# Kayla Orlinsky <br> Algebra Exam Fall 2014 

Problem 1. Let $G$ be a group of order 56 having at least 7 elements of order 7. Let $S$ be a Sylow 2-subgroup of $G$.
(a) Prove that $S$ is normal in $G$ and $S=C_{G}(S)$.
(b) Describe the possible structures of $G$ up to isomorphism. (Hint: How does an element of order 7 act on the elements of $S$.)

## Solution.

(a) Since by Sylow $n_{7} \mid 8$ and $n_{7} \equiv 1 \bmod 7, n_{7}=1,8$. Because $G$ has at least 7 elements of order $7, n_{7} \neq 1$ so $n_{7}=8$.
Thus, because Sylow 7 -subgroups are cyclic in $G$ and they are conjugates, $G$ actually has $6 \cdot 8=48$ elements of order 7 .
Since $56-48=8, G$ can have only 7 elements of even order.
Thus, $G$ has one Sylow 2-subgroup, $S$.
Now, by assumption $G$ is non-abelian (its Sylow 7-subgroup is not normal). Thus, $C_{G}(S) \neq G$.
Now, because $S$ is normal, $C_{G}(S)$ will also be normal in $G$. if $a \in G, x \in C_{G}(S), s \in S$, then

$$
\begin{aligned}
a x a^{-1} s\left(a x a^{-1}\right)^{-1} & =a x a^{-1} s a x^{-1} a^{-1} \\
& =a x s_{0} x^{-1} a^{-1} \quad a^{-1} s a=s_{0} \\
& =a s_{0} a^{-1} \\
& =s \quad s=a s_{0} a^{-1}
\end{aligned}
$$

Thus, $a x a^{-1} \in C_{G}(S)$.
Therefore, if $\left|C_{G}(S)\right|=56 / 2=28$, then $C_{G}(S)$ will be normal in $G$.
However, in $C_{G}(S), n_{7} \equiv 1 \bmod 7, n_{7} \mid 4$ so $C_{G}(S)$ has a normal Sylow 7 -subgroup. However, normal Sylow subgroups of normal subgroups are normal in the whole group (see Fall 2011: Problem 5 Claim 3). This contradicts that $G$ has 8 Sylow 7-subgroups.
If $\left|C_{G}(S)\right|=14$, then again $C_{G}(S)$ has a normal Sylow 7 -subgroup and so again, this would force $G$ to have a normal Sylow 7 -subgroup.

Finally, $\left|C_{G}(S)\right| \neq 7$ because again, $C_{G}(S)$ is normal in $G$.
Therefore, $\left|C_{G}(S)\right|$ has even order so $C_{G}(S) \subset S$.
Thus, $C_{G}(S)=Z(S)$ and so it cannot be trivial since $S$ is a $p$-group and so has non-trivial center by the class equation.
Let $s \in S$ not be in $C_{G}(S)$. Then there exists $a, b \in S$ with $a \neq b$ and $s a s^{-1}=b$. If $a \in C_{G}(S)$ then

$$
b=s a s^{-1}=s a s^{-1} a^{-1} a=s s^{-1} a=a
$$

which is a contradiction. Similarly, $b \notin C_{G}(S)$. Note that clealry $s \neq a$ and $s \neq b$.
However, this implies that there are an odd number of elements not in $C_{G}(S)$ which is impossible since $C_{G}(S) \subset S$ and so has even order.
To see this, note that so far we have found 3 total elements not in $C_{G}(S)$ and since $C_{G}(S)$ has even order, there must exist at least one more $c \in S$ such that $c \notin C_{G}(S)$ and $c$ is distinct from $a$ and $b$.
However, $s c s^{-1}$ cannot be $a$ or $b$, else we would get that $c$ is one of the $a$ or $b$. Namely, if $s c s^{-1}=b$ then $s c s^{-1}=s a s^{-1}$ so $c=a$.
Therefore, there must exist some $d$ such that $s c s^{-1}=d$, where $d \neq a, b, c, s$. Furthermore, by the same reasoning as before, $d \notin C_{G}(S)$. Else

