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Problem 1. If M is a maximal ideal in Q[x1, ..., xn] show that there are only finitely
many maximal ideals in C[x1, ..., xn] that contain M.

Solution. This question is actually a specific case of Spring 2015: Problem 3.
First, we note that by Nullstellensatz, sinceM is a proper ideal ofQ[x1, ..., xn], V (M) 6= ∅

as a subset of Cn. Namely, there exists (a1, ..., an) ∈ Cn such that every polynomial in M is
satisfied by (a1, ..., an).

Thus, by Nullstellensatz, for every f ∈M considered as a polynomial in C[x1, ..., xn], there
exists r such that f r ∈ (x1−a1, ..., xn−an). However, by Nullstellensatz, (x1−a1, ..., xn−an)
is a maximal ideal of C[x1, ..., xn] and so it is prime. Thus, recursively, f ∈ (x1−a1, ..., xn−an),
for all f ∈M .

Thus, M ⊂ (x1 − a1, ..., xn − an).
Therefore, M is contained in at least one maximal ideal of C[x1, ..., xn].
Now, for each maximal ideal N ⊂ C[x1, ..., xn] such that M ⊂ N , there is clearly an

induced injection of fields

Q[x1, ..., xn]/M ↪→ C[x1, ..., xn]/N

where L = Q[x1, ..., xn] is a field extension ofQ and C[x1, ..., xn]/N ∼= C since C is algebraically
closed and so the only field extension of it is itself.

Clearly, the correspondence is 1-to-1. Namely, for every distinct maximal ideal N
containing M there corresponds one injection of fields from L into C.

Now we prove two claims. First, that L/Q is finite, and second that there are only
finitely many injections from a finite field extension of Q into its algebraic closure.

Both of these were proved in Spring 2015: Problem 3 Claim 1, Claim 2.
Both claims are proved by induction.
First, we argue that L is an algebraic extension of Q (and hence finitely generated),

then we argue that any injection of L into C is uniquely determined by how it permutes the
roots of the minimal polynomial of each generator of L, of which there are only finitely many
options.

Finally, we obtain that there are only finitely many maximal ideals N of C[x1, ..., xn]
containing M. �
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Problem 2. Let R be a right Noetherian ring with 1. Prove that R has a unique
maximal nilpotent ideal P (R). Argue that R[x] also has a unique maximal nilpotent ideal
P (R[x]). Show that P (R[x]) = P (R)[x].

Solution. Let S be the set of nilpotent right-ideals of R.
Since R is right-Noetherian, every set of ideals contains a unique maximal element. Thus,

S contains a maximal nilpotent right ideal N of order n.
Let J be a second such maximal ideal of order j. Then J +N = {a+ b | a ∈ J, b ∈ N}

will also be a nilpotent ideal since (a+ b)jn = 0.
Since N ⊂ J +N and N is maximal, J +N = N , however J ⊂ J +N as well and so

J +N = J. Therefore, N = J. Thus, N is unique.
Now, let P (R) be the two-sided ideal generated by N. We would like to show that P (R)

is nilpotent.
Let x1, ..., xn, xn+1 ∈ N , and r1, ..., rn, rn+1 ∈ R. It suffices to show that any product of

k things of the form nr where n ∈ N and r ∈ R is 0 for some k.
Then

(x1r1)(x2r2) · · · (xnrn)(xn+1rn+1) = x1(r1x2)(r2x3) · · · (rnxn+1)rn+1 = x10rn+1 = 0

since rixi ∈ N and N is nilpotent of order n.
Therefore, P (R) is nilpotent of order at most n + 1. Since P (R) is generated by the

unique maximal nilpotent right-ideal of R, it is the unique maximal nilpotent 2-sided ideal of
R.

By the Hilbert Basis theorem, R[x] is also right-Noetherian, and so it too will contain a
unique maximal 2-sided nilpotent ideal, P (R[x])

Let f(x) = amx
m + · · ·+ a1x+ a0 ∈ P (R[x]). We induct on the degree of f.

