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Problem 1. Use Sylow’s theorems and other results to describe, up to isomorphism,
the possible structures of a group of order 1005.

Solution. Let G be a group of order 1005 = 3 ·5 ·67. By Sylow, n67|15 and n67 ≡ 1 mod 67
so clearly n67 = 1.

Now, we examine the cases.
Abelian Then G ∼= Z1005.

Let P67, P5, P3 be Sylow 67, 5, 3-subgroups respectively. Now, by the recognizing semi-
direct products theorem. Since P67 is normal, P3P67 and P5P67 are subgroups of G, and
since

|P3P5P67| = 3 · 5 · 67/|P3 ∩ (P5P67)| = 1005 = |G|
we have that G is a semi-direct product of its Sylow subgroups.

Since P5P67 is a subgroup and has index 3 which is the smallest prime dividing the order
of the group (see Spring 2010: Problem 2 Claim 1).

Therefore, P5P67 is normal in G. Now, since P5 is also a Sylow p-subgroup of P5P67
and n5 = 1 in P5P67 by Sylow. Therefore, by Fall 2011: Problem 5 Claim 3, P5 is also
normal in G.

Finally, we have that P3P5 is a subgroup of G and so to determine possible structures of
G as a semi-direct product, we need only look at three homomorphisms.

ϕ : P3P5 → Aut(P67) Since P3P5 is of order pq where p - (q − 1), we have that P3P5 ∼=
Z15.

Furthermore, Aut(P67) ∼= Z66.
Thus, if P3 ∼= 〈a〉, P5 ∼= 〈b〉, and P67 ∼= 〈c〉, we have that ϕ(b) = Id since 5 does not

divide the order of Z66 and ϕ(a) = α where α has order 3.
Since Z66 is abelian and 66 = 2 · 3 · 11, there are exactly two non-trivial options for α.

Note that one will be the square of the other. Namely, if ϕ1(a) = α and ϕ2(a) = α2, then
ϕ1(a2) = ϕ2(a) and since a 7→ a2 is an automorphism of Z3, these will generate isomorphic
semi-direct products.

Thus, we need only find one element of order 3 in Z66.

This element is given by α : Z67 → Z67 defined by α(c) = c29.
Once can check that

α3(c) = α2(c29) = α(c37) = c.
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Therefore, we obtain a possible multiplication for G given by bcb−1 = ϕ(b)(c) = c and
aca−1 = ϕ(a)(c) = c29.

Thus,
G ∼= 〈a, b, c | a3 = b5 = c67 = 1, ab = ba, bc = cb, ac = c29a〉.

ϕ : P3P67 → Aut(P5) Since P5 is normal, we can check ϕ : P3P67 → P5, however
Aut(P5) ∼= Z4 and P3P67 have no elements of order 2 or 4, so only the trivial homomorphism
is possible.

ϕ : P3 → Aut(P5P67) since 5 and 67 are coprime, Aut(P5P67) ∼= Z4 × Z66. However,
since there are no elements in Z4 of order 3, the only possible non-trivial homomorphisms
will generate the same multiplication as the first case.

Therefore, there are only two groups of order 1005.

Z1005

〈a, b, c | a3 = b5 = c67 = 1, ab = ba, bc = cb, ac = c29a〉 ∼= Z3 oϕ Z67 × Z5

�

2



Kayla Orlinsky
Spring 2015

Problem 2. Let R be a commutative ring with 1. Let M,N and V be R-modules.

(a) Show that if M and N are projective, then so is M ⊗R N .

(b) Let tr(V ) = {∑i ϕi(vi) |ϕ ∈ HomR(V,R), vi ∈ V } ⊂ R. If 1 ∈ tr(V ), show that up
to isomorphism, R is a direct summand of V k for some k.

Solution.

(a) Since M and N are projective, there exists A, B, R-modules such that

M ⊕ A ∼= Rm N ⊕B ∼= Rn

where Rm ∼=
⊕m

i=1 Ri and Rn are free modules of dimension m and n respectively.
Thus,

(M ⊗R N)⊕ [(A⊗R N)⊕Bm] = [(M ⊕ A)⊗R N ]⊕Bm

= [Rm ⊗R N ]⊕Bm

= [(R⊕R⊕ · · · ⊕R)⊗R N ]⊕Bm

= [N ⊕N ⊕ · · · ⊕N ]⊕Bm (1)
= (N ⊕B)⊕ (N ⊕B)⊕ · · · ⊕ (N ⊕B)
= Rn ⊕Rn ⊕ · · · ⊕Rn

= Rnm

with (1) because R⊗R N = N. Therefore, M ⊗R N is the summand of a free module
so it is projective.

