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Problem 1. Let L be a Galois extension of a field F with Gal(L/F ) ∼= D10, the dihedral
group of order 10. How many subfields F ⊂M ⊂ L are there, what are their dimensions
over F, and how many are Galois over F?

Solution. |D10| = 10 = 2 · 5. Thus, by Sylow, n5 ≡ 1 mod 5 and n5|2 so n5 = 1. Thus,
D10 has one Sylow 5-subgroup which is normal. Since D10 is not abelian, n2 6= 1. Thus,
n2 ≡ 1 mod 2 and n2|5 so n2 = 5.

There is the trivial subgroup {e} which corresponds to the basefield F which is trivially
galois over itself.

There are 5 subgroups Pi i = 1, ..., 5 of order 2, which are not normal in G. Thus, there
are 5 intermediate fields F ⊂Mi ⊂ L i = 1, ..., 5, such that |Pi| = [L : Mi] = 2 so [Mi : F ] = 5
and Mi/F is not a galois extension for i = 1, ..., 5.

There is 1 normal subgroup of order 5 Q. Thus, there is one intermediate field F ⊂ K ⊂ L
with |Q| = 5 = [L : K] and [K : F ] = 2 and K/F is a galois extension.

Finally, there is the top field L which corresponds to D10 = Gal(L/F ) which is galois
over F and [L : F ] = 10. �
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Problem 2. Up to isomorphism, using direct and semi-direct products, describe the
possible structures of a group of order 5 · 11 · 61.

Solution. Let G be a group of order 5 · 11 · 61. Then by Sylow, n61 ≡ 1 mod 61 and
n61|5 · 11. Thus, n61 = 1. Also, n11 ≡ 1 mod 11 and n11|5 · 61. Since 61 6≡ 1 mod 11 and
305 ≡ 8 mod 11, we have that n11 = 1 as well.

Therefore, G has a normal Sylow 11-subgroup P11 and a normal Sylow 61-subgroup P61.
Abelian If G also has a normal Sylow 5-subgroup P5, then G is abelian and

G ∼= Z3355.

Else, we have by the recognizing of semi-direct products theorem that G is a semi-direct
product of its Sylow subgroups.

There are 3 possible homomorphisms to check.
ϕ : P5P11 → Aut(P61) Since P11 is normal, P5P11 is a subgroup of G. Let ϕ : P5P11 →

Aut(P61) ∼= Z60 be a homomorphism.
Let P5 ∼= 〈a〉, P11 ∼= 〈b〉, P61 ∼= 〈c〉.
Then because Z60 has no elements of order 11, ϕ is determined by where it sends P5.

Since Z60 is abelian, it has one normal Sylow 5-subgroup so ϕ(a) will be some generator
of the Sylow 5-subgroup of Z60. Namely, ϕ1(a) will be some power of ϕ2(a) for any two
homomorphisms ϕ1 and ϕ2. Therefore, ϕ1 and ϕ2 will generate ismorophic semi-direct
products since a 7→ ai is an isomorphism of P5 for i = 1, ..., 4.

Thus, we need to only find one automorphism of P61 of order 5.
The map σ : c 7→ c9 has order 5. This defines multiplication on G by bcb−1 = ϕ(b)(c) = c

and aca−1 = ϕ(a)(c) = c9.
Thus,

G ∼= 〈a, b, c | a5 = b11 = c61 = 1, ab = ba, bc = cb, ac = c9a〉

ϕ : P5P61 → Aut(P11) ϕ : P5P61 → Aut(P11) ∼= Z10.
Again, Z10 has one Sylow 5-subgroup and no elements of order 61 so again, we will

obtain only one unique structure defined by ϕ(a) having order 5.
Since τ : c 7→ c3 has order 5 we have

G ∼= 〈a, b, c | a5 = b11 = c61 = 1, ac = ca, bc = cb, ab = b3a〉

ϕ : P5 → Aut(P11P61) Since 11 and 61 are coprime, Aut(P11P61) ∼= Aut(P11)×Aut(P61).

Now, ϕ(a) = (σ, Id), (Id, τ) will define the same structures that we have already found.
Namely, the only new structure would be defined by ϕ(a) = (σ, τ).
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Thus, the final structure is

G ∼= 〈a, b, c | a5 = b11 = c61 = 1, ab = b3a, bc = cb, ac = c9a〉

Thus, there are four possible group structures for G.

