Kayla Orlinsky Algebra Exam Spring 2014

Problem 1. Let L be a Galois extension of a field F with $\operatorname{Gal}(L / F) \cong D_{10}$, the dihedral group of order 10. How many subfields $F \subset M \subset L$ are there, what are their dimensions over F, and how many are Galois over F ?

Solution. $\left|D_{10}\right|=10=2 \cdot 5$. Thus, by Sylow, $n_{5} \equiv 1 \bmod 5$ and $n_{5} \mid 2$ so $n_{5}=1$. Thus, D_{10} has one Sylow 5 -subgroup which is normal. Since D_{10} is not abelian, $n_{2} \neq 1$. Thus, $n_{2} \equiv 1 \bmod 2$ and $n_{2} \mid 5$ so $n_{2}=5$.

There is the trivial subgroup $\{e\}$ which corresponds to the basefield F which is trivially galois over itself.

There are 5 subgroups $P_{i} i=1, \ldots, 5$ of order 2 , which are not normal in G. Thus, there are 5 intermediate fields $F \subset M_{i} \subset L i=1, \ldots, 5$, such that $\left|P_{i}\right|=\left[L: M_{i}\right]=2$ so $\left[M_{i}: F\right]=5$ and M_{i} / F is not a galois extension for $i=1, \ldots, 5$.

There is 1 normal subgroup of order $5 Q$. Thus, there is one intermediate field $F \subset K \subset L$ with $|Q|=5=[L: K]$ and $[K: F]=2$ and K / F is a galois extension.

Finally, there is the top field L which corresponds to $D_{10}=\operatorname{Gal}(L / F)$ which is galois over F and $[L: F]=10$.

Problem 2. Up to isomorphism, using direct and semi-direct products, describe the possible structures of a group of order $5 \cdot 11 \cdot 61$.

Solution. Let G be a group of order $5 \cdot 11 \cdot 61$. Then by Sylow, $n_{61} \equiv 1 \bmod 61$ and $n_{61} \mid 5 \cdot 11$. Thus, $n_{61}=1$. Also, $n_{11} \equiv 1 \bmod 11$ and $n_{11} \mid 5 \cdot 61$. Since $61 \not \equiv 1 \bmod 11$ and $305 \equiv 8 \bmod 11$, we have that $n_{11}=1$ as well.

Therefore, G has a normal Sylow 11-subgroup P_{11} and a normal Sylow 61-subgroup P_{61}.
Abelian If G also has a normal Sylow 5-subgroup P_{5}, then G is abelian and

$$
G \cong \mathbb{Z}_{3355}
$$

Else, we have by the recognizing of semi-direct products theorem that G is a semi-direct product of its Sylow subgroups.

There are 3 possible homomorphisms to check.
$\varphi: P_{5} P_{11} \rightarrow \operatorname{Aut}\left(P_{61}\right)$ Since P_{11} is normal, $P_{5} P_{11}$ is a subgroup of G. Let $\varphi: P_{5} P_{11} \rightarrow$ $\operatorname{Aut}\left(P_{61}\right) \cong \mathbb{Z}_{60}$ be a homomorphism.

Let $P_{5} \cong\langle a\rangle, P_{11} \cong\langle b\rangle, P_{61} \cong\langle c\rangle$.
Then because \mathbb{Z}_{60} has no elements of order $11, \varphi$ is determined by where it sends P_{5}. Since \mathbb{Z}_{60} is abelian, it has one normal Sylow 5 -subgroup so $\varphi(a)$ will be some generator of the Sylow 5 -subgroup of \mathbb{Z}_{60}. Namely, $\varphi_{1}(a)$ will be some power of $\varphi_{2}(a)$ for any two homomorphisms φ_{1} and φ_{2}. Therefore, φ_{1} and φ_{2} will generate ismorophic semi-direct products since $a \mapsto a^{i}$ is an isomorphism of P_{5} for $i=1, \ldots, 4$.

Thus, we need to only find one automorphism of P_{61} of order 5 .
The map $\sigma: c \mapsto c^{9}$ has order 5. This defines multiplication on G by $b c b^{-1}=\varphi(b)(c)=c$ and $a c a^{-1}=\varphi(a)(c)=c^{9}$.

Thus,

$$
\varphi: P_{5} P_{61} \rightarrow \operatorname{Aut}\left(P_{11}\right) \varphi: P_{5} P_{61} \rightarrow \operatorname{Aut}\left(P_{11}\right) \cong \mathbb{Z}_{10}
$$

Again, \mathbb{Z}_{10} has one Sylow 5 -subgroup and no elements of order 61 so again, we will obtain only one unique structure defined by $\varphi(a)$ having order 5 .

