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Problem 1. Let L be a Galois extension of a field F' with Gal(L/F) = D, the dihedral
group of order 10. How many subfields ' C M C L are there, what are their dimensions
over F, and how many are Galois over F'7

Solution. |Djo| = 10 = 2-5. Thus, by Sylow, n5 =1 mod 5 and n5|2 so ns = 1. Thus,
Dy has one Sylow 5-subgroup which is normal. Since D;q is not abelian, ny # 1. Thus,
ny =1 mod 2 and nsyl5 so ny = 5.

There is the trivial subgroup {e} which corresponds to the basefield F' which is trivially
galois over itself.

There are 5 subgroups P; ¢ = 1, ..., 5 of order 2, which are not normal in G. Thus, there
are b intermediate fields FF C M; C Li=1,...,5, such that |P;| = [L: M;] =2so [M;: F]=5
and M;/F is not a galois extension for i =1, ..., 5.

There is 1 normal subgroup of order 5 (). Thus, there is one intermediate field ' C K C L
with |Q| =5=[L: K] and [K : F] =2 and K/F is a galois extension.

Finally, there is the top field L which corresponds to Dy = Gal(L/F') which is galois
over F and [L : F| = 10.
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Problem 2. Up to isomorphism, using direct and semi-direct products, describe the
possible structures of a group of order 5- 11 - 61.

Solution. Let G be a group of order 5 - 11 - 61. Then by Sylow, ngt = 1 mod 61 and
ne1|5 - 11. Thus, ng; = 1. Also, ny; =1 mod 11 and nq;]5 - 61. Since 61 # 1 mod 11 and
305 =8 mod 11, we have that ny; = 1 as well.

Therefore, G has a normal Sylow 11-subgroup P;; and a normal Sylow 61-subgroup Fg;.
If G also has a normal Sylow 5-subgroup Ps, then G is abelian and

G = Z3355 .

Else, we have by the recognizing of semi-direct products theorem that G is a semi-direct
product of its Sylow subgroups.

There are 3 possible homomorphisms to check.

¢ : PsP;; — Aut(Fg;) | Since Py is normal, Ps Py is a subgroup of G. Let ¢ : PsPj; —

Aut(Ps1) = Zgo be a homomorphism.
Let P5 = <CL>, P11 = <b>, P61 = <C>

Then because Zgy has no elements of order 11, ¢ is determined by where it sends Ps.
Since Zgo is abelian, it has one normal Sylow 5-subgroup so ¢(a) will be some generator
of the Sylow 5-subgroup of Zg,. Namely, p;(a) will be some power of ps(a) for any two
homomorphisms ¢; and ¢,. Therefore, ¢; and ¢, will generate ismorophic semi-direct
products since a — a’ is an isomorphism of Ps for i = 1, ..., 4.

Thus, we need to only find one automorphism of Fy; of order 5.

The map o : ¢ — ¢” has order 5. This defines multiplication on G by beb™! = ¢(b)(c) = ¢

and aca™! = ¢(a)(c) = .

Thus,
G = (a,b,c|a® =b" = =1,ab = ba,bc = cb, ac = ’a)

@ P5P61 — Aut(Pll) @ P5P61 — Aut(Pll) & ZlO-

Again, Zjy has one Sylow 5-subgroup and no elements of order 61 so again, we will
obtain only one unique structure defined by ¢(a) having order 5.

Since 7 : ¢ — ¢ has order 5 we have

G = {(a,b,c|a® =b" = =1, ac = ca, bc = cb, ab = b*a)

(V2 P5 — Aut(P11P61) Since 11 and 61 are coprime, Aut(P11P61) = Aut(P11> X Allt(PGl).

Now, ¢(a) = (0,1d), (Id, 7) will define the same structures that we have already found.
Namely, the only new structure would be defined by p(a) = (o, 7).
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Thus, the final structure is

G = {(a,b,c|a® =b" = =1,ab = b’a,bc = cb,ac = ’a)

Thus, there are four possible group structures for G.