If f(x) = a0, then fn = an
0 = 0 so trivially f(x) ∈ P (R)[x].

Assume f ∈ P (R[x]) =⇒ f ∈ P (R)[x] for f having degree k ≤ m− 1.
Now, assume f has degree m.
Because fn = 0, we have that an

m = 0, so amx
m ∈ P (R)[x]. Therefore, f − amx

m ∈
P (R)[x] by the inductive hypothesis since f − amx

m has degree strictly less than m and is a
sum of nilpotent elements (which is also nilpotent).

Therefore, since f − amx
m ∈ P (R)[x] and amx

m ∈ P (R[x]), we have that f ∈ P (R)[x].
If f(x) ∈ P (R)[x], then every coefficent of f is nilpotent of degree less than or equal to

n, so fn2(x) = 0 since each coefficient will be raised to at least the nth power. Therefore,
f ∈ P (R[x]) since this is the unique largest nilpotent ideal of R[x].

�
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Problem 3. Up to isomorphism, describe the possible structures of any group of
order 182 as a direct sum of cyclic groups, dihedral groups, other semi-direct products,
symmetric groups, or matrix groups. (Note: 91 is not prime!)

Solution. Let G be a group of order 182 = 2 · 7 · 13. By Sylow, n7 ≡ 1 mod 7 and n7|2 · 13.
Therefore, n7 = 1 so G has a normal Sylow 7-subgroup.

Abelian By the fundamental theorem of abelian groups, G ∼= Z182.

Let P2, P7, P13 be Sylow 2, 7, 13-subgroups of G respectively.
Therefore, P7P13 is a subgroup of G and it is normal in G since it has index 2 which is

the smallest prime dividing the order of G. (see Spring 2010: Problem 2 Claim 1).
Now, in P7P13, because n13|7 and n13 ≡ 1 mod 13, n13 = 1 so P7P13 has a normal Sylow

13-subgroup.
Therefore, because P13 is normal in P7P13 which is normal in G, P13 is also normal in G

so G has one normal Sylow 13-subgroup (see Fall 2011: Problem 5 Claim 3).
Thus, we need to check only three homomorphisms.
ϕ : P2P7 → Aut(P13) Since P7 is normal, P2P7 is a subgroup of G. Let ϕ : P2P7 →

Aut(P13) ∼= Z×13
∼= Z12.

Let P2 ∼= 〈a〉, P7 ∼= 〈b〉, P13 ∼= 〈c〉.
Then since there are no elements of order 7 in Z12, ϕ(b) = Id.
There is one possible elements of order 2 to send a, namely, ϕ(a) = α where α(c) = c12.

This defines multiplication on G by aca−1 = ϕ1(a)(c) = c12 = c−1

G ∼= 〈a, b, c | a2 = b7 = c13 = 1, ab = ba, bc = cb, ac = c−1a〉

We note that
G ∼= Z13 oϕ1 Z2 × Z7 ∼= D26 × Z7

where D26 is the dihedreal group of 26 elements.
ϕ : P2P13 → Aut(P7) ϕ : P2P13 → Z6. We have one choice: ϕ2(c) = Id, and ϕ2(a) = β

where β(b) = b5 = b−1, since this is the only element of Aut(P7) of order 2.
This gives

G ∼= 〈a, b, c | a2 = b7 = c13 = 1, ac = ca, bc = cb, ab = b−1a〉 ∼= D14 × Z13.

ϕ : P2 → Aut(P7P13) Let ϕ : P2 → Aut(P7P13) ∼= Aut(P13) × Aut(P7) since 7 and 13
are coprime and P7 and P13 are cyclic.

Now, defining ϕ(a) = (α, Id) or ϕ(Id, β) will yield the same multiplication as we found
previously.

Thus, the only new structure can be given by ϕ(a) = (α, β).
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Therefore, we get one more possible structure for G.