Z3355

〈a, b, c | a5 = b11 = c61 = 1, ab = ba, bc = cb, ac = c9a〉

〈a, b, c | a5 = b11 = c61 = 1, ac = ca, bc = cb, ab = b3a〉

〈a, b, c | a5 = b11 = c61 = 1, bc = cb, ab = b3a, ac = c9a〉

�
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Problem 3. Let I be a nonzero ideal of R = C[x1, ..., xn]. Show that R/I is a finite
dimensional algebra over C if and only if I is contained in only finitely many maximal
ideals of R.

Solution. This is the same question as Spring 2012: Problem 1. We provide the same
proof here as we did there. =⇒ Assume R/I is a finite dimensional algebra over C. Then
R/I is artinian, since proper ideals are sub-algebras of strictly smaller degree.

Thus, if S = {M1M2 · · ·Mk |Mi maximal ideal of R/I} is the set of finite products of
maximal ideals in R/I. S is nonempty so S contains a minimal element in R/I, M1M2 · · ·Mk.
Let N be some other maximal ideal of R/I. Then NM1 · · ·Mk ⊂M1 · · ·Mk so

NM1 · · ·Mk = M1 · · ·Mk ⊂ N.

However, N is maximal and so prime, thus Mi ⊂ N for some i. However, by maximality,
Mi = N .

Thus, these are the only maximal ideals of R/I. By the correspondence theorem, there
is a 1-to-1 correspondence between maximal ideals of R containing I and maximal ideals of
R/I.

Since R/I has only finitely many maximal ideals, there are only finitely many maximal
ideals of R containing I.

⇐= Assume I is contained in only finitely many maximal ideals of R. Note that R is
Noetherian by the Hilbert Basis theorem, and so all ideals are finitely generated.

Since I is contained in only finitely many maximal ideals, V (I) contains only finitely
many points. Namely, by Nullstellensatza,

√
I
⋂

a∈Cn

Ma is a finite intersection

where Ma is the maximal ideal (by Nullstellensatz) of the form (x1 − a1, ..., xn − an) for
a = (a1, ..., an).

Thus,
√
I = ⋂n

i=1 Mai
where I ⊂Mai

for all i.
Since

√
I is finitely generated,

√
I = (f1, f2, ..., fk), and for each fi there exists mi so

fmi
i ∈ I.

Let m = lcm{mi}. Then

I ⊂
√
I =

n⋂
i=1

Mai

and
I ⊃ (

√
I)m =

(
n⋂

i=1
Mai

)m

=
n⋂

i=1
Mm

ai
.

Thus, the Chinese remainder theorem, since Mai
are pairwise coprime, Mm

ai
are all

pairwise coprime (since if Mm
ai

+Mm
aj

is contained in some maximal ideal M , then M contains
both Mm

ai
and Mm

aj
and so must contain both Mai

and Maj
which forces M = R).
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Therefore,
R/
√
I

m ∼= R/ ∩i M
m
ai

∼= R/
∏

i

Mm
ai

∼=
∏
R/Mm

ai
.

Claim 1. If F is a field and if L = F [x1, ..., xn]/M is a field, then L is a finite
field extension of F .

Proof. We proceed by induction on n.
Basecase: let L = F [a1] be a field. Then for f(a1) ∈ L there exists g(a1) ∈ L

such that f(a1)g(a1) = 1 ∈ L and so a1 satisfies h(x) = f(x)g(x)− 1. Namely,
a1 is algebraic over F and so L is a finite field extension of F.

Assume L = F [a1, ..., ak] is a finite field extension of F for all k ≤ n.
Then let L = F [a1, ..., an][an+1]. Since L is a field, by the same reasoning

as the basecase, L is algebraic over F [a1, ..., an]. However, by the inductive
hypothesis, F [a1, ..., an] is a finite field extension of F and so

[L : F ] = [L : F [a1, ..., an]][F [a1, ..., an] : F ] <∞.

�

Thus, by the claim, R/Mai
is a finite field extension of C and so namely, it is finite

dimensional over C.
Then, R/Mm

ai
is also finite dimensional sinceMm

ai
⊂Mai

so we can injectR/Mm
ai
↪→ R/Mai

which is finite dimensional, so R/Mm
ai

is finite dimensional, and so R/
√
I

m is finite dimensional
since it is a product of finite dimensional algebras.

Finally,
R/I ∼= (R/

√
I

m
)/(I/

√
I

m
)

is a quotient of a finite dimensional algebra, and so R/I is a finite dimensional C-algebra.
�
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Problem 4. Let R be a commutative ring with 1, and M a noetherian R-module. For
N a noetherian R module show that M ⊗R N is a noetherian R-module. When N is an
artinian R module show that M ⊗R N is an artinian R module.