Since $\tau: c \mapsto c^{3}$ has order 5 we have

$$
G \cong\left\langle a, b, c \mid a^{5}=b^{11}=c^{61}=1, a c=c a, b c=c b, a b=b^{3} a\right\rangle
$$

$\varphi: P_{5} \rightarrow \operatorname{Aut}\left(P_{11} P_{61}\right)$ Since 11 and 61 are coprime, $\operatorname{Aut}\left(P_{11} P_{61}\right) \cong \operatorname{Aut}\left(P_{11}\right) \times \operatorname{Aut}\left(P_{61}\right)$.
Now, $\varphi(a)=(\sigma, \operatorname{Id}),(\operatorname{Id}, \tau)$ will define the same structures that we have already found. Namely, the only new structure would be defined by $\varphi(a)=(\sigma, \tau)$.

Thus, the final structure is

$$
G \cong\left\langle a, b, c \mid a^{5}=b^{11}=c^{61}=1, a b=b^{3} a, b c=c b, a c=c^{9} a\right\rangle
$$

Thus, there are four possible group structures for G.

$$
\begin{gathered}
\mathbb{Z}_{3355} \\
\left\langle a, b, c \mid a^{5}=b^{11}=c^{61}=1, a b=b a, b c=c b, a c=c^{9} a\right\rangle \\
\left\langle a, b, c \mid a^{5}=b^{11}=c^{61}=1, a c=c a, b c=c b, a b=b^{3} a\right\rangle \\
\left\langle a, b, c \mid a^{5}=b^{11}=c^{61}=1, b c=c b, a b=b^{3} a, a c=c^{9} a\right\rangle
\end{gathered}
$$

Problem 3. Let I be a nonzero ideal of $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Show that R / I is a finite dimensional algebra over \mathbb{C} if and only if I is contained in only finitely many maximal ideals of R.

Solution. This is the same question as Spring 2012: Problem 1. We provide the same proof here as we did there. \square Assume R / I is a finite dimensional algebra over \mathbb{C}. Then R / I is artinian, since proper ideals are sub-algebras of strictly smaller degree.

Thus, if $S=\left\{M_{1} M_{2} \cdots M_{k} \mid M_{i}\right.$ maximal ideal of $\left.R / I\right\}$ is the set of finite products of maximal ideals in R / I. S is nonempty so S contains a minimal element in $R / I, M_{1} M_{2} \cdots M_{k}$. Let N be some other maximal ideal of R / I. Then $N M_{1} \cdots M_{k} \subset M_{1} \cdots M_{k}$ so

$$
N M_{1} \cdots M_{k}=M_{1} \cdots M_{k} \subset N
$$

However, N is maximal and so prime, thus $M_{i} \subset N$ for some i. However, by maximality, $M_{i}=N$.

Thus, these are the only maximal ideals of R / I. By the correspondence theorem, there is a 1-to-1 correspondence between maximal ideals of R containing I and maximal ideals of R / I.

Since R / I has only finitely many maximal ideals, there are only finitely many maximal ideals of R containing I.
\Longleftarrow Assume I is contained in only finitely many maximal ideals of R. Note that R is Noetherian by the Hilbert Basis theorem, and so all ideals are finitely generated.

Since I is contained in only finitely many maximal ideals, $V(I)$ contains only finitely many points. Namely, by Nullstellensatza,

$$
\sqrt{I} \bigcap_{a \in \mathbb{C}^{n}} M_{a} \quad \text { is a finite intersection }
$$

where M_{a} is the maximal ideal (by Nullstellensatz) of the form $\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)$ for $a=\left(a_{1}, \ldots, a_{n}\right)$.

Thus, $\sqrt{I}=\bigcap_{i=1}^{n} M_{a_{i}}$ where $I \subset M_{a_{i}}$ for all i.
Since \sqrt{I} is finitely generated, $\sqrt{I}=\left(f_{1}, f_{2}, \ldots, f_{k}\right)$, and for each f_{i} there exists m_{i} so $f_{i}^{m_{i}} \in I$.

Let $m=\operatorname{lcm}\left\{m_{i}\right\}$. Then

$$
I \subset \sqrt{I}=\bigcap_{i=1}^{n} M_{a_{i}}
$$

and

$$
I \supset(\sqrt{I})^{m}=\left(\bigcap_{i=1}^{n} M_{a_{i}}\right)^{m}=\bigcap_{i=1}^{n} M_{a_{i}}^{m} .
$$

Thus, the Chinese remainder theorem, since $M_{a_{i}}$ are pairwise coprime, $M_{a_{i}}^{m}$ are all pairwise coprime (since if $M_{a_{i}}^{m}+M_{a_{j}}^{m}$ is contained in some maximal ideal M, then M contains both $M_{a_{i}}^{m}$ and $M_{a_{j}}^{m}$ and so must contain both $M_{a_{i}}$ and $M_{a_{j}}$ which forces $M=R$).

