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Problem 1. Let G be a group of order 56 having at least 7 elements of order 7. Let S
be a Sylow 2-subgroup of G.

(a) Prove that S is normal in G and S = Cg(95).

(b) Describe the possible structures of G up to isomorphism. (Hint: How does an
element of order 7 act on the elements of S.)

Solution.

(a) Since by Sylow n7|8 and n; =1 mod 7, n; = 1,8. Because G has at least 7 elements
of order 7, ny # 1 so ny; = 8.

Thus, because Sylow 7-subgroups are cyclic in G’ and they are conjugates, G actually
has 6 - 8 = 48 elements of order 7.

Since 56 — 48 = 8, G can have only 7 elements of even order.
Thus, G has one Sylow 2-subgroup, S.

Now, by assumption G is non-abelian (its Sylow 7-subgroup is not normal). Thus,

Cal(S) #G.
Now, because S is normal, C(S) will also be normal in G. if a € G, z € Cg(S5), s € S,
then
aza 's(ara™) ' = axa'sarta?
= axsox_la_l alsa = S0,
= asoa’l
=S s = asoa_l

Thus, aza™' € Cg(S).
Therefore, if |Ce(S)| = 56/2 = 28, then C(S) will be normal in G.

However, in Cg(S), n7 = 1 mod 7, n7]4 so Cg(S) has a normal Sylow 7-subgroup.
However, normal Sylow subgroups of normal subgroups are normal in the whole
group (see Fall 2011: Problem 5 Claim 3). This contradicts that G has 8 Sylow
7-subgroups.

If |Ce(S)| = 14, then again Cg(S) has a normal Sylow 7-subgroup and so again, this
would force G to have a normal Sylow 7-subgroup.
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Finally, |C(S)| # 7 because again, C(S) is normal in G.
Therefore, |C(S)| has even order so Cg(S) C S.

Thus, Ce(S) = Z(S) and so it cannot be trivial since S is a p-group and so has
non-trivial center by the class equation.

Let s € S not be in Cg(S). Then there exists a,b € S with a # b and sas™! = b. If
a € Cg(S) then

b=sas '=saslata=ss"la=a

which is a contradiction. Similarly, b &€ Cs(S). Note that clealry s # a and s # b.

However, this implies that there are an odd number of elements not in C¢/(.S) which is
impossible since C(S) C S and so has even order.

To see this, note that so far we have found 3 total elements not in C(.S) and since
C(S) has even order, there must exist at least one more ¢ € S such that ¢ ¢ Cg(S)
and c is distinct from a and b.

I cannot be a or b, else we would get that c is one of the a or b. Namely,

L= sasfl SO C = a.

However, scs™
if scs™' = b then scs™

Therefore, there must exist some d such that scs™ = d, where d # a, b, ¢, s. Furthermore,

by the same reasoning as before, d ¢ C(S). Else
c=s'ds=s"'dsd'd=s"'sd=d

which contradicts that ¢ ¢ Cg(S).

However, we now have 5 distinct elements not in Cg(S). Repeating we obtain a
contradiction, that C(S) is trivial.

Finally, C¢(S) = Z(S) = S and so S is abelian.
Since S is abelian,

S = Zg,Z4 X ZQ,Z%.
This will give three possible structures for G.

Note that by the recognizing semi-direct products theorem, G = P;S where P; is a
Sylow 7-subgroup.

(o P7 — Aut(Zg) Let

(ol P7 — Aut(Zg) ng ng,Q §Z6

Since there are no elements of order 7 in Aut(Zs), only the trivial homomorphism is
well defined. Since this would define an abelian structure on G, this cannot lead to a
possible structure for G.

(o P7 — Aut(Z4 X Zg) Let Q. P7 — Aut(Z4 X ZQ)

First, if 0 : Z4 X Zo — 74 X 7o is an automorphism, one can check that to ensure the
kernel of o is trivial, we only have the following choices for o :
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o(1,0) =(1,0) and o(0,1) =(0,1)
o(1,0) =(1,1) and o(0,1) = (0,1)
o(1,0) =(3,0) and o(0,1) =(0,1)
#(1,0) = (3,1) and (0,1) = (0,1)
0(1,0) =(3,1) and o(0,1)=(1,0)
o(1,0) =(3,0) and o(0,1) = (1,0)
o(1,0) =(1,1) and o(0,1) = (1,0)
c(1,0) =(1,0) and o(0,1) = (1,0)

Namely, Aut(Z, X Zs) has order 8 and so again, there are no elements of order 7 for ¢
to map.