(b) Let
tr(V ) = {

∑
i

ϕi(vi) |ϕ ∈ HomR(V,R), vi ∈ V } ⊂ R.

Now, we note that tr(V ) = ∑
ϕ(V ) where the sum is taken over all ϕ ∈ homR(V,R).

Furthermore, because ϕ is homomorphism, it is easily verified that ϕ(V ) is an ideal of
R for all ϕ.
Now, tr(V ) is an ideal of R since it is clearly closed under addition and for any r ∈ R,

r
∑

i

ϕi(vi) =
∑

i

ϕi(rvi) ∈ tr(V )

since the ϕ are homomorphisms and rvi ∈ V since V is an R-modules. This gives that
tr(V ) is a left ideal and since R is commutative it will be a right ideal as well.
Therefore, if 1 ∈ tr(V ) then tr(V ) = R. Thus, there exists finitely many ϕi ∈
HomR(V,R) and vi ∈ V such that

1 = ϕ1(v1) + · · ·+ ϕk(vk) k minimal.
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Namely, for every r ∈ R, there exists wj ∈ V such that

r = ϕ1(w1) + · · ·+ ϕk(wk).

Now, because k is minimal, if

r ∈ ϕi(V ) ∩
⊕
j 6=i

ϕj(V )

then
r = ϕi(wi) =

∑
j 6=i

ϕj(wj)

Thus, we can define

f : V k → R

(w1, ..., wk) 7→
k∑

i=1
ϕi(wi)

which we have already found to be surjective.
Therefore, we have a short exact sequence

0 ker(f) V k R 0

However, R is a free module over itself, so R is projective. Therefore, the above short
exact sequence is split and so by the splitting lemma,

V k ∼= R⊕ ker(f).

Therefore, R is a direct summand of V k.

�

4



Kayla Orlinsky
Spring 2015

Problem 3. Let F be a field and M a maximal ideal of F [x1, ..., xn]. Let K be an
algebraic closure of F . Show that M is contained in at least 1 and in only finitely many
maximal ideals of K[x1, ..., xn].

Solution. First, by generalized Nullstellensatz, V (M) 6= ∅ as a subset of Kn, since M is
maximal in F [x1, ..., xn] so 1 /∈M.

Namely, there exists (a1, ..., an) ∈ Kn such that (a1, ..., an) ∈ V (M).
Therefore, again by Nullstellensatz, for every f ∈ M , there exists m such that fm ∈

(x1 − a1, ..., xn − an) which is a maximal ideal of K[x1, ..., xn].
However, maximal ideals are prime, and so inductively, we get that f ∈ (x1− a1, ..., xn−

an). Therefore, M ⊂ (x1 − a1, ..., xn − an) so M is contained in at least one maximal ideal.
Next, we prove a claim about L = F [x1, ..., xn]/M .

Claim 1. If L = F [x1, ..., xn]/M is a field, then it is a finite field extension of F .

Proof. We proceed by induction on n.
Basecase: let L = F [a1] be a field. Then for f(a1) ∈ L there exists g(a1) ∈ L

such that f(a1)g(a1) = 1 ∈ L and so a1 satisfies h(x) = f(x)g(x)− 1. Namely,
a1 is algebraic over F and so L is a finite field extension of F.

Assume L = F [a1, ..., ak] is a finite field extension of F for all k ≤ n.
Then let L = F [a1, ..., an][an+1]. Since L is a field, by the same reasoning

as the basecase, L is algebraic over F [a1, ..., an]. However, by the inductive
hypothesis, F [a1, ..., an] is a finite field extension of F and so

[L : F ] = [L : F [a1, ..., an]][F [a1, ..., an] : F ] <∞.

�

Now, if N is a maximal ideal of K[x1, ..., xn] such that M ⊂ N , then we will clearly have
an embedding

L ↪→ K[x1, ..., xn]/N ∼= K

induced by the embedding M ↪→ N . Note that since K[x1, ..., xn]/N is a finite field extension
of K which is algebraically closed, it must be isomorphic to K.

