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Problem 1. Let G be a group of order 56 having at least 7 elements of order 7. Let S
be a Sylow 2-subgroup of G.

(a) Prove that S is normal in G and S = CG(S).

(b) Describe the possible structures of G up to isomorphism. (Hint: How does an
element of order 7 act on the elements of S.)

Solution.

(a) Since by Sylow n7|8 and n7 ≡ 1 mod 7, n7 = 1, 8. Because G has at least 7 elements
of order 7, n7 6= 1 so n7 = 8.
Thus, because Sylow 7-subgroups are cyclic in G and they are conjugates, G actually
has 6 · 8 = 48 elements of order 7.
Since 56− 48 = 8, G can have only 7 elements of even order.
Thus, G has one Sylow 2-subgroup, S.
Now, by assumption G is non-abelian (its Sylow 7-subgroup is not normal). Thus,
CG(S) 6= G.

Now, because S is normal, CG(S) will also be normal in G. if a ∈ G, x ∈ CG(S), s ∈ S,
then

axa−1s(axa−1)−1 = axa−1sax−1a−1

= axs0x
−1a−1 a−1sa = s0,

= as0a
−1

= s s = as0a
−1

Thus, axa−1 ∈ CG(S).
Therefore, if |CG(S)| = 56/2 = 28, then CG(S) will be normal in G.
However, in CG(S), n7 ≡ 1 mod 7, n7|4 so CG(S) has a normal Sylow 7-subgroup.
However, normal Sylow subgroups of normal subgroups are normal in the whole
group (see Fall 2011: Problem 5 Claim 3). This contradicts that G has 8 Sylow
7-subgroups.
If |CG(S)| = 14, then again CG(S) has a normal Sylow 7-subgroup and so again, this
would force G to have a normal Sylow 7-subgroup.
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Finally, |CG(S)| 6= 7 because again, CG(S) is normal in G.
Therefore, |CG(S)| has even order so CG(S) ⊂ S.

Thus, CG(S) = Z(S) and so it cannot be trivial since S is a p-group and so has
non-trivial center by the class equation.
Let s ∈ S not be in CG(S). Then there exists a, b ∈ S with a 6= b and sas−1 = b. If
a ∈ CG(S) then

b = sas−1 = sas−1a−1a = ss−1a = a

which is a contradiction. Similarly, b 6∈ CG(S). Note that clealry s 6= a and s 6= b.

However, this implies that there are an odd number of elements not in CG(S) which is
impossible since CG(S) ⊂ S and so has even order.
To see this, note that so far we have found 3 total elements not in CG(S) and since
CG(S) has even order, there must exist at least one more c ∈ S such that c /∈ CG(S)
and c is distinct from a and b.
However, scs−1 cannot be a or b, else we would get that c is one of the a or b. Namely,
if scs−1 = b then scs−1 = sas−1 so c = a.

Therefore, there must exist some d such that scs−1 = d, where d 6= a, b, c, s. Furthermore,
by the same reasoning as before, d /∈ CG(S). Else

c = s−1ds = s−1dsd−1d = s−1sd = d

which contradicts that c /∈ CG(S).
However, we now have 5 distinct elements not in CG(S). Repeating we obtain a
contradiction, that CG(S) is trivial.
Finally, CG(S) = Z(S) = S and so S is abelian.

(b) Since S is abelian,
S ∼= Z8,Z4 × Z2,Z3

2.

This will give three possible structures for G.
Note that by the recognizing semi-direct products theorem, G ∼= P7S where P7 is a
Sylow 7-subgroup.
ϕ : P7 → Aut(Z8) Let

ϕ : P7 → Aut(Z8) ∼= Z×8 ∼= Z8−2 ∼= Z6

Since there are no elements of order 7 in Aut(Z8), only the trivial homomorphism is
well defined. Since this would define an abelian structure on G, this cannot lead to a
possible structure for G.
ϕ : P7 → Aut(Z4 × Z2) Let ϕ : P7 → Aut(Z4 × Z2).
First, if σ : Z4 × Z2 → Z4 × Z2 is an automorphism, one can check that to ensure the
kernel of σ is trivial, we only have the following choices for σ :
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σ(1, 0) = (1, 0) and σ(0, 1) = (0, 1)
σ(1, 0) = (1, 1) and σ(0, 1) = (0, 1)
σ(1, 0) = (3, 0) and σ(0, 1) = (0, 1)
σ(1, 0) = (3, 1) and σ(0, 1) = (0, 1)
σ(1, 0) = (3, 1) and σ(0, 1) = (1, 0)
σ(1, 0) = (3, 0) and σ(0, 1) = (1, 0)
σ(1, 0) = (1, 1) and σ(0, 1) = (1, 0)
σ(1, 0) = (1, 0) and σ(0, 1) = (1, 0)

Namely, Aut(Z4 × Z2) has order 8 and so again, there are no elements of order 7 for ϕ
to map.