Z3355

{a,b,cla® =b" = =1, ab = ba, bc = cb, ac = ’a)

{a,b,cla® =b" = =1, ac = ca, bc = cb, ab = b*a)

{a,b,cla® =b" = =1,bc = cb, ab = b%a, ac = ’a)
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Problem 3. Let I be a nonzero ideal of R = Cl[zy, ..., x,]. Show that R/I is a finite
dimensional algebra over C if and only if I is contained in only finitely many maximal

ideals of R.

Solution. This is the same question as Spring 2012: Problem 1. We provide the same
proof here as we did there. Assume R/I is a finite dimensional algebra over C. Then
R/I is artinian, since proper ideals are sub-algebras of strictly smaller degree.

Thus, if S = {M;Ms--- M| M; maximal ideal of R/I} is the set of finite products of
maximal ideals in R/I. S is nonempty so S contains a minimal element in R/I, M; My - - - M.
Let N be some other maximal ideal of R/I. Then NM; - My, C M --- My, so

NMy---M=M,---M, CN.
However, N is maximal and so prime, thus M; C N for some 7. However, by maximality,

Thus, these are the only maximal ideals of R/I. By the correspondence theorem, there
is a 1-to-1 correspondence between maximal ideals of R containing I and maximal ideals of

R/I.
Since R/I has only finitely many maximal ideals, there are only finitely many maximal

ideals of R containing [.

Assume [ is contained in only finitely many maximal ideals of R. Note that R is
Noetherian by the Hilbert Basis theorem, and so all ideals are finitely generated.

Since [ is contained in only finitely many maximal ideals, V(1) contains only finitely
many points. Namely, by Nullstellensatza,

VI ﬂ M, is a finite intersection

a€eCn
where M, is the maximal ideal (by Nullstellensatz) of the form (x; — ay,...,2, — a,) for
a=(ay,...,a,).
Thus, VI = (', M, where I C M,, for all i.

Since /T is finitely generated, /I = (fi, fa, ..., fx), and for each f; there exists m; so
fit el

Let m = lem{m;}. Then
IcVI=M,
i=1
and .
I>WDH™ = (ﬂMaZ) =N M
i=1 i=1

Thus, the Chinese remainder theorem, since M,, are pairwise coprime, M;" are all

pairwise coprime (since if M + M is contained in some maximal ideal M, then M ‘contains

both M;? and M, and so must contain both M,, and M,; which forces M = R).

4
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Therefore,

R/VI" = R/, M = R/ [ M =[] R/M.

Claim 1. If F is a field and if L = F[xy,...,2,|/M is a field, then L is a finite
field extension of F'.

Proof. We proceed by induction on n.

Basecase: let L = F'aq] be a field. Then for f(a;) € L there exists g(a;) € L
such that f(a1)g(a1) =1 € L and so a; satisfies h(z) = f(z)g(z) — 1. Namely,
ay is algebraic over F' and so L is a finite field extension of F.

Assume L = Flay, ..., a;] is a finite field extension of F for all £ < n.

Then let L = Flay, ..., ay][ans1]. Since L is a field, by the same reasoning
as the basecase, L is algebraic over Flay,...,a,]. However, by the inductive
hypothesis, Fay, ..., a,)] is a finite field extension of F' and so

[L:F]=[L:Flay,...,a,]][Fla1,...,a,) : F] < o0.

Y

Thus, by the claim, R/M,, is a finite field extension of C and so namely, it is finite
dimensional over C.

Then, R/M;" is also finite dimensional since M;" C M,, so we can inject R/M;" < R /M,
which is finite dimensional, so R/M;" is finite dimensional, and so R/ VT" is finite dimensional
since it is a product of finite dimensional algebras.

Finally,
R/I=(RINT)/(INT")

is a quotient of a finite dimensional algebra, and so R/I is a finite dimensional C-algebra.

)
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Problem 4. Let R be a commutative ring with 1, and M a noetherian R-module. For
N a noetherian R module show that M ®z N is a noetherian R-module. When N is an
artinian R module show that M ®z N is an artinian R module.