Namely, each embedding of L is associated to exactly one maximal ideal N ofK[x1, ..., xn]
such that M ⊂ N .

Claim 2. If L is a finite field extension of F , then there exists only finitely many
embeddings of L into K the algebraic closure of F.
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Proof. We proceed by induction.
Basecase: let L = F (a1). Because a1 is algebraic over F , it has minimal

(irreducible) polynomial

f(x) = xn + αn−1x
n−1 + · · ·+ α1x+ α0 ∈ F [x].

Now, if ϕ : L ↪→ K, because ϕ(1) = 1, ϕ is F -linear and so

ϕ(f(a1)) = ϕ(a1)n + αn−1ϕ(a1)n−1 + · · ·+ α1ϕ(a1) + α0 = 0

so ϕ permutes the roots of f(x). Note that K is the algebraic closure of F and
so contains all such roots.

Thus, there are only finitely many possible choices of ϕ since there are only
finitely many roots of f(x).

Now, assume there are only finitely many injections of L = F (a1, ..., ak) to
K for k ≤ n.

Then we examine L = F (a1, ..., an, an+1) = F (a1, ..., an)(an+1). Then there
are only finitely many F (a1, ..., an)-linear injections from L ↪→ K by the same
reasoning as the basecase, and by the induction hypothesis, only finitely many
F -linear injections from F (a1, ..., an) ↪→ K.

Since any injection L ↪→ K will be defined by where it sends the ai, and
since there are only finitely many choices for where to send a1, ..., an and only
finitely many choices for where to send an+1, we have only finitely many possible
injections of L into K. �

Finally, since there are only finitely many possible embeddings of F [x1, ..., xn]/M to
K[x1, ..., xn]/N there can be only finitely many maximal ideals M ⊂ N . �
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Problem 4. Let F be a finite field.

(a) Show that there are irreducible polynomials over F of every positive degree.

(b) Show that x4 + 1 is irreducible over Q[x] but is reducible over Fp[x] for every prime
p (hint: show there is a root in Fp2 [x]).

Solution.

(a) Let F be a finite field of q = pk elements. Fix a positive integer n.
Then let K be the field of qn = pnk elements. Then K× is a cyclic multiplicative group.
Now, because finite fields of the same order are isomoprhic, K is isomorphic to a field
extension of F.
Therefore,

[K : F ] = [K : Fp]
[F : Fp] = nk

k
= n

where Fp is the field of p elements. Thus, there exists an element α ∈ K such that α
has minimal polynomial of degree n over F.
By definition, the minimal polynomial is irreducible and has degree n over F.

(b) First, x4 +1 has no roots in Q so if it reduces it has no linear terms. Namely, it can only
reduce into a product of two quadratic polynomials. However, x4 + 1 = (x2 − i)(x2 + i)
over C[x] and since i /∈ Q, we have that x4 + 1 is irreducible.
Now, we examine x4 + 1 as a polynomial over Fp[x].
If p = 2, then

x4 + 1 = (x2)2 + 12 = (x2 + 1)2

and so it is reducible.
If p is odd, then p = 2k + 1 and k ≥ 1.

p2 = (2k + 1)2 = 4k2 + 4k + 1 = 4(k2 + k) + 1 = 8r + 1

since if k is even, k2 + k is also even, and if k is odd, then k2 + k is a sum of two odds
and so it is also even.
Namely, p2 ≡ 1 mod 8 for any odd p. Therefore,

(x8 − 1)|(xp2−1 − 1).

However, then if α is a root of x4 + 1, then α is a root of (x4 + 1)(x4 − 1) = x8 − 1 and
so it is a root of xp2−1 − 1. Finally, we have that

αp2−1 = 1 =⇒ αp2 = α
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and so α ∈ Fp2 .

Now, if x4 + 1 is irreducible over Fp[x] and α is a root of x4 + 1, then [Fp(α) : Fp] = 4.
However, α ∈ Fp2 and so

2 = [Fp2 : Fp] = [Fp2 : Fp(α)][Fp(α) : Fp] = [Fp2 : Fp(α)]4

which is clearly a contradiction.
Thus, x4 + 1 is reducible over Fp.

�
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Problem 5. Let F be a field and M a finitely generated F [x]-module. Show that M is
artinian if and only if dimF M is finite.