$$
c=s^{-1} d s=s^{-1} d s d^{-1} d=s^{-1} s d=d
$$

which contradicts that $c \notin C_{G}(S)$.
However, we now have 5 distinct elements not in $C_{G}(S)$. Repeating we obtain a contradiction, that $C_{G}(S)$ is trivial.
Finally, $C_{G}(S)=Z(S)=S$ and so $S$ is abelian.
(b) Since $S$ is abelian,

$$
S \cong \mathbb{Z}_{8}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}, \mathbb{Z}_{2}^{3}
$$

This will give three possible structures for $G$.
Note that by the recognizing semi-direct products theorem, $G \cong P_{7} S$ where $P_{7}$ is a Sylow 7-subgroup.

$$
\varphi: P_{7} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{8}\right) \text { Let }
$$

$$
\varphi: P_{7} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{8}\right) \cong \mathbb{Z}_{8}^{\times} \cong \mathbb{Z}_{8-2} \cong \mathbb{Z}_{6}
$$

Since there are no elements of order 7 in $\operatorname{Aut}\left(\mathbb{Z}_{8}\right)$, only the trivial homomorphism is well defined. Since this would define an abelian structure on $G$, this cannot lead to a possible structure for $G$.
$\varphi: P_{7} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)$ Let $\varphi: P_{7} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)$.
First, if $\sigma: \mathbb{Z}_{4} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ is an automorphism, one can check that to ensure the kernel of $\sigma$ is trivial, we only have the following choices for $\sigma$ :

$$
\begin{aligned}
& \sigma(1,0)=(1,0) \quad \text { and } \quad \sigma(0,1)=(0,1) \\
& \sigma(1,0)=(1,1) \text { and } \quad \sigma(0,1)=(0,1) \\
& \sigma(1,0)=(3,0) \text { and } \quad \sigma(0,1)=(0,1) \\
& \sigma(1,0)=(3,1) \text { and } \sigma(0,1)=(0,1) \\
& \sigma(1,0)=(3,1) \quad \text { and } \\
& \sigma(0,1)=(1,0) \\
& \sigma(1,0)=(3,0) \text { and } \\
& \sigma(0,1)=(1,0) \\
& \sigma(1,0)=(1,1) \text { and } \\
& \sigma(0,1)=(1,0) \\
& \sigma(1,0)=(1,0) \quad \text { and } \\
& \sigma(0,1)=(1,0)
\end{aligned}
$$

Namely, $\operatorname{Aut}\left(\mathbb{Z}_{4} \times \mathbb{Z}_{2}\right)$ has order 8 and so again, there are no elements of order 7 for $\varphi$ to map.
$\varphi: P_{7} \rightarrow \varphi: P_{7} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{2}^{3}\right) \varphi: P_{7} \rightarrow \operatorname{Aut}\left(\mathbb{Z}_{2}^{3}\right) \cong G L_{3}\left(\mathbb{F}_{2}\right)$. Since

$$
\left|G L_{3}\left(\mathbb{F}_{2}\right)\right|=\left(2^{3}-1\right)\left(2^{3}-2\right)\left(2^{3}-2^{2}\right)=7 \cdot 6 \cdot 4=2^{3} \cdot 3 \cdot 7
$$

Therefore, there exists a non-trivial homomorphism $\varphi$ under which we can define the semi-direct product structure for $G$.