ϕ : P7 → ϕ : P7 → Aut(Z3
2) ϕ : P7 → Aut(Z3

2) ∼= GL3(F2). Since

|GL3(F2)| = (23 − 1)(23 − 2)(23 − 22) = 7 · 6 · 4 = 23 · 3 · 7

Therefore, there exists a non-trivial homomorphism ϕ under which we can define the
semi-direct product structure for G.
Now, any ϕ must map P7 to a Sylow 7-subgroup of Aut(Z3

2). Since Sylow subgroups
are conjugates, any two different homomorphisms ϕ1, ϕ2 will have conjugate images.
Namely, they will generate isomorphic semi-direct products.
Thus, there is only one possible group G with non-normal Sylow 7-subgroup.
To actually write down a presentation for G, we must find an element of order 7 in
Aut(Z3

2).
Let S ∼= 〈a, b, c〉 and P7 ∼= 〈d〉.
After some effort, one obtains that the automorphism of S defined by a 7→ b, b 7→ bc,
c 7→ a defined an automorphism of order 7.
Therefore, we get the following multiplication for

G ∼= Z3
2 ×ϕ Z7

,
G ∼= 〈a, b, c, d | a2 = b2 = c2 = d7 = 1, dad−1 = b, dbd−1 = bc, dcd−1 = a〉.

This is the only possible structure for G.

�
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Problem 2. Show that a finite ring with no nonzero nilpotent elements is commutative.

Solution. Let R be a finite ring with no nonzero nilpotent elements.
Let r ∈ J(R). Then 1− r is invertible in R because J(R) is quasi-regular.
Now, because R is artinian (it is finite), we have a decreasing chain

(r) ⊃ (r2) ⊃ · · ·

which must terminate after a finite number of steps. Namely, (rn) = (rm) for all n ≥ m.
However, rm = arm+1 for some a ∈ R. Thus,

rm(1− ar) = 0.

Since ar ∈ J(R), 1− ar has an inverse so rm = 0. Namely, r is nilpotent.
Since r ∈ R, it must be that r = 0.
Thus, J(R) = 0.
Therfore, by Artin Wedderburn, R ∼= Mn1(D1)⊕ · · · ⊕Mnk

(Dk) for some division rings
Di. Note that because R is finite, Di must be finite, and since finite division rings are fields,
Di
∼= Fqi

a field of qi elements.
However, since R has no nonzero nilpotent elements and

A =



0 0 · · · 0 1
0 0 · · · 0 0

... . . . ...
0 0 · · · 0 0
0 0 · · · 0 0


is a nilpotent matrix over any field (any division ring really), ni = 1 for all i.

Thus, R ∼= Fq1 ⊕ · · · ⊕ Fqk
and so it is commutative. �
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Problem 3. If R = Mn(Z), and A is an additive subgroup of R, show that as additive
subgroups [R : A] is finite if and only if R⊗Z Q = A⊗Z Q.

Solution.
=⇒ Assume [R : A] = m <∞. Then for all X ∈ R/A, with X 6= 0 (in other words

for X /∈ A), mX = 0 ∈ R/A since R/A is a finite group, (in other words, mX ∈ A).
Therefore for all X ∈ R with X /∈ A, and all q ∈ Q, X ⊗mq = mX ⊗ q ∈ A⊗Z Q and

clearly if X ∈ A, then X ⊗ q ∈ A⊗Z Q so R⊗Z Q = A⊗Z Q.
⇐= Note that R ∼= Zn2 and so R is a finitely generated free module over a PID (Z is

a PID).
Therefore, A is also a free finitely generated Z-module so A ∼= Zm for some m since

submodules of free module over PIDs are also free and additive subgroups are submodules.
Therefore, if R⊗Z Q = A⊗Z Q then Zn2 ⊗Z Q = Zm ⊗Z Q, so of course n2 = m.
Therefore, [R : A] <∞ since if [R : A] =∞ then there exists i, j so there are an infinite

number of possible values in the ijth entry of every matrix of R/A. Namely, X ∈ R/A can
have any infinite number of possible values in its ijth entry.

However, then R/A has an isomorphic copy of Z in it, and so namely, it has rank ≥ 1.
However, this is not possible since rank of R/A is rank(R)−rank(A) = n2 − n2 = 0.