Solution.
=⇒ Assume M is artinian. Because M is finitely generated,

M = F [x]m1 + · · ·+ F [x]mn

for some mi ∈M.

We proceed by induction on n.
Assume M = F [x]m1 for some m1 ∈M .
Then let

ϕ : F [x]→M

f(x) 7→ f(x)m1

The ker(ϕ) = Ann(m1) by definition. Therefore,

F [x]/Ann(m1) ∼= M

which is Artinian. Namely, F [x]/Ann(m1) must be a field extension of F since the only
artinian domains are fields.

Claim 3. An artinian integral domain F is a field.

Proof. Let a ∈ F be nonzero. Then we have a decreasing chain of ideals

(a) ⊃ (a2) ⊃ (a3) ⊃ · · ·

which must terminate after a finite number of steps. Thus, (al) = (ak) for all
l ≥ k for some k.

Namely, ak+1b = ak for some b ∈ F .
However, then ak(ab− 1) = 0 and since F is a domain, a 6= 0 implies that

ak 6= 0 and so ab = 1. Thus, a has a right inverse.
Similarly, a has a left inverse so a is invertible. Therefore, F is a field. �

Now, since F [x]/Ann(m1) is a field extension of F , and since F [x] is a PID, Ann(m1)
must be generated by an irreducble polynomial. Therefore, [F [x]/Ann(m1) : F ] <∞ since it
is an algebraic extension of F , and so M ∼= F [x]/Ann(m1) is a finite dimensional F -vector
space.

Now, assume
M = F [x]m1 + · · ·+ F [x]mk
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is a finite dimensional F -vector space for all k ≤ n.
Then assume

M = F [x]m1 + · · ·+ F [x]mn + F [x]mn+1.

Then N = F [x]m1 + · · · + F [x]mn is a submodule of M which a finite dimensional
F -vector space by the inductive hypothesis.

Thus, M/N ∼= F [x]mn+1 is an artinian F [x]-module and so it is finite dimensional
F -vector space by the same reasoning as the basecase. Thus, M/N and N are both finite
dimensional over F and so M must be finite dimensional over F .

⇐= Because M is finitely generated as an F [x]-module

M = F [x]m1 + · · ·+ F [x]mn

for some mi ∈ M. However, because M is a finite dimensional vector space over F , M =
x1F + · · ·+ xmF for x1, ..., xm ∈M linearly independent. Thus, f(x)mi can be written as a
unique linear combination of the xi, and so any F [x]-submodule of M will be an F -subspace
of M.

Therefore, any decreasing chain of submodules of M is a decreasing chain of finite
dimensional subspaces which must terminate after a finite number of steps. Thus, M is
artiniain as an F [x]-module.

�
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Problem 6. Let R be a right Artinian ring with a faithful irreducible right R-module.
If x, y ∈ R, set [x, y] := xy− yx. Show that if [[x, y], z] = 0 for all x, y, z ∈ R, then R has
no nilpotent elements.

Solution. A faithful right R-module is a right R-module where Ann(M) = 0.
An irreducible R-module is equivalent to a simple R-module.
Since J(R) is also defined as the intersection of the annihilators of all simple right

R-modules, J(R) = 0 since R has a simple right-module with trivial annihilator.
Therefore, by Artin-Wedderburn, R is semi-simple and so

R ∼= Mn1(D1)⊕ · · · ⊕Mnk
(Dk)

as a right R-module where Dk are division rings over R.
Let ni > 1 for some i. Then we define the following matrices:
Let

x =



0 0 · · · 0 1
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0
0 0 · · · 0 0

 y =



0 0 · · · 0 1
0 0 · · · 1 0

... . . . ...
0 1 · · · 0 0
1 0 · · · 0 0

 z = x

Then
x2 = 0

and

xyx =



1 0 · · · 0 0
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0
0 0 · · · 0 0





0 0 · · · 0 1
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0
0 0 · · · 0 0

 =



0 0 · · · 0 1
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0
0 0 · · · 0 0

 = x

Therefore,

[[x, y], x] = [(xy − yx), x]
= (xy − yx)x− x(xy − yx)
= xyx− yx2 − x2y + xyx

= 2xyx
= 2x
= 0

however, 2x 6= 0 and this contradicts the assumption that [[x, y], z] = 0 for all x, y, z ∈ R and
so ni = 1 for all i.

Namely, R is a direct sum of division rings and so has no nilpotent elements. �

11