Therefore,

$$
R / \sqrt{I}^{m} \cong R / \cap_{i} M_{a_{i}}^{m} \cong R / \prod_{i} M_{a_{i}}^{m} \cong \prod R / M_{a_{i}}^{m}
$$

Claim 1. If F is a field and if $L=F\left[x_{1}, \ldots, x_{n}\right] / M$ is a field, then L is a finite field extension of F.

Proof. We proceed by induction on n.
Basecase: let $L=F\left[a_{1}\right]$ be a field. Then for $f\left(a_{1}\right) \in L$ there exists $g\left(a_{1}\right) \in L$ such that $f\left(a_{1}\right) g\left(a_{1}\right)=1 \in L$ and so a_{1} satisfies $h(x)=f(x) g(x)-1$. Namely, a_{1} is algebraic over F and so L is a finite field extension of F.

Assume $L=F\left[a_{1}, \ldots, a_{k}\right]$ is a finite field extension of F for all $k \leq n$.
Then let $L=F\left[a_{1}, \ldots, a_{n}\right]\left[a_{n+1}\right]$. Since L is a field, by the same reasoning as the basecase, L is algebraic over $F\left[a_{1}, \ldots, a_{n}\right]$. However, by the inductive hypothesis, $F\left[a_{1}, \ldots, a_{n}\right]$ is a finite field extension of F and so

$$
[L: F]=\left[L: F\left[a_{1}, \ldots, a_{n}\right]\right]\left[F\left[a_{1}, \ldots, a_{n}\right]: F\right]<\infty
$$

Thus, by the claim, $R / M_{a_{i}}$ is a finite field extension of \mathbb{C} and so namely, it is finite dimensional over \mathbb{C}.

Then, $R / M_{a_{i}}^{m}$ is also finite dimensional since $M_{a_{i}}^{m} \subset M_{a_{i}}$ so we can inject $R / M_{a_{i}}^{m} \hookrightarrow R / M_{a_{i}}$ which is finite dimensional, so $R / M_{a_{i}}^{m}$ is finite dimensional, and so R / \sqrt{I} is finite dimensional since it is a product of finite dimensional algebras.

Finally,

$$
R / I \cong\left(R / \sqrt{I}^{m}\right) /\left(I / \sqrt{I}^{m}\right)
$$

is a quotient of a finite dimensional algebra, and so R / I is a finite dimensional \mathbb{C}-algebra.

Problem 4. Let R be a commutative ring with 1 , and M a noetherian R-module. For N a noetherian R module show that $M \otimes_{R} N$ is a noetherian R-module. When N is an artinian R module show that $M \otimes_{R} N$ is an artinian R module.

Solution. Since M is noetherian, M is finitely generated. Namely, $M=m_{1} R+\cdots+m_{n} R$ for some $m_{1}, \ldots, m_{n} \in M$.

Thus, we can define a module isomorphism

$$
\begin{aligned}
f: M & \rightarrow R^{n} \\
m_{i} & \mapsto(0,0, \ldots, 0,1,0, \ldots, 0) \quad i^{\text {th }} \text {-position }
\end{aligned}
$$

Therefore, we have a short exact sequence

$$
0 \longrightarrow R^{n} \longrightarrow M \longrightarrow 0
$$

and since tensor products are right-regular,

$$
R^{n} \otimes_{R} N \longrightarrow M \otimes_{R} N \longrightarrow 0
$$

and so

$$
R^{n} \otimes_{R} N \cong N^{n}(\text { direct sum }) \cong M \otimes_{R} N
$$

Since N is noetherian, a direct sum of n copies of N is noetherian and so $M \otimes_{R} N$ is noetherian.

Similarly, if N is artinian, a direct sum of n copies of N is artinian and so $M \otimes_{R} N$ is artinian.

Problem 5. For $n \geq 5$ show that the symmetric group S_{n} cannot have a subgroup H with $3 \leq\left[S_{n}: H\right]<n\left(\left[S_{n}: H\right]\right.$ is the index of H in $\left.S_{n}\right)$.

Solution. Note that A_{n} is always a subgroup of S_{n} of index 2 .
Let H be a subgroup of S_{n} such that $2<\left[S_{n}: H\right]=k<n$. Then let S_{n} act on $X=S_{n} / H$ the set of left cosets (not necessarily a group) by left multiplication.

