(V), show that up

to isomorphism, R is a direct summand of V* for some k.

Solution.
(a) Since M and N are projective, there exists A, B, R-modules such that
MeA=R™ NeB=R"

where R™ = @7, R, and R" are free modules of dimension m and n respectively.
Thus,

(M®@r N)® [(A®gr N)® B™| (M@A)@R N]&@ B™

[
= [R" @r N]© B™
[
= |

(R@R@ -®R)®x N|@® B™
NeN@®---®N|@B™ (1)
=(NeB)@(N®eB)@®---®(N®B)
=R'OR"®---OR"
-
with (1) because R ®p N = N. Therefore, M ®p N is the summand of a free module
so it is projective.

(b) Let
tr(V) = {Z wi(v;) | ¢ € Homg(V, R),v; € V} C R.

Now, we note that tr(V) = > ¢(V) where the sum is taken over all ¢ € homg(V, R).
Furthermore, because ¢ is homomorphism, it is easily verified that ¢(V') is an ideal of
R for all ¢

Now, tr(V) is an ideal of R since it is clearly closed under addition and for any r € R,
rY_wi(vi) =3 @i(rvi) € tr(V)

since the ¢ are homomorphisms and rv; € V since V' is an R-modules. This gives that
tr(V) is a left ideal and since R is commutative it will be a right ideal as well.

Therefore, if 1 € tr(V) then tr(V) = R. Thus, there exists finitely many ¢; €
Hompg(V, R) and v; € V' such that

1=pi(v)) + -+ or(vg) k minimal.
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Namely, for every r € R, there exists w; € V such that
r=e1(wi) + -+ pr(wp).

Now, because k is minimal, if

reai(V)nDe;(V)

J#i
then
r=gi(wi) = p;(w;)
J#i
Thus, we can define
f:VF SR

(w1, ..y W) ;%(wi)

which we have already found to be surjective.

Therefore, we have a short exact sequence

0 —— ker(f) % R 0

However, R is a free module over itself, so R is projective. Therefore, the above short
exact sequence is split and so by the splitting lemma,

VF > R @ ker(f).

Therefore, R is a direct summand of V*.
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Problem 3. Let F be a field and M a maximal ideal of F[zy,...,z,]. Let K be an
algebraic closure of F'. Show that M is contained in at least 1 and in only finitely many
maximal ideals of K[z, ..., z,].

Solution. First, by generalized Nullstellensatz, V(M) # & as a subset of K", since M is
maximal in F[zy,...,x,] so 1 ¢ M.

Namely, there exists (ay, ...,a,) € K™ such that (a4, ...,a,) € V(M).

Therefore, again by Nullstellensatz, for every f € M, there exists m such that f™ €
(x1 — ay, ..., x, — a,) which is a maximal ideal of K[z, ..., z,].

However, maximal ideals are prime, and so inductively, we get that f € (1 —aq, ..., z, —
a,). Therefore, M C (x; — ay, ..., z, — a,) so M is contained in at least one maximal ideal.

Next, we prove a claim about L = F[xy,...,x,]/M.
Claim 1. If L = Flxy, ..., z,|/M is a field, then it is a finite field extension of F'.

Proof. We proceed by induction on n.

Basecase: let L = F'a;] be a field. Then for f(a;) € L there exists g(a;) € L
such that f(a1)g(a;) =1 € L and so a; satisfies h(z) = f(z)g(z) — 1. Namely,
ay is algebraic over F' and so L is a finite field extension of F.

Assume L = Flay, ..., a;) is a finite field extension of F for all £ < n.

Then let L = Flay, ..., ay][ant1]. Since L is a field, by the same reasoning
as the basecase, L is algebraic over Flay,...,a,]. However, by the inductive
hypothesis, Fay, ..., a,] is a finite field extension of F' and so

[L:F]=[L:Flay,...,a,]][Fla1,...,a,) : F] < o0.

Y

Now, if N is a maximal ideal of K{[z1, ..., x,] such that M C N, then we will clearly have

an embedding
L — Klxy,...,x,|/N =2 K

induced by the embedding M < N. Note that since K[z1, ...,z,|/N is a finite field extension

of K which is algebraically closed, it must be isomorphic to K.