G ∼= 〈a, b, c | a2 = b7 = c13 = 1, ac = c−1a, bc = cb, ab = b−1a〉 ∼= D182.

Finally, we have 4 possible group structures for G.

Z182

D14 × Z13

D26 × Z7

D182

�

4



Kayla Orlinsky
Fall 2015

Problem 4. Let K = C(y) for an indeterminate y and let p1 < p2 < · · · < pn be primes
(in Z). Let f(x) = (xp1 − y) · · · (xpn − y) ∈ K with splitting field L over K.

(a) Show each xpj − y is irreducible over K

(b) Describe the structure of Gal(L/K).

(c) How many intermediate fields are between K and L.

Solution. This problem is a more extensive version of Fall 2013: Problem 7

(a) We use generalized Eisenstein’s criterion with p = y. Clearly (y) is a prime (in fact
maximal) ideal since C(y)/(y) ∼= C which is a domain.
Now, 0 ∈ (y) and y ∈ (y) and 1 /∈ (y) which is the criterion on the coefficeints of xpj − y.
Finally, y /∈ (y)2 and so xpj − y is irreducible over K.

(b) Each irreducible xpj − y factor of f has as its roots, the pj roots of y multiplying the
pth

j roots of unity. Namely, f is separable and so L/K is indeed Galois.
Furthermore, each σ ∈ G = Gal(L/K) will be uniquely determined by how it permutes
the roots of each irreducible factor.
Namely, G will be generated by the σi, where σi is a permutation of the roots of xpj − y,
fixing the other roots of f.
This implies that G will be abelian since each σi will fix all but the pth

i roots of unity
and will fix all pth

i roots of y.
Therefore,

G ∼= Zp1p2···pn .

(c) Since G is abelian, any product of subgroups of G will also be a subgroup and so there
are

n−1∑
i=1

(
n

i

)
=

n∑
i=0

(
n

i

)
− 2 = 2n − 2

possible subgroups.

�
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Problem 5. In any finite ring R with 1 show that some element in R is not a sum of
nilpotent elements. Note that in all Mn(Z/nZ) the identity matrix is a sum of nilpotent
elements. (Hint: What is the trace of a nilpotent element in a matrix ring over a field?)

Solution. Since R is finite, it is clearly artinian. Thus, by Artin Wedderburn, R/J(R) is
semi-simple and so isomorphic to Mn1(D1)⊕ · · · ⊕Mnk

(Dk) where Di are division rings over
R.

Since the only finite division rings are finite fields, we have that

R/J(R) ∼= Mn1(Fq1)⊕ · · · ⊕Mnk
(Fqk

)

where Fqi
is the field of qi elements.

Now, we note that the trace tr(A) = 0 if A ∈Mn(Fq) is nilpotent.
Therefore, if A is a sum of nilpotent matrices A = N1 + · · ·+Nl then

tr(A) = tr(N1 + · · ·+Nl) = tr(N1) + · · ·+ tr(Nl) = 0 + · · ·+ 0 = 0.

Therefore, if tr(A) 6= 0 then A cannot be a sum of nilpotent elements.
Let

A =



1 0 · · · 0 0
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0
0 0 · · · 0 0


Then A is not nilpotent, and it is not a sum of nilpotents since tr(A) = 1 6= 0 over any

finite field.
Since A + J(R) is not a sum of nilpotent elements of R/J(R), A cannot be a sum of

nilpotent elements of R. �
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Problem 6. Let R be a commutative principal ideal domain.

(a) If I and J are ideals of R show that R/I ⊗R R/J ∼= R/(I + J).

(b) If V and W are finitely generated R modules so that V ⊗R W = 0, show that V
and W are torsion modules whose annihilators in R are relatively prime.

Solution.