This defines a map

$$
\begin{aligned}
\varphi: S_{n} & \rightarrow S_{|X|}=S_{k} \\
a & \mapsto \sigma_{a}
\end{aligned}
$$

where $\sigma_{a}: X \rightarrow X$ is defined by $\sigma_{a}(b H)=a b H$.
Now, if $a \in \operatorname{ker}(\varphi)$ then $a b H=b H$ for all b. Then $a b h=b h^{\prime}$ for $h, h^{\prime} \in H$ so $a=b h^{\prime} h^{-1} b^{-1} \in b H b^{-1}$.

Thus,

$$
a \in \bigcap_{b \in S_{n}} b H b^{-1} \subset H
$$

Therefore, $\operatorname{ker}(\varphi) \subset H$. However, the only normal subgroups of S_{n} for $n \geq 5$ are the trivial one, S_{n} itself, or S_{n}.

Since $|H|<\left|A_{n}\right|,|\operatorname{ker}(\varphi)| \neq n!/ 2, n!$, so the kernel is trivial.
However, then S_{n} has an isomorphic copy inside S_{k}, which is not possible since $k<n$ so $k!<n!$.

Thus, H cannot exist.

Problem 6. Let R be the group algebra $\mathbb{C}\left[S_{3}\right]$. How many nonisomorphic, irreducible, left modules does R have and why?

Solution. First, by classification theorems for group algebras, $\mathbb{C}\left[S_{3}\right]$ is semi-simple and has 3 simple components because S_{3} has 3 conjugacy classes.

Furthermore, $\left|S_{3}\right|=6=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}$ by Mashke's theorem where n_{i} correspond to the simple components $M_{n_{i}}(\mathbb{C})$ comprising $\mathbb{C}\left[S_{3}\right]$.

Therefore, if $n_{3} \leq 2$, and since S_{3} is not abelian, not all the n_{i} are 1. Thus, if $n_{3}=2$, then $6=n_{1}^{2}+n_{2}^{2}+4$ so $n_{1}=n_{2}=1$.

Therefore,

$$
\mathbb{C}\left[S_{3}\right] \cong \mathbb{C}^{2} \oplus M_{2}(\mathbb{C})
$$

Since the number of non-isomorphic simple left R-module is exactly the number of simple components in the decomposition, R has 3 non-isomorphic simple left R-modules.
${ }^{* * *}$ Although it was not asked, the simple left $\mathbb{C}\left[S_{3}\right]$-modules are exactly $\mathbb{C}\left[S_{3}\right] / I$ for some maximal left ideal I.
Since maximal ideals of $\mathbb{C}\left[S_{3}\right]$ are

$$
\begin{aligned}
I_{1} & =(0) \oplus \mathbb{C} \oplus M_{2}(\mathbb{C}) \\
I_{2} & =\mathbb{C} \oplus(0) \oplus M_{2}(\mathbb{C}) \\
I_{3} & =\mathbb{C} \oplus \mathbb{C} \oplus \mathbb{C}^{2}
\end{aligned}
$$

since the maximal left ideal of \mathbb{C} is (0) and the maximal left ideals of $M_{2}(\mathbb{C})$ are the column spaces, namely, \mathbb{C}^{2}.
Therefore, the non-isomorphic simple left $\mathbb{C}\left[S_{3}\right]$-modules are

$$
M_{1} \cong \mathbb{C}(\text { first component }), \quad M_{2} \cong \mathbb{C}(\text { second component }), \quad M_{3} \cong \mathbb{C}^{2}
$$

Problem 7. Let each $g_{1}(x), g_{2}(x), \ldots, g_{n}(x) \in \mathbb{Q}[x]$ be irreducible of degree four and let L be a splitting field over \mathbb{Q} for $\left\{g_{1}(x), \ldots, g_{n}(x)\right\}$. Show there is an extension field M of L that is a radical extension of \mathbb{Q}.

Solution. Since the g_{i} are irreducible over \mathbb{Q}, they are separable.
Let L_{i} be the splitting field of g_{i} over \mathbb{Q}.
Then since L_{i} is the splitting field of a separable polynomial, it is a Galois extension of \mathbb{Q}. Since $G_{i}=\operatorname{Gal}\left(L_{i} / \mathbb{Q}\right)$ is a subgroup of S_{4} (because $|G|=\left[L_{i} / \mathbb{Q}\right] \leq 4$! so G embeds into S_{4}) which is solvable, and since subgroups of solvable groups are solvable, G_{i} is solvable.

Thus, $g_{i}(x)$ is solvable by radicals and L_{i} is a radical extension.
Therefore, we obtain a chain,

$$
\mathbb{Q} \subset L_{1} \subset L_{1} L_{2} \subset \cdots \subset L_{1} L_{2} \ldots L_{n}=M
$$

where each product of the L_{i} is radical over \mathbb{Q} and so M is certainly a radical extension.
Therefore, $L \subset L_{1} \cdots L_{n}=M$ is contained in a radical extension of \mathbb{Q}.