Namely, each embedding of L is associated to exactly one maximal ideal N of Kz, ..., z,]
such that M C N.

Claim 2. If L is a finite field extension of F', then there exists only finitely many
embeddings of L into K the algebraic closure of F.
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Proof. We proceed by induction.

Basecase: let L = F(ay). Because a; is algebraic over F', it has minimal
(irreducible) polynomial

f(x) =2"+ ap 12" '+ + i + ap € Fla).

Now, if ¢ : L — K, because ¢(1) = 1, ¢ is F-linear and so

o(f(ar)) = pla)™ + an_1p(a)” " + - + arplay) + ap =0

so ¢ permutes the roots of f(x). Note that K is the algebraic closure of F' and
so contains all such roots.

Thus, there are only finitely many possible choices of ¢ since there are only
finitely many roots of f(zx).

Now, assume there are only finitely many injections of L = F(ay, ..., ax) to
K for k <n.

Then we examine L = F(ay, ..., ap, any1) = F(ay,...,a,)(ays1). Then there
are only finitely many F'(aq, ..., a,)-linear injections from L < K by the same
reasoning as the basecase, and by the induction hypothesis, only finitely many
F-linear injections from F(ay,...,a,) — K.

Since any injection L — K will be defined by where it sends the a;, and
since there are only finitely many choices for where to send aq, ..., a,, and only
finitely many choices for where to send a, 1, we have only finitely many possible
injections of L into K. &

Finally, since there are only finitely many possible embeddings of F[zq,...,x,]/M to
K|xq,...,x,]/N there can be only finitely many maximal ideals M C N. ¥
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Problem 4. Let F be a finite field.

(a

(b) Show that z* + 1 is irreducible over Q[z] but is reducible over F,[z] for every prime

) Show that there are irreducible polynomials over F' of every positive degree.

p (hint: show there is a root in F,2|[x]).

Solution.

(a)

Let F be a finite field of ¢ = p* elements. Fix a positive integer n.

Then let K be the field of ¢" = p™ elements. Then K* is a cyclic multiplicative group.
Now, because finite fields of the same order are isomoprhic, K is isomorphic to a field
extension of F.

Therefore,
(K : F,] nk
K :F|= =— =
[ ] [F @ F] k
where F, is the field of p elements. Thus, there exists an element o € K such that o
has minimal polynomial of degree n over F.

By definition, the minimal polynomial is irreducible and has degree n over F.

First, % + 1 has no roots in Q so if it reduces it has no linear terms. Namely, it can only
reduce into a product of two quadratic polynomials. However, 2% + 1 = (2% — i) (2? + 1)
over C[z] and since i ¢ Q, we have that z* + 1 is irreducible.

Now, we examine z* + 1 as a polynomial over F|[z].

If p =2, then
l‘4+1 — ({L‘2)2—|—12: ($2+1)2

and so it is reducible.

If pis odd, then p =2k + 1 and k£ > 1.
pP=02k+ 1) =4k +4k+1=4k* + k) +1=8r+1

since if k is even, k? + k is also even, and if k is odd, then k? + k is a sum of two odds
and so it is also even.

Namely, p*> =1 mod 8 for any odd p. Therefore,
(z* = 1)|(2" "1 = 1).

However, then if a is a root of 2* + 1, then « is a root of (z* +1)(z* — 1) = 2% — 1 and
so it is a root of 27°~1 — 1. Finally, we have that

2 2
=1 = of =a
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and so a € 2.

Now, if z* + 1 is irreducible over F,[z] and « is a root of z* + 1, then [F,(a) : F,] = 4.

However, o € Fj2 and so
2=[Fp : F)] = [Fp : Fp()][Fp(a) : Fp] = [Fpe : Fy(a)]4

which is clearly a contradiction.

Thus, z* + 1 is reducible over F,,.
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Problem 5. Let F be a field and M a finitely generated F[z]-module. Show that M is
artinian if and only if dimg M is finite.

Solution.