(a) Let I and J be ideals of R. Define

f : R/I ×R/J → R/(I + J)
(a+ I, b+ J) 7→ ab+ I + J

Then f is well defined since if (a+ I, b+ J) = (a′ + I, b′ + J) then a = a′ + i for i ∈ I
and b = b′ + j for j ∈ J.
Thus,

f(a+ I, b+ J) = ab+ I + J

= (a′ + i)(b′ + j) + I + J

= a′b′ + a′j + b′i+ ij + I + J

= a′b′ + I + J

= f(a′ + I, b′ + J)

Furthermore,
f(ra+ I, b+ J) = rab+ I + J = rf(a+ I, b+ J)

and
f(a+ I, br + J) = abr + I + J = f(a+ I, b+ J)r

since R is commutative.
Finally,

f(a+ a′ + I, b+ J) = (a+ a′)b+ I + J = f(a+ I, b+ J) + f(a′ + I, b+ J)

and similarly for linearity on the right.
Thus, f is bilinear.
Thus, because R is commutative R/(I + J) is an abelian group under multiplication.
Thus, by the universal property of tensor product, f induces a map f : R/I ⊗R R/J →
R/(I + J) defined by f((a+ I)⊗ (b+ J)) = ab+ I + J.
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Let r ∈ R/I ⊗R R/J then

r =
n∑

i=1
(ai + I)⊗ (bi + J)

=
n∑

i=1
(ai + I)⊗ bi(1 + J)

=
n∑

i=1
bi(ai + I)⊗ (1 + J)

=
n∑

i=1
(biai + I)⊗ (1 + J)

=
(

n∑
i=1

biai + I

)
⊗ (1 + J)

Thus, r = (s+ I)⊗ (1 + J) for some s ∈ R.
Now, g : R/(I + J)→ R/I ⊗R R/J defined by g(a+ I + J) = (a+ I)⊗ 1.
Then g is clearly well defined since if a+ I + J = b+ I + J then there exists i, j ∈ I, J
respectively so a+ I + J = b+ i+ j + I + J . Thus,

g(a+ I + J) = (a+ I)⊗ (1 + J)
= (b+ i+ j + I)⊗ (1 + J)
= (b+ I)⊗ (1 + J) + (j + I)⊗ (1 + J)
= (b+ I)⊗ (1 + J) + j(1 + I)⊗ (1 + J)
= (b+ I)⊗ (1 + J) + (1 + I)⊗ (j + J)
= (b+ I)⊗ (1 + J) + (1 + I)⊗ 0
= (b+ I)⊗ (1 + J)
= g(b+ I + J)

Furthermore,

f(g(a+ I + J)) = f((a+ I)⊗ (1 + J)) = a+ I + J

g(f((a+I)⊗(b+J)) = g(ab+I+J) = (ab+I)⊗(1+J) = b(a+I)⊗(1+J) = (a+I)⊗(b+J).

Thus, g is the inverse of f so f defines an isomorphism.

(b) Let V and W be finitely generated R modules so that V ⊗R W = 0.
By the structure theorem, V ∼= Rm ⊕ T (V ) and W ∼= Rn ⊕ T (W ) where T (V ) and
T (W ) are the torsion parts of V and W respectively.

8



Kayla Orlinsky
Fall 2015

Then

0 = V ⊗R W
∼= (Rm ⊕ T (V ))⊗R (Rn ⊕ T (W ))
∼= (R⊕R⊕ · · · ⊕R⊕ T (V ))⊗R (Rn ⊕ T (W ))
∼= R⊗R (Rn ⊕ T (W ))⊕ · · · ⊕R⊗R (Rn ⊕ T (W ))⊕ T (V )⊗R (Rn ⊕ T (W ))
∼= (Rn ⊕ T (W ))⊕ (Rn ⊕ T (W ))⊕ · · · ⊕ (Rn ⊕ T (W ))⊕ T (V )⊗R (Rn ⊕ T (W ))
∼= (Rnm ⊕ T (W ))⊕ T (V )⊗R (Rn ⊕ T (W ))
∼= (Rnm ⊕ T (W ))⊕ (T (V )⊗R R

n)⊕ (T (V )⊗R T (W ))
∼= (Rnm ⊕ T (W ))⊕ (T (V )⊗R R

n)⊕ (T (V )⊗R T (W ))
∼= (Rnm ⊕ T (W ))⊕ [T (V )]n ⊕ (T (V )⊗R T (W ))