Thus, [R : A] <∞. �
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Problem 4. Let R be a commutative ring with 1, n a positive integer and A1, ..., Ak ∈
Mn(R). Show that there is a noetherian subring S of R containing 1 with all Ai ∈Mn(S).

Solution. First, we note that since ϕ : Z→ R defined by ϕ(1) = 1R has kernel which is an
ideal of Z, namely an additive subgroup, so either Z or Zn has an isomorphic copy in R.

Therefore, we can consider S ∼= Z[A1, ..., Ak], the subring generated by the entries of the
Ai. Then since S is a finitely generated algebra over a PID, it is a noetherian subgring of R
and Mn(S) contains all the Ai.

�
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Problem 5. Let R = C[x, y]. Show that there exists a positive integer m such that
((x+ y)(x2 + y4 − 2))m is in the ideal (x3 + y2, y3 + xy).

Solution. This question is from Fall 2012: Problem 3, thus we provide the same proof
here that we did there.

By Nullstellensatz, if (x+ y)(x2 + y4− 2) satisfies every point (a, b) ∈ V (x3 + y2, y3 +xy),
then (x+y)(x2 +y4−2) ∈

√
I and there exists an integer m such that ((x+y)(x2 +y4−2))m ∈

(x3 + y2, y3 + xy).
Thus, we compute V (x3 + y2, y3 + xy).
If x3 +y2 = 0 and y3 +xy = 0 simultaneously, then x3y+y3−y3−xy = 0 so x3y−xy = 0

so xy(x2 − 1) = 0. Thus, we have x = 0, 1,−1 or y = 0. This gives the following points
(0, 0), (1, i), (1,−i), (−1, 1), (−1,−1) ∈ V (x3 + y2, y3 + xy).

Since (x+ y)(x2 + y4 − 2) (0, 0), (−1, 1) immediately satisfy (x+ y), we need only check
(x2 + y4 − 2).

Since 12 + (i)4 − 2 = 1 + 1− 2 = 0, 12 + (−i)4 − 2 = 0, (−1)2 + (−1)4 − 2 = 2− 2 = 0,
we have by Nullstellensatz that (x + y)(x2 + y4 − 2) is satisfied by every point (a, b) ∈
V (x3 + y2, y3 + xy), so (x + y)(x2 + y4 − 2) ∈

√
I and there exists an integer m such that

((x+ y)(x2 + y4 − 2))m ∈ (x3 + y2, y3 + xy). �
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Problem 6. Let f(x) ∈ Q[x] be an irreducible polynomial of degree n ≥ 5. Let L be
the splitting field of f and let α be a zero of f . Given that [L : Q] = n!, prove that
Q[α4] = Q[α].

Solution. Since f is irreducible and Q is characteristic 0, f is separable.
Thus, L/Q is Galois.
Now, since G = Gal(L/Q) embeds into Sn (since f has degree n), G ∼= Sn for n ≥ 5.
Now, by Spring 2014: Problem 5, for n ≥ 5, Sn has no subgroups of index 2 < [Sn :

H] < n.
Now, we simply note that by the fundamental theorem of Galois Theory, subfields of L

over Q correspond exactly to subgroups of G = Sn.

Specifically, subgroups H of Sn correspond to subfields Q ⊂ K ⊂ L satisfying that
|H| = [L : K] and [Sn : H] = [K : Q].

Now, L/Q(α4) corresponds to a subgroup H of Sn such that

[Sn : H] = [Q(α4) : Q].

Thus, [Q(α4) : Q] ≥ n or [Q(α4) : Q] ≤ 2.
Now, because α has minimal polynomial f(x) over Q, thus we have that

[Q(α) : Q(α4)] = [Q(α) : Q]
[Q(α4) : Q] = n

[Q(α4) : Q] .

Therefore, [Q(α4) : Q] ≤ n.
Next, [Q(α4) : Q] 6= 1 since then α would have a minimal polynomial of degree 4 over Q,

but the minimal polynomial of α has degree 5.
Now, if [Q(α4) : Q] = 2 then H = An and α4 has minimal polynomial x2 + ax + b for

a, b ∈ Q. However, then α4 = −a±
√

a2−4b
2a

and so the minimal polynomial of α over Q, which
is f(x), is solvable by radicals, which is not possible since Sn is not solvable for n ≥ 5.

Thus, [Q(α4) : Q] = n and so [Q(α) : Q(α4)] = 1. Namely, Q(α) = Q(α4). �
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