Solution. Since M is noetherian, M is finitely generated. Namely, M = miR+---+m,R
for some my,...,m, € M.

Thus, we can define a module isomorphism

f:M— R"
m; — (0,0,...,0,1,0,...,0)  i™position

Therefore, we have a short exact sequence

0 R" M 0

and since tensor products are right-regular,
RPQr N —— M@ N —— 0

and so
R"®@p N =2 N" (direct sum) = M ®g N.

Since N is noetherian, a direct sum of n copies of N is noetherian and so M ®gz N is
noetherian.

Similarly, if N is artinian, a direct sum of n copies of N is artinian and so M ®g N is
artinian.

Y



Kayla Orlinsky
Spring 2014

Problem 5. For n > 5 show that the symmetric group S,, cannot have a subgroup H
with 3 < [S,, : H] <n ([S, : H] is the index of H in S,,).

Solution. Note that A, is always a subgroup of S, of index 2.

Let H be a subgroup of S, such that 2 < [S,, : H] = k < n. Then let S, act on
X = S, /H the set of left cosets (not necessarily a group) by left multiplication.

This defines a map

QOZSn—>S|X|:Sk

avr o,

where 0, : X — X is defined by 0,(bH) = abH.

Now, if a € ker(yp) then abH = bH for all b. Then abh = bR/ for h,h' € H so
a=0bnh"'b"" € bHb .
Thus,

a€ () bHb' C H.
beS’VL

Therefore, ker(p) C H. However, the only normal subgroups of S,, for n > 5 are the
trivial one, S, itself, or S,,.
Since |H| < |A,], | ker(v)] # n!/2,n!, so the kernel is trivial.

However, then S,, has an isomorphic copy inside Sy, which is not possible since k < n so
k! < nl.

Thus, H cannot exist. Y
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Problem 6. Let R be the group algebra C[Ss]. How many nonisomorphic, irreducible,
left modules does R have and why?

Solution. First, by classification theorems for group algebras, C[S3] is semi-simple and has
3 simple components because S3 has 3 conjugacy classes.

Furthermore, |S3] = 6 = n? + n2 + n3 by Mashke’s theorem where n; correspond to the
simple components M, (C) comprising C[S3].

Therefore, if n3 < 2, and since S is not abelian, not all the n; are 1. Thus, if ng = 2,
then 6 =nf+n3 +4son; =ny=1.

Therefore,
C[Ss] = C* @ M,(C).

Since the number of non-isomorphic simple left R-module is exactly the number of simple
components in the decomposition, R has 3 non-isomorphic simple left R-modules.

*** Although it was not asked, the simple left C[S3]-modules are exactly C[Ss]/I for
some maximal left ideal I.
Since maximal ideals of C[S3] are

I, = (0) ® C & My(C)
I3=CaCaC
since the maximal left ideal of C is (0) and the maximal left ideals of My(C) are the

column spaces, namely, C2.
Therefore, the non-isomorphic simple left C[S3]-modules are

M; = C (first component), M, = C (second component), Ms = C2.
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Problem 7. Let each gi(x), g2(2), ..., gn(z) € Q[x] be irreducible of degree four and let
L be a splitting field over Q for {g(z), ..., go()}. Show there is an extension field M of
L that is a radical extension of Q.

Solution. Since the g; are irreducible over QQ, they are separable.
Let L; be the splitting field of g; over Q.

Then since L; is the splitting field of a separable polynomial, it is a Galois extension of
Q. Since G; = Gal(L;/Q) is a subgroup of Sy (because |G| = [L;/Q] < 4! so G embeds into
S4) which is solvable, and since subgroups of solvable groups are solvable, G; is solvable.

Thus, g;(x) is solvable by radicals and L; is a radical extension.

Therefore, we obtain a chain,
QcLiclyLyCc---CLiLy...L, =M

where each product of the L; is radical over Q and so M is certainly a radical extension.

Therefore, L C Ly --- L, = M is contained in a radical extension of Q. ¥