Solution. Since M is noetherian, M is finitely generated. Namely, M = m1R+ · · ·+mnR
for some m1, ...,mn ∈M .

Thus, we can define a module isomorphism

f : M → Rn

mi 7→ (0, 0, ..., 0, 1, 0, ..., 0) ith-position

Therefore, we have a short exact sequence

0 Rn M 0

and since tensor products are right-regular,

Rn ⊗R N M ⊗R N 0

and so
Rn ⊗R N ∼= Nn (direct sum) ∼= M ⊗R N.

Since N is noetherian, a direct sum of n copies of N is noetherian and so M ⊗R N is
noetherian.

Similarly, if N is artinian, a direct sum of n copies of N is artinian and so M ⊗R N is
artinian.

�
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Problem 5. For n ≥ 5 show that the symmetric group Sn cannot have a subgroup H
with 3 ≤ [Sn : H] < n ([Sn : H] is the index of H in Sn).

Solution. Note that An is always a subgroup of Sn of index 2.
Let H be a subgroup of Sn such that 2 < [Sn : H] = k < n. Then let Sn act on

X = Sn/H the set of left cosets (not necessarily a group) by left multiplication.
This defines a map

ϕ : Sn → S|X| = Sk

a 7→ σa

where σa : X → X is defined by σa(bH) = abH.
Now, if a ∈ ker(ϕ) then abH = bH for all b. Then abh = bh′ for h, h′ ∈ H so

a = bh′h−1b−1 ∈ bHb−1.

Thus,
a ∈

⋂
b∈Sn

bHb−1 ⊂ H.

Therefore, ker(ϕ) ⊂ H. However, the only normal subgroups of Sn for n ≥ 5 are the
trivial one, Sn itself, or Sn.

Since |H| < |An|, | ker(ϕ)| 6= n!/2, n!, so the kernel is trivial.
However, then Sn has an isomorphic copy inside Sk, which is not possible since k < n so

k! < n!.
Thus, H cannot exist. �
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Problem 6. Let R be the group algebra C[S3]. How many nonisomorphic, irreducible,
left modules does R have and why?

Solution. First, by classification theorems for group algebras, C[S3] is semi-simple and has
3 simple components because S3 has 3 conjugacy classes.

Furthermore, |S3| = 6 = n2
1 + n2

2 + n2
3 by Mashke’s theorem where ni correspond to the

simple components Mni
(C) comprising C[S3].

Therefore, if n3 ≤ 2, and since S3 is not abelian, not all the ni are 1. Thus, if n3 = 2,
then 6 = n2

1 + n2
2 + 4 so n1 = n2 = 1.

Therefore,
C[S3] ∼= C2 ⊕M2(C).

Since the number of non-isomorphic simple left R-module is exactly the number of simple
components in the decomposition, R has 3 non-isomorphic simple left R-modules.

***Although it was not asked, the simple left C[S3]-modules are exactly C[S3]/I for
some maximal left ideal I.
Since maximal ideals of C[S3] are

I1 = (0)⊕ C⊕M2(C)
I2 = C⊕ (0)⊕M2(C)
I3 = C⊕ C⊕ C2

since the maximal left ideal of C is (0) and the maximal left ideals of M2(C) are the
column spaces, namely, C2.
Therefore, the non-isomorphic simple left C[S3]-modules are

M1 ∼= C (first component), M2 ∼= C (second component), M3 ∼= C2.

�
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Problem 7. Let each g1(x), g2(x), ..., gn(x) ∈ Q[x] be irreducible of degree four and let
L be a splitting field over Q for {g1(x), ..., gn(x)}. Show there is an extension field M of
L that is a radical extension of Q.

Solution. Since the gi are irreducible over Q, they are separable.
Let Li be the splitting field of gi over Q.
Then since Li is the splitting field of a separable polynomial, it is a Galois extension of

Q. Since Gi = Gal(Li/Q) is a subgroup of S4 (because |G| = [Li/Q] ≤ 4! so G embeds into
S4) which is solvable, and since subgroups of solvable groups are solvable, Gi is solvable.

Thus, gi(x) is solvable by radicals and Li is a radical extension.
Therefore, we obtain a chain,

Q ⊂ L1 ⊂ L1L2 ⊂ · · · ⊂ L1L2 . . . Ln = M

where each product of the Li is radical over Q and so M is certainly a radical extension.
Therefore, L ⊂ L1 · · ·Ln = M is contained in a radical extension of Q. �
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