Now, any $\varphi$ must map $P_{7}$ to a Sylow 7 -subgroup of $\operatorname{Aut}\left(\mathbb{Z}_{2}^{3}\right)$. Since Sylow subgroups are conjugates, any two different homomorphisms $\varphi_{1}, \varphi_{2}$ will have conjugate images. Namely, they will generate isomorphic semi-direct products.
Thus, there is only one possible group $G$ with non-normal Sylow 7 -subgroup.
To actually write down a presentation for $G$, we must find an element of order 7 in $\operatorname{Aut}\left(\mathbb{Z}_{2}^{3}\right)$.
Let $S \cong\langle a, b, c\rangle$ and $P_{7} \cong\langle d\rangle$.
After some effort, one obtains that the automorphism of $S$ defined by $a \mapsto b, b \mapsto b c$, $c \mapsto a$ defined an automorphism of order 7 .
Therefore, we get the following multiplication for

$$
G \cong \mathbb{Z}_{2}^{3} \times_{\varphi} \mathbb{Z}_{7}
$$

$$
G \cong\left\langle a, b, c, d \mid a^{2}=b^{2}=c^{2}=d^{7}=1, d a d^{-1}=b, d b d^{-1}=b c, d c d^{-1}=a\right\rangle
$$

This is the only possible structure for $G$.

Problem 2. Show that a finite ring with no nonzero nilpotent elements is commutative.

Solution. Let $R$ be a finite ring with no nonzero nilpotent elements.
Let $r \in J(R)$. Then $1-r$ is invertible in $R$ because $J(R)$ is quasi-regular.
Now, because $R$ is artinian (it is finite), we have a decreasing chain

$$
(r) \supset\left(r^{2}\right) \supset \cdots
$$

which must terminate after a finite number of steps. Namely, $\left(r^{n}\right)=\left(r^{m}\right)$ for all $n \geq m$.
However, $r^{m}=a r^{m+1}$ for some $a \in R$. Thus,

$$
r^{m}(1-a r)=0
$$

Since $\operatorname{ar} \in J(R), 1-a r$ has an inverse so $r^{m}=0$. Namely, $r$ is nilpotent.
Since $r \in R$, it must be that $r=0$.
Thus, $J(R)=0$.
Therfore, by Artin Wedderburn, $R \cong M_{n_{1}}\left(D_{1}\right) \oplus \cdots \oplus M_{n_{k}}\left(D_{k}\right)$ for some division rings $D_{i}$. Note that because $R$ is finite, $D_{i}$ must be finite, and since finite division rings are fields, $D_{i} \cong \mathbb{F}_{q_{i}}$ a field of $q_{i}$ elements.

However, since $R$ has no nonzero nilpotent elements and

$$
A=\left[\begin{array}{ccccc}
0 & 0 & \cdots & 0 & 1 \\
0 & 0 & \cdots & 0 & 0 \\
& \vdots & \ddots & \vdots & \\
0 & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0
\end{array}\right]
$$

is a nilpotent matrix over any field (any division ring really), $n_{i}=1$ for all $i$.
Thus, $R \cong \mathbb{F}_{q_{1}} \oplus \cdots \oplus \mathbb{F}_{q_{k}}$ and so it is commutative.

Problem 3. If $R=M_{n}(\mathbb{Z})$, and $A$ is an additive subgroup of $R$, show that as additive subgroups $[R: A]$ is finite if and only if $R \otimes_{\mathbb{Z}} \mathbb{Q}=A \otimes_{\mathbb{Z}} \mathbb{Q}$.

## Solution.

$\Longrightarrow$ Assume $[R: A]=m<\infty$. Then for all $X \in R / A$, with $X \neq 0$ (in other words for $X \notin A$ ), $m X=0 \in R / A$ since $R / A$ is a finite group, (in other words, $m X \in A$ ).

Therefore for all $X \in R$ with $X \notin A$, and all $q \in \mathbb{Q}, X \otimes m q=m X \otimes q \in A \otimes_{\mathbb{Z}} \mathbb{Q}$ and clearly if $X \in A$, then $X \otimes q \in A \otimes_{\mathbb{Z}} \mathbb{Q}$ so $R \otimes_{\mathbb{Z}} \mathbb{Q}=A \otimes_{\mathbb{Z}} \mathbb{Q}$.
$\Longleftarrow$ Note that $R \cong \mathbb{Z}^{n^{2}}$ and so $R$ is a finitely generated free module over a PID ( $\mathbb{Z}$ is a PID).