This can only be zero if each component in the direct sum is zero.
Namely n = m = 0, else if T (W ) = T (V ) = 0, then 0 ∼= Rnm which is a contradiction.
Finally, V ∼= T (V ) and W ∼= T (W ) and T (V )⊗R T (W ) ∼= 0.
Since V ∼= T (V ) is finitely generated, by the structure theorem, T (V ) ∼= R/(r1)⊕ · · · ⊕
R/(rn) for some ideals (ai) ⊂ R.

Now, there is a clear homomorphism f : R → T (V ) defined by f(a) = (a + (r1), a +
(r2), · · · , a+ (rn)). f will certainly be surjective.
Now, if f(a) = 0 then a ∈ (r1) ∩ · · · ∩ (rn). Namely, a ∈ Ann(V ). Similarly, if
a ∈ Ann(V ) then av = 0 for all v ∈ V and so aR/(r1)⊕ aR/(r2)⊕ · · · ⊕ aR/(rn) = 0
so a ∈ (r1) ∩ · · · ∩ (rn) so a ∈ ker(f).
Thus,

T (V ) ∼= R/Ann(V ).

Now, finally, by (a),

R/(Ann(V ) + Ann(W )) ∼= R/Ann(V )⊗R R/Ann(W ) ∼= T (V )⊗R T (W ) ∼= 0.

Therefore Ann(V ) + Ann(W ) = R so 1 ∈ Ann(V ) + Ann(W ) and so Ann(V ) and
Ann(W ) are relatively prime.

�
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Problem 7. Let g(x) = x12 + 5x6 − 2x3 + 17 ∈ Q[x] and F a splitting field of g(x) over
Q. Determine if Gal(F/Q) is solvable.

Solution. Let h(x) = x4 + 5x2− 2x+ 17. Then if α is a root, h(x), the third roots of α are
all roots of g(x). Namely, if K is the splitting field of h, then Gal(F/K) is clearly solvable
since every root of g to the third power is in K. Thus, it suffices to show that Gal(K/Q) is
solvable.

Now, h′(x) = 4x3 +10x−2 which is negative for all x ≤ 1/10 and positive for all x ≥ 1/5.
Thus, h has a minimum value somewhere between 1/10 and 1/5.

However, for all α ∈ (0, 1), h(α) ≥ −2 + 17 > 0. Thus, h has no real roots.
Since h has only complex roots, it has a conjugate pair of roots, α, α, β, β.
Note that since F is the splitting field of a separable polynomial F/Q is indeed Galois.
Now, K = Q(a, a, b, b) is Galois over Q. Thus, H = Gal(F/K) is normal in G =

Gal(F/Q) and Gal(K/Q) = G/H.
Now, each third rood in F clearly has minimal polynomial x3−α, x3− β, x3−α, x3− β

over K. These are irreducible since factoring would force a linear term to appear over K,
and K does not contain any third roots of α, β, α, β.

So [F : K] ≤ 312. Specifically, since each of these is irreducible over F , [F : K] = 3r for
some r ≤ 12.

However, then clearly H has order 3r and so it must be solvable. This is because p-groups
have non-trivial centers, and so recursively, we could obtain a subnormal chain by examining
H/Z(H), H/Z(H)/Z(H/Z(H)), etc.

Finally, α, β, α, β all have minimal polynomial of degree 4 over Q, so [G : H] ≤ 44 and
namely [G : H] = 4s = 22s for s ≤ 4, so G/H is solvable.

Therefore, since H is normal in G, and H is solvable and G/H is solvable, then G is
solvable.

�
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