01 Pr— @ Pr— Aut(Z3) | ¢ : Pr — Aut(Z3) = GL3(F,). Since

|GL3(Fy)| = (2% —1)(2° —2)(2* = 2*) =7-6-4=2%-3.7

Therefore, there exists a non-trivial homomorphism ¢ under which we can define the
semi-direct product structure for G.

Now, any ¢ must map P to a Sylow 7-subgroup of Aut(Z3). Since Sylow subgroups
are conjugates, any two different homomorphisms 1, ¢o will have conjugate images.
Namely, they will generate isomorphic semi-direct products.

Thus, there is only one possible group G' with non-normal Sylow 7-subgroup.

To actually write down a presentation for G, we must find an element of order 7 in
Aut(Z3).

Let S = (a,b,c) and P; = (d).

After some effort, one obtains that the automorphism of S defined by a + b, b +— bc,
¢ +— a defined an automorphism of order 7.

Therefore, we get the following multiplication for

G X 75 x, Zr

G {(a,bcdld=0==d =1,dad™" = b,dbd" = be,ded™" = a).

This is the only possible structure for G.
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Problem 2. Show that a finite ring with no nonzero nilpotent elements is commutative.

Solution. Let R be a finite ring with no nonzero nilpotent elements.
Let r € J(R). Then 1 — r is invertible in R because J(R) is quasi-regular.

Now, because R is artinian (it is finite), we have a decreasing chain
CEIGERE

which must terminate after a finite number of steps. Namely, (") = (™) for all n > m.

However, r™ = ar™*! for some a € R. Thus,
r™(1—ar)=0.

Since ar € J(R), 1 — ar has an inverse so ™ = 0. Namely, r is nilpotent.
Since r € R, it must be that r = 0.
Thus, J(R) = 0.

Therfore, by Artin Wedderburn, R = M,,, (D) @ --- & M, (Dy,) for some division rings
D;. Note that because R is finite, D; must be finite, and since finite division rings are fields,
D; = F, a field of ¢; elements.

However, since R has no nonzero nilpotent elements and

0 0 --- 0 1]
O 0 --- 0
A= e
00 --- 00
00 - 0 0

is a nilpotent matrix over any field (any division ring really), n; = 1 for all 1.

Thus, R=F, @---®F, and so it is commutative. 8
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Problem 3. If R = M,(Z), and A is an additive subgroup of R, show that as additive
subgroups [R : A] is finite if and only if R ®7; Q = A ®7 Q.

Solution.

Assume [R: A] = m < co. Then for all X € R/A, with X # 0 (in other words
for X ¢ A), mX =0 € R/A since R/A is a finite group, (in other words, mX € A).

Therefore for all X € R with X ¢ A, andall g € Q, X @ mg=mX ® ¢ € A®; Q and
clearly if X € A, then X ® ¢ € A®Rz;Qso R®R; Q= A®zQ.

Note that R 2 Z" and so R is a finitely generated free module over a PID (Z is
a PID).

Therefore, A is also a free finitely generated Z-module so A = Z™ for some m since
submodules of free module over PIDs are also free and additive subgroups are submodules.

Therefore, if R ®; Q = A ®z Q then 7" @7 Q = Z™ @y Q, so of course n? = m.

Therefore, [R : A] < oo since if [R : A] = 0o then there exists 4, j so there are an infinite
number of possible values in the i entry of every matrix of R/A. Namely, X € R/A can
have any infinite number of possible values in its 7" entry.

However, then R/A has an isomorphic copy of Z in it, and so namely, it has rank > 1.
However, this is not possible since rank of R/A is rank(R)—rank(A) = n? — n? = 0.