Assume M is artinian. Because M is finitely generated,
M = Flz)mq + - - - + Flz]m,,

for some m; € M.
We proceed by induction on n.
Assume M = F[z|m; for some m; € M.
Then let

o : Fla] > M
f@) = f(z)m
The ker(p) = Ann(m,) by definition. Therefore,
Flz]/Ann(my) = M

which is Artinian. Namely, F[x]/Ann(m;) must be a field extension of F since the only
artinian domains are fields.

Claim 3. An artinian integral domain F' is a field.

Proof. Let a € F be nonzero. Then we have a decreasing chain of ideals

(a) D (a®) > (a®) D+
which must terminate after a finite number of steps. Thus, (a') = (a*) for all
[ > k for some k.

Namely, a*T'b = a* for some b € F.

However, then a*(ab — 1) = 0 and since F is a domain, a # 0 implies that
a* # 0 and so ab = 1. Thus, a has a right inverse.

Similarly, a has a left inverse so a is invertible. Therefore, F is a field. &

Now, since F[z]/Ann(m,) is a field extension of F', and since F[z| is a PID, Ann(m,)
must be generated by an irreducble polynomial. Therefore, [F'[x]/Ann(my) : F] < oo since it
is an algebraic extension of F', and so M = F[z]/Ann(m;) is a finite dimensional F-vector
space.

Now, assume
M = Flzx]mq + - - - + Flx]my
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is a finite dimensional F-vector space for all £ < n.

Then assume
M = Flzlmy + - - + Flx]m, + F|x]m,1.

Then N = Flx]my + -+ + F[x]m, is a submodule of M which a finite dimensional
F-vector space by the inductive hypothesis.

Thus, M/N = F|z]m,4; is an artinian F[z]-module and so it is finite dimensional

F-vector space by the same reasoning as the basecase. Thus, M/N and N are both finite
dimensional over F' and so M must be finite dimensional over F.

Because M is finitely generated as an F[z]-module
M = Flzx]my + --- + Flx]m,

for some m; € M. However, because M is a finite dimensional vector space over F, M =
v F + -+ z,F for z1,...,x, € M linearly independent. Thus, f(z)m; can be written as a
unique linear combination of the z;, and so any F[z|-submodule of M will be an F-subspace
of M.

Therefore, any decreasing chain of submodules of M is a decreasing chain of finite
dimensional subspaces which must terminate after a finite number of steps. Thus, M is
artiniain as an F'[z]-module.

¥
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Problem 6. Let R be a right Artinian ring with a faithful irreducible right R-module.
If 2,y € R, set [z,y] := xy — yx. Show that if [[x,y], z] = 0 for all z,y,z € R, then R has
no nilpotent elements.

Solution. A faithful right R-module is a right R-module where Ann(M) = 0.
An irreducible R-module is equivalent to a simple R-module.

Since J(R) is also defined as the intersection of the annihilators of all simple right
R-modules, J(R) = 0 since R has a simple right-module with trivial annihilator.

Therefore, by Artin-Wedderburn, R is semi-simple and so
R= M, (D) ® - & M, (Dy)
as a right R-module where Dy are division rings over R.

Let n; > 1 for some 7. Then we define the following matrices:

Let ) ; _ i
00 01 00 01
00 0 0 0 0 10
xr = : y= : Z=x
0 0 0 0 01 00
00 0 0] 10 0 0]
Then
22 =0
and ) o ) ) )
10 0 0|0 O 01 0 0 - 0 1
0 0 0 0|10 O 0 0 0 0 0 0
TYyxr = R R = R =T
0 0 0 010 O 00 00 -+ 00
00 0 0] |00 0 0] 00 - 00
Therefore,

[, 9], 2] = [(zy — yx), 2]

= (zy —yx)x — x(zy — yx)

= zyx — yx’ — 2%y + ayx

= 2xyx

= 2x

=0
however, 2z # 0 and this contradicts the assumption that [[z,y], z] = 0 for all z,y,z € R and
son; =1 for all 7.

Namely, R is a direct sum of division rings and so has no nilpotent elements. ¥
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