Therefore, $A$ is also a free finitely generated $\mathbb{Z}$-module so $A \cong \mathbb{Z}^{m}$ for some $m$ since submodules of free module over PIDs are also free and additive subgroups are submodules.

Therefore, if $R \otimes_{\mathbb{Z}} \mathbb{Q}=A \otimes_{\mathbb{Z}} \mathbb{Q}$ then $\mathbb{Z}^{n^{2}} \otimes_{\mathbb{Z}} \mathbb{Q}=\mathbb{Z}^{m} \otimes_{\mathbb{Z}} \mathbb{Q}$, so of course $n^{2}=m$.
Therefore, $[R: A]<\infty$ since if $[R: A]=\infty$ then there exists $i, j$ so there are an infinite number of possible values in the $i j^{\text {th }}$ entry of every matrix of $R / A$. Namely, $X \in R / A$ can have any infinite number of possible values in its $i j^{\text {th }}$ entry.

However, then $R / A$ has an isomorphic copy of $\mathbb{Z}$ in it, and so namely, it has rank $\geq 1$. However, this is not possible since rank of $R / A$ is $\operatorname{rank}(R)-\operatorname{rank}(A)=n^{2}-n^{2}=0$.

Thus, $[R: A]<\infty$.

Problem 4. Let $R$ be a commutative ring with $1, n$ a positive integer and $A_{1}, \ldots, A_{k} \in$ $M_{n}(R)$. Show that there is a noetherian subring $S$ of $R$ containing 1 with all $A_{i} \in M_{n}(S)$.

Solution. First, we note that since $\varphi: \mathbb{Z} \rightarrow R$ defined by $\varphi(1)=1_{R}$ has kernel which is an ideal of $\mathbb{Z}$, namely an additive subgroup, so either $\mathbb{Z}$ or $\mathbb{Z}_{n}$ has an isomorphic copy in $R$.

Therefore, we can consider $S \cong \mathbb{Z}\left[A_{1}, \ldots, A_{k}\right]$, the subring generated by the entries of the $A_{i}$. Then since $S$ is a finitely generated algebra over a PID, it is a noetherian subgring of $R$ and $M_{n}(S)$ contains all the $A_{i}$.

Problem 5. Let $R=\mathbb{C}[x, y]$. Show that there exists a positive integer $m$ such that $\left((x+y)\left(x^{2}+y^{4}-2\right)\right)^{m}$ is in the ideal $\left(x^{3}+y^{2}, y^{3}+x y\right)$.

Solution. This question is from Fall 2012: Problem 3, thus we provide the same proof here that we did there.

By Nullstellensatz, if $(x+y)\left(x^{2}+y^{4}-2\right)$ satisfies every point $(a, b) \in V\left(x^{3}+y^{2}, y^{3}+x y\right)$, then $(x+y)\left(x^{2}+y^{4}-2\right) \in \sqrt{I}$ and there exists an integer $m$ such that $\left((x+y)\left(x^{2}+y^{4}-2\right)\right)^{m} \in$ $\left(x^{3}+y^{2}, y^{3}+x y\right)$.

Thus, we compute $V\left(x^{3}+y^{2}, y^{3}+x y\right)$.
If $x^{3}+y^{2}=0$ and $y^{3}+x y=0$ simultaneously, then $x^{3} y+y^{3}-y^{3}-x y=0$ so $x^{3} y-x y=0$ so $x y\left(x^{2}-1\right)=0$. Thus, we have $x=0,1,-1$ or $y=0$. This gives the following points $(0,0),(1, i),(1,-i),(-1,1),(-1,-1) \in V\left(x^{3}+y^{2}, y^{3}+x y\right)$.