Thus, [R : A] < co. ¥



Kayla Orlinsky
Fall 2014

Problem 4. Let R be a commutative ring with 1, n a positive integer and Ay, ..., Ay €
M, (R). Show that there is a noetherian subring S of R containing 1 with all A; € M, (S).

Solution. First, we note that since ¢ : Z — R defined by ¢(1) = 1x has kernel which is an
ideal of Z, namely an additive subgroup, so either Z or Z, has an isomorphic copy in R.

Therefore, we can consider S = Z[A;, ..., Ax], the subring generated by the entries of the
A;. Then since S is a finitely generated algebra over a PID, it is a noetherian subgring of R
and M, (S) contains all the A;.

)



Kayla Orlinsky
Fall 2014

Problem 5. Let R = C|z,y]. Show that there exists a positive integer m such that
((z +y)(z* + y* — 2))™ is in the ideal (z* + 3, v* + zy).

Solution. This question is from Fall 2012: Problem 3, thus we provide the same proof
here that we did there.

By Nullstellensatz, if (z + y) (2% + y* — 2) satisfies every point (a,b) € V(23 +y2, > + zy),
then (z+y)(x>4+y* —2) € VT and there exists an integer m such that ((z+y)(z?+y*—2))™ €
(#* + %, v° + 2y).

Thus, we compute V(2% + 32, v* + zy).

If 2% +14? = 0 and y3 + 2y = 0 simultaneously, then 23y +1y® — 4% — 2y = 0 so 23y — 2y = 0
so xy(z* — 1) = 0. Thus, we have x = 0,1, —1 or y = 0. This gives the following points
(Oa O)? (172)7 (]-a _7’>’ (_]—7 1)7 (_17 _1) S V(xg + y2’y3 + l’y)

Since (z +y)(z* +y* — 2) (0,0), (—1, 1) immediately satisfy (x + y), we need only check
(22 4+ y* — 2).

Since 12+ (i)' —2=1+1-2=0, 12+ (=)' =2 =0, (-1)2+ (-1)* =2 =2 -2 =0,
we have by Nullstellensatz that (z + y)(z* + y* — 2) is satisfied by every point (a,b) €
V(2 + 12, 9° + ), so (z +y)(2? + y* — 2) € VI and there exists an integer m such that
(@ +y)@® +y* —2)™ € (@ +¢*,y° + ay). Y
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Problem 6. Let f(z) € Q[z] be an irreducible polynomial of degree n > 5. Let L be
the splitting field of f and let « be a zero of f. Given that [L : Q] = n!, prove that

Q[a’] = Q.

Solution. Since f is irreducible and Q is characteristic 0, f is separable.
Thus, L/Q is Galois.
Now, since G = Gal(L/Q) embeds into S,, (since f has degree n), G = S, for n > 5.

Now, by Spring 2014: Problem 5, for n > 5, S, has no subgroups of index 2 < [S,, :
H] <n.

Now, we simply note that by the fundamental theorem of Galois Theory, subfields of L
over Q correspond exactly to subgroups of G = §,,.

Specifically, subgroups H of S,, correspond to subfields Q C K C L satisfying that
|H|=[L: K] and [S, : H = [K : Q.
Now, L/Q(a*) corresponds to a subgroup H of S, such that

(S, : H] = [Q(a") : Q].

Thus, [Q(a?) : Q] > n or [Q(a?) : Q] < 2.

Now, because a has minimal polynomial f(z) over Q, thus we have that

QY = Q0 ___n
Q@) QI = 1ot 0] ~ ) @

Therefore, [Q(a?) : Q] < n.

Next, [Q(a?) : Q] # 1 since then o would have a minimal polynomial of degree 4 over Q,
but the minimal polynomial of o has degree 5.

Now, if [Q(a?) : Q] = 2 then H = A,, and o has minimal polynomial x? + az + b for

a,b € Q. However, then a* = =a£ya—4b 5;”2_4[’ and so the minimal polynomial of a over Q, which
is f(x), is solvable by radicals, which is not possible since S,, is not solvable for n > 5.
Thus, [Q(a?) : Q] = n and so [Q(a) : Q(a*)] = 1. Namely, Q(a) = Q(a?). ¥