Since $(x+y)\left(x^{2}+y^{4}-2\right)(0,0),(-1,1)$ immediately satisfy $(x+y)$, we need only check $\left(x^{2}+y^{4}-2\right)$.

Since $1^{2}+(i)^{4}-2=1+1-2=0,1^{2}+(-i)^{4}-2=0,(-1)^{2}+(-1)^{4}-2=2-2=0$, we have by Nullstellensatz that $(x+y)\left(x^{2}+y^{4}-2\right)$ is satisfied by every point $(a, b) \in$ $V\left(x^{3}+y^{2}, y^{3}+x y\right)$, so $(x+y)\left(x^{2}+y^{4}-2\right) \in \sqrt{I}$ and there exists an integer $m$ such that $\left((x+y)\left(x^{2}+y^{4}-2\right)\right)^{m} \in\left(x^{3}+y^{2}, y^{3}+x y\right)$.

Problem 6. Let $f(x) \in \mathbb{Q}[x]$ be an irreducible polynomial of degree $n \geq 5$. Let $L$ be the splitting field of $f$ and let $\alpha$ be a zero of $f$. Given that $[L: \mathbb{Q}]=n$ !, prove that $\mathbb{Q}\left[\alpha^{4}\right]=\mathbb{Q}[\alpha]$.

Solution. Since $f$ is irreducible and $\mathbb{Q}$ is characteristic $0, f$ is separable.
Thus, $L / \mathbb{Q}$ is Galois.
Now, since $G=\operatorname{Gal}(L / \mathbb{Q})$ embeds into $S_{n}$ (since $f$ has degree $\left.n\right), G \cong S_{n}$ for $n \geq 5$.
Now, by Spring 2014: Problem 5, for $n \geq 5, S_{n}$ has no subgroups of index $2<\left[S_{n}\right.$ : $H]<n$.

Now, we simply note that by the fundamental theorem of Galois Theory, subfields of $L$ over $\mathbb{Q}$ correspond exactly to subgroups of $G=S_{n}$.

Specifically, subgroups $H$ of $S_{n}$ correspond to subfields $\mathbb{Q} \subset K \subset L$ satisfying that $|H|=[L: K]$ and $\left[S_{n}: H\right]=[K: \mathbb{Q}]$.

Now, $L / \mathbb{Q}\left(\alpha^{4}\right)$ corresponds to a subgroup $H$ of $S_{n}$ such that

$$
\left[S_{n}: H\right]=\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right]
$$

Thus, $\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right] \geq n$ or $\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right] \leq 2$.
Now, because $\alpha$ has minimal polynomial $f(x)$ over $\mathbb{Q}$, thus we have that

$$
\left[\mathbb{Q}(\alpha): \mathbb{Q}\left(\alpha^{4}\right)\right]=\frac{[\mathbb{Q}(\alpha): \mathbb{Q}]}{\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right]}=\frac{n}{\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right]}
$$

Therefore, $\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right] \leq n$.
Next, $\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right] \neq 1$ since then $\alpha$ would have a minimal polynomial of degree 4 over $\mathbb{Q}$, but the minimal polynomial of $\alpha$ has degree 5 .

Now, if $\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right]=2$ then $H=A_{n}$ and $\alpha^{4}$ has minimal polynomial $x^{2}+a x+b$ for $a, b \in \mathbb{Q}$. However, then $\alpha^{4}=\frac{-a \pm \sqrt{a^{2}-4 b}}{2 a}$ and so the minimal polynomial of $\alpha$ over $\mathbb{Q}$, which is $f(x)$, is solvable by radicals, which is not possible since $S_{n}$ is not solvable for $n \geq 5$.

Thus, $\left[\mathbb{Q}\left(\alpha^{4}\right): \mathbb{Q}\right]=n$ and so $\left[\mathbb{Q}(\alpha): \mathbb{Q}\left(\alpha^{4}\right)\right]=1$. Namely, $\mathbb{Q}(\alpha)=\mathbb{Q}\left(\alpha^{4}\right)$.

